JP2530496B2 - Semiconductor heterostructure and manufacturing method thereof - Google Patents

Semiconductor heterostructure and manufacturing method thereof

Info

Publication number
JP2530496B2
JP2530496B2 JP1180574A JP18057489A JP2530496B2 JP 2530496 B2 JP2530496 B2 JP 2530496B2 JP 1180574 A JP1180574 A JP 1180574A JP 18057489 A JP18057489 A JP 18057489A JP 2530496 B2 JP2530496 B2 JP 2530496B2
Authority
JP
Japan
Prior art keywords
layer
buffer layer
ingaas
buffer
growth temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1180574A
Other languages
Japanese (ja)
Other versions
JPH0346241A (en
Inventor
薫 井上
ジェイ・シー・アルマン
年伸 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1180574A priority Critical patent/JP2530496B2/en
Publication of JPH0346241A publication Critical patent/JPH0346241A/en
Application granted granted Critical
Publication of JP2530496B2 publication Critical patent/JP2530496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体ヘテロ構造およびその製造方法に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a semiconductor heterostructure and a method for manufacturing the same.

(従来の技術) ノンドープのGaAs層上にn形AlGaAs層を形成したヘテ
ロ接合界面に発生する高い移動度の2次元電子ガスの濃
度をゲート電極により制御する高電子移動度トランジス
タ(以下HEMTと称す)が考案されている。このHEMTは、
高速スイッチング素子、マイクロ波素子として有望なの
で、その特性をさらに向上させる材料面、および構造面
の研究が盛んに行われている。
(Prior Art) A high electron mobility transistor (hereinafter referred to as HEMT) in which the concentration of a high mobility two-dimensional electron gas generated at a heterojunction interface in which an n-type AlGaAs layer is formed on a non-doped GaAs layer is controlled by a gate electrode. ) Has been devised. This HEMT is
Since it is promising as a high-speed switching element and a microwave element, researches on materials and structures for further improving the characteristics are actively conducted.

材料面では、GaAs基板に替ってInP基板を用い、InPに
格子整合したIn0.53Ga0.47Asとn形のIn0.52Al0.48Asか
らなるヘテロ構造が、GaAs/AlGaAs系のHEMTよりそれぞ
れ高い電子移動度、電子飽和速度および2次元電子ガス
濃度を示すため、AlGaAs/GaAs系よりも高性能なHEMTを
実現できるものとして注目されている。
In terms of materials, a heterostructure composed of In 0.53 Ga 0.47 As lattice-matched to InP and n-type In 0.52 Al 0.48 As is used for the InP substrate instead of the GaAs substrate, and each has a higher electron structure than the GaAs / AlGaAs HEMT Since it exhibits mobility, electron saturation velocity, and two-dimensional electron gas concentration, it is attracting attention as a device that can realize HEMTs with higher performance than AlGaAs / GaAs systems.

しかしながら、InP基板は、現在のところGaAs基板に
比べて高価であるばかりでなく、その品質がGaAs基板に
比べて劣り、不要な不純物がInP基板上に形成された結
晶層に取り込まれるという問題や、GaAs基板より割れ易
いという問題があった。この対策として、優れた結晶品
質を有するGaAs基板やSi基板を用いて、InGaAsやInAlAs
の結晶を成長できる新しい技術が望まれている。このよ
うな技術は、受光・発光装置と高速電子機器用の集積回
路を作製する上でも重要である。
However, the InP substrate is not only more expensive than the GaAs substrate at present, but its quality is inferior to that of the GaAs substrate, and unnecessary impurities are introduced into the crystal layer formed on the InP substrate. However, there is a problem that it is easier to crack than a GaAs substrate. As a countermeasure against this problem, use InGaAs or InAlAs with a GaAs substrate or Si substrate with excellent crystal quality.
There is a demand for a new technology that can grow the crystals. Such a technique is also important in manufacturing integrated circuits for light receiving / light emitting devices and high-speed electronic devices.

InGaAsやInAlAsを、例えば、GaAs基板上に形成する場
合の問題は、InGaAsやInAlAsとGaAsとの格子定数の差異
である。GaAs上にIn0.53Ga0.47As層を形成する場合に、
格子定数の差により発生する結晶欠陥を抑制するには厚
さ数nmの薄層とする必要があり、実用とはならない。従
って、結晶欠陥の発生は避けられないものとして、素子
活性層の欠陥密度を低下させる方法が考えられている。
A problem in forming InGaAs or InAlAs on, for example, a GaAs substrate is a difference in lattice constant between InGaAs and InAlAs and GaAs. When forming an In 0.53 Ga 0.47 As layer on GaAs,
In order to suppress crystal defects caused by the difference in lattice constant, it is necessary to form a thin layer with a thickness of several nm, which is not practical. Therefore, a method of reducing the defect density of the device active layer is considered as an unavoidable occurrence of crystal defects.

この考えによる従来の方法は、まず、GaAs基板の上に
バッファ層として、InGaAsとInAlAsの薄層からなる超格
子を成長させた上に、素子の活性層を形成するものであ
る。
According to the conventional method based on this idea, first, a superlattice made of a thin layer of InGaAs and InAlAs is grown as a buffer layer on a GaAs substrate, and then an active layer of the device is formed.

従来のこの種の半導体ヘテロ構造について、第4図に
より説明する。同図はその要部拡大断面図で、半導体ヘ
テロ構造は、GaAs基板1の上に、厚さ3nmのInAlAs膜と
厚さ1nmのInGaAs膜を交互に積層し超格子を構成した厚
さ1.8μmのバッファ層2を形成し、さらにその上にHEM
Tのチャンネル層となる厚さ30nmのInGaAs層3を形成し
たものである。さらにその上に積層して形成した厚さ2.
5nmのノンドープInGaAs層4、プレーナドープしたSi層
5、厚さ25nmのノンドープInAlAs層6、プレーナドープ
したSi層7、厚さ1nmのノンドープInAlAs層8および厚
さ15nmのn形InGaAs層9は、上記のInGaAs層3への電子
の供給とオーミック接続を形成するものである。(Y.K.
Chen,G.W.Wang,W.J.Schaff,P.J.Tasker,K.Kavanagh and
L.F.Eastman;IEDM Technical Didgest,p.433,1987)。
A conventional semiconductor heterostructure of this type will be described with reference to FIG. This figure is an enlarged cross-sectional view of the main part. The semiconductor heterostructure has a 1.8 μm thick superlattice structure in which a 3 nm thick InAlAs film and a 1 nm thick InGaAs film are alternately laminated on a GaAs substrate 1. Buffer layer 2 is formed, and HEM is further formed on it
The InGaAs layer 3 having a thickness of 30 nm to be a T channel layer is formed. Thickness formed by stacking on it 2.
The 5 nm non-doped InGaAs layer 4, the planar doped Si layer 5, the 25 nm thick non-doped InAlAs layer 6, the planar doped Si layer 7, the 1 nm thick non-doped InAlAs layer 8 and the 15 nm thick n-type InGaAs layer 9 are Electrons are supplied to the InGaAs layer 3 and ohmic contact is formed. (YK
Chen, GWWang, WJSchaff, PJTasker, K.Kavanagh and
LFEastman; IEDM Technical Didgest, p.433,1987).

(発明が解決しようとする課題) しかしながら、上記のように超格子のバッファ層2が
形成されているに拘らず、活性層のInGaAs層3に僅かで
あるが欠陥が発生している。また、本発明者が実験した
結果、このような欠陥が見られる場合には、電子移動度
は室温において5500cm2/V.S.ないし6000cm2/V.S.程度
で、InP基板を用いて格子整合を行った場合の104cm2/V.
S.以上の値に比べて著しく低いという問題があった。
(Problems to be Solved by the Invention) However, despite the formation of the buffer layer 2 of the superlattice as described above, defects are generated in the InGaAs layer 3 of the active layer although the defects are slight. Further, the present inventors have experimented, when such a defect is found, the electron mobility is 5500cm 2 / VS to 6000 cm 2 / VS approximately at room temperature, when subjected to lattice matching with the InP substrate Of 10 4 cm 2 / V.
There was a problem that it was significantly lower than the value above S.

本発明は、上記の問題を解決するもので、格子定数が
大きく異なるInGaAsやInAlAsを成長しながら、優れた結
晶品質を有する半導体ヘテロ構造とその製造方法を提供
するものである。
The present invention solves the above problems and provides a semiconductor heterostructure having excellent crystal quality while growing InGaAs and InAlAs having greatly different lattice constants, and a method for manufacturing the same.

(課題を解決するための手段) 上記の課題を解決するため、本発明は、バッファ層に
用いるInxGa1-xAs層のInAs組成比xを基板側で0とし、
活性層に向かって徐々に増加させ、活性層側で活性層と
格子整合するInAs組成にする方法を用い、且つ、InAs組
成xの変化率を1.5×10-3/nm以下とするものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention sets the InAs composition ratio x of the In x Ga 1-x As layer used for the buffer layer to 0 on the substrate side,
A method is used in which the InAs composition is gradually increased toward the active layer and lattice-matched with the active layer on the active layer side, and the change rate of the InAs composition x is 1.5 × 10 −3 / nm or less. .

また、上記のバッファ層を分子線エピタキシー法で成
長する場合にその成長温度を450℃以下とする。
Further, when the buffer layer is grown by the molecular beam epitaxy method, the growth temperature is set to 450 ° C. or lower.

さらに、分子線エピタキシー法を用いて450℃以下の
温度で形成したバッファ層上に活性層を形成する場合
に、成長温度を450℃以上から530℃以下の温度に上昇さ
せるものである。
Furthermore, when the active layer is formed on the buffer layer formed at a temperature of 450 ° C. or lower by the molecular beam epitaxy method, the growth temperature is raised from 450 ° C. or higher to 530 ° C. or lower.

またInxGa1-xAsのバッファ層上にInGaAsの活性層を形
成する際に、InGaAs活性層とInxGa1-xAsバッファ層の間
にInGaAs活性層と格子定数が同一のInAlAsのバリア層を
介在させるものである。
In forming the active layer of InGaAs in In x Ga 1-x As of the buffer layer, InGaAs active layer and the lattice constant between the InGaAs active layer and In x Ga 1-x As buffer layer of the same InAlAs A barrier layer is interposed.

(作 用) 基板側から活性層側へInAs組成を徐々に増加させたIn
xGa1-xAsバッファ層により、バッファ層上に形成した活
性層の結晶性が著しく向上する。これは、結晶欠陥の発
生が、このバッファ層により抑制され、活性層には殆ん
ど欠陥が到達していないことによると考えられる。しか
しながら、InxGa1-xAsバッファ層のInAs組成xの変化率
をあまりに大きくすると、結晶の品質劣化が見られ、バ
ッファ層厚100nm当り0.15以下の変化率とするべきであ
ることが実現より明らかとなった。すなわち、InAsの組
成の変化率を1.5×10-3/nm以下とすることにより結晶品
質を良好に保つことができる。
(Operation) In with the InAs composition gradually increased from the substrate side to the active layer side
The x Ga 1-x As buffer layer significantly improves the crystallinity of the active layer formed on the buffer layer. It is considered that this is because the generation of crystal defects is suppressed by this buffer layer and almost no defects reach the active layer. However, if the rate of change of the InAs composition x of the In x Ga 1-x As buffer layer is made too large, the quality of the crystal deteriorates, and the rate of change of 0.15 or less per 100 nm of the buffer layer should be realized. It became clear. That is, the crystal quality can be kept good by setting the change rate of the InAs composition to be 1.5 × 10 −3 / nm or less.

また、分子線エピタキシー法による上記のInxGa1-xAs
の成長温度は、バッファ層上に形成する活性層の結晶性
および表面組織に大きな影響を与える。バッファ層の成
長温度を375℃から520℃まで変化させて実験した結果、
良好な結晶性と表面組織を与える温度は、ほぼ450℃以
下であることが明らかになった。
In addition, the above In x Ga 1-x As by the molecular beam epitaxy method is used.
Growth temperature has a great influence on the crystallinity and surface texture of the active layer formed on the buffer layer. As a result of experimenting by changing the growth temperature of the buffer layer from 375 ° C to 520 ° C,
It was revealed that the temperature at which good crystallinity and surface texture were obtained was approximately 450 ° C or lower.

また、バッファ層上に形成する活性層の成長温度はバ
ッファ層の成長温度でも良好な結果が得られたが、450
℃以上で530℃以下の温度に上昇させた場合に、より活
性層の結晶性を改善することができることが実験から明
らかとなった。
In addition, the growth temperature of the active layer formed on the buffer layer was good even when the growth temperature of the buffer layer was 450.
It has been clarified from experiments that the crystallinity of the active layer can be further improved when the temperature is raised to 530 ° C. or higher above ℃.

さらに、上記InxGa1-xAsバッファ層上にInGaAsの活性
層を形成する場合、活性層のInGaAsと格子整合するInAl
Asのバリア層を挿入することによって、結晶欠陥がバッ
ファ層から活性層に伝搬することを防止でき、活性層の
結晶性をより一層向上することができる。また、HEMTの
場合には、チャンネル層が上記InGaAs活性層に対応する
が、InAlAsのバリア層を挿入することは、InGaAsチャン
ネル層にたまる2次元電子ガスが、欠陥の多く含まれる
InxGa1-xAs層を流れることを防止するので素子の特性が
向上する。
Furthermore, when forming an active layer of InGaAs on the above In x Ga 1-x As buffer layer, InAl that lattice-matches with InGaAs of the active layer.
By inserting the As barrier layer, crystal defects can be prevented from propagating from the buffer layer to the active layer, and the crystallinity of the active layer can be further improved. Further, in the case of HEMT, the channel layer corresponds to the InGaAs active layer, but the insertion of the InAlAs barrier layer causes many defects in the two-dimensional electron gas accumulated in the InGaAs channel layer.
Since it is prevented from flowing through the In x Ga 1-x As layer, the device characteristics are improved.

(実施例) 本発明の一実施例を第1図ないし第3図により説明す
る。第1図は本発明による半導体ヘテロ構造の要部拡大
断面図で、半絶縁性GaAs基板10上に厚さ200nmのノンド
ープのGaAsバッファ層11および厚さについては後述する
ノンドープのInxGa1-xAsバッファ層12を重ねて形成した
後、厚さ200nmのノンドープIn0.52Al0.48Asバリア層1
3、厚さ100nmのIn0.53Ga0.47Asチャンネル層14、厚さ3n
mのノンドープIn0.52Al0.48Asスペーサ層15および高濃
度にSiを添加した厚さ30nmのn形In0.52Al0.48As層16を
順次形成したものである。なお、n形In0.52Al0.48As層
16のSiドープ量は約2×1018/cm3とした。また、InxGa
1-xAsバッファ層12のInAs組成xは、GaAs基板10側で0
とし、表面側に向かって直線的に増加させ、In0.52Al
0.48Asバリア層13との界面で0.53とし、In0.52Al0.48As
バリア層13より表面側にある各層13,14,15および16と格
子整合がとれる組成としている。この構造は、InGaAs/I
nAlAs系HEMTを作製するための基本的な構造で、In0.53G
a0.47Asチャンネル層14は、n型In0.52Al0.48As層16か
ら電子が供給され2次元電子ガスが発生する。素子作製
上重要なことは、In0.53Ga0.47Asチャンネル層14の結晶
性で、その良否を判断する基準として、チャンネル層に
発生する2次元電子ガスの移動度と表面組織があげられ
る。
(Embodiment) An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an enlarged cross-sectional view of an essential part of a semiconductor heterostructure according to the present invention. A 200 nm-thick non-doped GaAs buffer layer 11 on a semi-insulating GaAs substrate 10 and a non-doped In x Ga 1- x As buffer layer 12 is overlaid and then 200 nm thick undoped In 0.52 Al 0.48 As barrier layer 1
3, 100 nm thick In 0.53 Ga 0.47 As channel layer 14, thickness 3 n
A non-doped In 0.52 Al 0.48 As spacer layer 15 of m and an n-type In 0.52 Al 0.48 As layer 16 having a thickness of 30 nm and having Si added at a high concentration are sequentially formed. In addition, n-type In 0.52 Al 0.48 As layer
The Si doping amount of 16 was set to about 2 × 10 18 / cm 3 . Also, In x Ga
The InAs composition x of the 1-x As buffer layer 12 is 0 on the GaAs substrate 10 side.
And increase linearly toward the surface side, and In 0.52 Al
0.48 As 0.53 at the interface with the barrier layer 13, In 0.52 Al 0.48 As
The composition is such that lattice matching can be achieved with each of the layers 13, 14, 15 and 16 on the surface side of the barrier layer 13. This structure is InGaAs / I
The basic structure for fabricating nAlAs HEMTs, In 0.53 G
The a 0.47 As channel layer 14 is supplied with electrons from the n-type In 0.52 Al 0.48 As layer 16 to generate a two-dimensional electron gas. What is important in device fabrication is the crystallinity of the In 0.53 Ga 0.47 As channel layer 14, and the mobility and surface texture of the two-dimensional electron gas generated in the channel layer are the criteria for judging the quality.

本発明者は、第1図のヘテロ構造を通常の固体ソース
を用いた分子線エピタキシー法による結晶成長について
実験を行ない、高い電子移動度と良好な表面組織を得る
ための成長条件と構造の最適化を模索し、成長条件の最
重要項目は、成長温度であり、構造のパラメータとは、
InxGa1-xAsバッファ層12の厚さであると考えた。
The present inventor has conducted an experiment on the crystal structure of the heterostructure shown in FIG. 1 by the molecular beam epitaxy method using an ordinary solid source, and has optimized the growth conditions and the structure for obtaining a high electron mobility and a good surface texture. The most important item of growth condition is the growth temperature, and the structural parameter is
It was considered to be the thickness of the In x Ga 1-x As buffer layer 12.

まず、InxGa1-xAsバッファ層12の厚さを十分に厚い膜
厚と思われる900nmに固定し、成長温度を375℃から520
℃まで変化させて成長実験をくり返し試作したヘテロ構
造の表面組織と電子移動度の評価を行なった。
First, the thickness of the In x Ga 1-x As buffer layer 12 was fixed to 900 nm, which is considered to be a sufficiently large thickness, and the growth temperature was changed from 375 ° C to 520 ° C.
The growth experiment was repeated up to ℃ and the surface texture and electron mobility of the fabricated heterostructures were evaluated.

表面組織は、成長温度を450℃以下とすれば、わずか
なクロスハッチが見られるものの平坦な鏡面で素子作製
に問題がないことがわかった。しかしながら、成長温度
を480℃以上にすると、表面の凹凸が目立ち、表面組織
は劣化した。
As for the surface texture, it was found that when the growth temperature was 450 ° C or less, a slight crosshatch was observed, but there was no problem in device fabrication with a flat mirror surface. However, when the growth temperature was 480 ° C or higher, surface irregularities were conspicuous and the surface texture deteriorated.

第2図は、試作したヘテロ構造で電子移動度の成長温
度依存性を調査した結果を示す特性図である。図からわ
かるように、成長温度が450℃以上では、電子移動度が
急激に低下するが、成長温度400℃前後の試料は、電子
移動度が室温で9500cm2/V.S.という高い値を示した。こ
の値は、InP基板上に格子整合をとって作製されたHEMT
構造での値に匹敵するものである。
FIG. 2 is a characteristic diagram showing the results of investigating the growth temperature dependence of electron mobility in a prototype heterostructure. As can be seen from the figure, the electron mobility sharply decreases at the growth temperature of 450 ° C or higher, but the electron mobility of the sample at the growth temperature of about 400 ° C showed a high value of 9500 cm 2 / VS at room temperature. This value is the value of HEMT fabricated by lattice matching on InP substrate.
It is comparable to the value in the structure.

このような良好な値は、InxGa1-xAsバッファ層12の採
用と、その成長温度の最適化の結果によるもので、良好
な表面組織と電子移動度が得られる450℃以下の成長温
度で製造すれば良いと結論できる。
Such a good value is a result of the adoption of the In x Ga 1-x As buffer layer 12 and the optimization of its growth temperature, and the growth at a temperature of 450 ° C. or lower at which good surface texture and electron mobility can be obtained. It can be concluded that it is good to manufacture at temperature.

次に、InxGa1-xAsバッファ層12の厚さについて最適化
することを考えた。InxGa1-xAsバッファ層12の厚さは、
バッファ層内のInAs組成の変化率すなわち、格子定数の
変化率に対応し、結晶欠陥の発生の度合いと深く関連す
るため重要なパラメータである。
Next, it was considered to optimize the thickness of the In x Ga 1-x As buffer layer 12. The thickness of the In x Ga 1-x As buffer layer 12 is
This is an important parameter because it corresponds to the rate of change of the InAs composition in the buffer layer, that is, the rate of change of the lattice constant, and is closely related to the degree of occurrence of crystal defects.

InxGa1-xAsバッファ層12の厚さを0nmから1237nmまで
変化させた複数個の試料を、成長温度400℃で作製し、
電子移動度の評価を行なった結果を第3図に示す。同図
から明らかなように、InxGa1-xAsバッファ層12の厚さWb
が530nm以上では、電子移動度は飽和に近付き、Wbが350
nm以下では急激な電子移動度の低下が生じている。しか
し、厚さWbが350nmの電子移動度は、室温(300゜K)で
7500cm2/V.S.、77゜Kで25000cm2/V.S.と十分に高い値
であり、実用上、Wbが350nm以上であればよいと考えら
れる。350nmの厚さWbは、InxGa1-xAsバッファ層12にお
けるInAs組成xの変化率が100nmあたり0.15となること
に相当する。従ってxの変化率は、1.5×10-3/nm以下に
すればよいと結論できる。
A plurality of samples in which the thickness of the In x Ga 1-x As buffer layer 12 was changed from 0 nm to 1237 nm was prepared at a growth temperature of 400 ° C,
The results of evaluation of electron mobility are shown in FIG. As is clear from the figure, the thickness Wb of the In x Ga 1-x As buffer layer 12
Above 530 nm, the electron mobility approaches saturation and Wb is 350.
A sharp decrease in electron mobility occurs below nm. However, the electron mobility with a thickness Wb of 350 nm is at room temperature (300 ° K).
It is a sufficiently high value of 7500 cm 2 / VS and 25000 cm 2 / VS at 77 ° K, and it is considered that Wb should be 350 nm or more for practical use. The thickness Wb of 350 nm corresponds to the change rate of the InAs composition x in the In x Ga 1-x As buffer layer 12 being 0.15 per 100 nm. Therefore, it can be concluded that the rate of change of x should be 1.5 × 10 −3 / nm or less.

以上で第1図のヘテロ構造は、450℃以下の成長温度
で形成し、且つInxGa1-xAsバッファ層12におけるInAs組
成xの変化率を1.5×10-3/nm以下とすれば良好な結晶品
質を実現できることを明らかにした。
As described above, if the heterostructure shown in FIG. 1 is formed at a growth temperature of 450 ° C. or less and the rate of change of InAs composition x in the In x Ga 1-x As buffer layer 12 is 1.5 × 10 -3 / nm or less. It was clarified that good crystal quality can be realized.

しかしながら、一般に450℃以下の温度では、ヘテロ
接合界面の平坦性が悪くなり、電子移動度に悪影響を及
ぼすことが知られている。また、高い成長温度が望まし
いが、分子線エピタキシー法によってInを高濃度に含む
層の結晶成長を行なう際には、Inの付着係数が530℃以
上の成長温度において徐々に低下し、結晶の品質低下や
組成の設計値からのずれなどを引き起こすことも知られ
ている。このため、成長温度の上限は、ほぼ530℃と自
動的に定まる。本発明者は成長温度の取り入れ方を検討
した結果、高い成長温度で生じる移動度の低下や表面組
織の劣化は、主としてInxGa1-xAsバッファ層12を形成す
る際に生じ、InxGa1-xAsバッファ層12より上部にある層
は、より高温で成長しても、移動度や表面モホロジーの
劣化は生じないものと考えた。
However, it is generally known that at a temperature of 450 ° C. or lower, the flatness of the heterojunction interface deteriorates and the electron mobility is adversely affected. A high growth temperature is desirable, but when performing crystal growth of a layer containing high concentration of In by the molecular beam epitaxy method, the sticking coefficient of In gradually decreases at the growth temperature of 530 ° C or higher, and the quality of the crystal grows. It is also known to cause deterioration and deviation of the composition from the designed value. Therefore, the upper limit of the growth temperature is automatically set to approximately 530 ° C. The present inventors have results of examining the intake how the growth temperature, the mobility of the drop and the surface tissues caused by high growth temperatures degradation occurs when mainly forming the In x Ga 1-x As buffer layer 12, an In x It was considered that the layers above the Ga 1-x As buffer layer 12 did not deteriorate in mobility or surface morphology even when grown at a higher temperature.

実際に、第1図のヘテロ構造においてノンドープGaAs
バッファ層11およびInxGa1-xAsバッファ層12を400℃で
成長した後、成長温度を500℃まで上昇し、In0.52Al
0.48Asバリア層13からn形In0.52Al0.48As層16までを成
長させたところ、表面組織の劣化や移動度の低下は見ら
れず、移動度は、室温で10500cm2/V.S.、77゜Kで49000
cm2/V.S.という最高値が得られた。なお、この時の試料
では、InxGa1-xAsバッファ層12の厚さを1μmとした。
また、2次元電子ガスの濃度は1.8×1012/cm2であっ
た。
In fact, in the heterostructure of FIG.
After the buffer layer 11 and the In x Ga 1-x As buffer layer 12 were grown at 400 ° C, the growth temperature was raised to 500 ° C and In 0.52 Al
When the 0.48 As barrier layer 13 to the n-type In 0.52 Al 0.48 As layer 16 were grown, no deterioration of the surface texture or decrease in mobility was observed, and the mobility was 10500 cm 2 / VS at 77 ° K at room temperature. In 49000
The highest value of cm 2 / VS was obtained. In the sample at this time, the thickness of the In x Ga 1-x As buffer layer 12 was 1 μm.
The concentration of the two-dimensional electron gas was 1.8 × 10 12 / cm 2 .

以上の結果をまとめると、GaAs基板上にInGaAsやInAl
Asからなる良好な結晶品質を有する素子活性層を形成す
るためには、InAs組成比xを0から素子活性層と格子整
合する値まで基板側より直線的に増加させたInxGa1-xAs
バッファ層をGaAs基板と素子活性層の間に介在させるこ
と、このInxGa1-xAsバッファ層中のInAs組成の変化率を
1.5×10-3/nm以下とすること、および、InxGa1-xAsバッ
ファ層の成長温度を450℃以下とすることが重要であ
り、活性層の形成には、バッファ層の形成温度よりも高
い、450℃ないし530℃の温度が望ましいということであ
る。このような製造方法により、少なくとも良質のInGa
As/AlGaAs系HEMT構造をGaAs基板上に形成することが可
能である。
Summarizing the above results, InGaAs and InAl on a GaAs substrate
To form the device active layer having a good crystal quality of As it was linearly increased from the substrate side InAs composition ratio x from 0 to a value that is lattice-matched device active layer an In x Ga 1-x As
By interposing a buffer layer between the GaAs substrate and the device active layer, the rate of change of InAs composition in this In x Ga 1-x As buffer layer can be measured.
It is important that the growth temperature of the In x Ga 1-x As buffer layer is 450 ° C or less, and that the formation temperature of the buffer layer is 1.5 x 10 -3 / nm or less. A higher temperature, 450 ° C to 530 ° C, is desirable. With such a manufacturing method, at least good quality InGa
It is possible to form an As / AlGaAs HEMT structure on a GaAs substrate.

以上述べた本発明の実施例では、HEMT構造を中心に説
明したが、光素子を作製する場合においても、本発明の
InxGa1-xAsバッファ層とその製法は有効であることは言
うまでもない。
In the embodiments of the present invention described above, the HEMT structure was mainly described, but the present invention can be applied to the case of manufacturing an optical element.
It goes without saying that the In x Ga 1-x As buffer layer and its manufacturing method are effective.

なお、本発明によるヘテロ構造およびその製造方法を
HEMTに用途を限った場合に、第1図のヘテロ構造におけ
るノンドープのIn0.52Al0.48Asバリア層13は、重要な働
きをする。第1にInxGa1-xAsバッファ層12に含まれる結
晶欠陥をIn0.53Ga0.47Asチャンネル層14内に到達するの
を防止する事であり、これは、InxGa1-xAsバッファ層12
とIn0.52Al0.48Asバリア層13のヘテロ接合界面の働きに
よるものである。第2の効果として、In0.53Ga0.47Asチ
ャンネル層14を流れる電子は、HEMTのドレイン電極側で
基板側へ押しやられるが、このときIn0.52Al0.48Asバリ
ア層13が無い場合には、電子がInxGa1-xAsバッファ層12
まで流れ込み、このバッファ層に存在する欠陥に捕獲さ
れるため、HEMTの特性に悪影響を及ぼすことになる。In
0.52Al0.48Asバリア層13はこの電子のバッファ層への流
入を防止することになる。
The heterostructure according to the present invention and the manufacturing method thereof are
When the application is limited to HEMT, the undoped In 0.52 Al 0.48 As barrier layer 13 in the heterostructure of FIG. 1 plays an important role. The first is to prevent crystal defects contained in the In x Ga 1-x As buffer layer 12 from reaching the In 0.53 Ga 0.47 As channel layer 14, which is the In x Ga 1-x As buffer layer. Layer 12
And In 0.52 Al 0.48 As barrier layer 13 at the heterojunction interface. As a second effect, the electrons flowing in the In 0.53 Ga 0.47 As channel layer 14 are pushed to the substrate side by the HEMT drain electrode side. At this time, if the In 0.52 Al 0.48 As barrier layer 13 is not present, the electrons are In x Ga 1-x As buffer layer 12
It flows into the buffer layer and is trapped by defects existing in this buffer layer, which adversely affects the HEMT characteristics. In
The 0.52 Al 0.48 As barrier layer 13 prevents this electron from flowing into the buffer layer.

なお、実際のHEMTの作製には、第1図に示すヘテロ構
造に、さらにノンドープのIn0.52Al0.48As層を形成し、
この上にソース電極,ドレイン電極およびゲート電極を
形成すればよく、これはInP基板上に形成したInGaAs/In
AlAs系HEMTでよく行なわれている公知の技術である。
In the actual fabrication of HEMT, an undoped In 0.52 Al 0.48 As layer was further formed on the heterostructure shown in FIG.
A source electrode, a drain electrode, and a gate electrode may be formed on this, which is the InGaAs / In formed on the InP substrate.
This is a well-known technique often used in AlAs HEMTs.

以上本実施例では、チャンネル層のInGaAsのInAs組成
が0.53の場合に限って説明したが、必ずしもこの組成値
に限られるものではなく、あらゆるInAs組成について適
用できるものである。
As described above, in the present embodiment, the case where the InAs composition of InGaAs of the channel layer is 0.53 has been described, but the present invention is not limited to this composition value, and it can be applied to any InAs composition.

また本実施例では、HEMT構造について述べたが、In
0.52Al0.48Asバリア層13上にIn0.53Ga0.47Asチャンネル
層を形成し、このIn0.53Ga0.47Asチャンネル層を用いて
金属−絶縁膜−半導体構造(Metal−Insulator−Semico
nductor;MIS)の電界効果トランジスタ(MISFET)やp
−n接合のゲートを用いたJFET(Junction Field−Effe
ct Transistor)を製造することも適用できることは言
うまでもない。
Although the HEMT structure has been described in the present embodiment, In
0.52 Al 0.48 As barrier layer 13 to form the In 0.53 Ga 0.47 As channel layer on the metal by using the In 0.53 Ga 0.47 As channel layer - insulating film - semiconductor structure (Metal-Insulator-Semico
n field effect transistor (MISFET) or p
-JFET (Junction Field-Effe) using -n junction gate
It goes without saying that it is also applicable to manufacture a ct Transistor).

(発明の効果) 以上説明したように、本発明によれば、GaAs基板上に
InGaAsやInAlAsからなる電気素子・光素子の活性層を良
好な結晶性を保ちつつ形成できるので、素子の製造価格
を大幅に低減することが可能となる。また、GaAs基板上
に、従来のGaAs系電気素子では達成できなかった特性を
有する高性能なトランジスタを実現できることや、光素
子・電気素子の集積回路の作製に応用できる。
(Effect of the Invention) As described above, according to the present invention,
Since the active layers of electric elements and optical elements made of InGaAs and InAlAs can be formed while maintaining good crystallinity, the manufacturing cost of the elements can be significantly reduced. Further, it is possible to realize a high-performance transistor having characteristics that cannot be achieved by a conventional GaAs-based electric element on a GaAs substrate, and it can be applied to manufacture an integrated circuit of an optical element and an electric element.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるヘテロ構造の要部拡大断面図、第
2図は、本発明のヘテロ構造における電子移動度と成長
温度の関係を示す特性図、第3図は本発明のヘテロ構造
における電子移動度とInxGa1-xAsバッファ層の層厚の関
係を示す特性図、第4図は、従来のヘテロ構造の要部拡
大断面図である。 1……GaAs基板、2……バッファ層、3……InGaAs層、
4……ノンドープInGaAs層、5,7……プレーナドープSi
層、6,8……ノンドープInAlAs層、9……n形InGaAs
層、10……半絶縁性GaAs基板、11……GaAsバッファ層、
12……ノンドープInxGa1-xAsバッファ層,13……ノンド
ープIn0.52Al0.48Asバリア層、14……In0.53Ga0.47Asチ
ャンネル層、15……ノンドープIn0.52Al0.48Asスペーサ
層、16……n形In0.52Al0.48As層。
FIG. 1 is an enlarged cross-sectional view of an essential part of a heterostructure according to the present invention, FIG. 2 is a characteristic diagram showing the relationship between electron mobility and growth temperature in the heterostructure of the present invention, and FIG. 3 is a heterostructure of the present invention. FIG. 4 is a characteristic diagram showing the relationship between the electron mobility and the layer thickness of the In x Ga 1-x As buffer layer, and FIG. 4 is an enlarged cross-sectional view of a main part of a conventional hetero structure. 1 ... GaAs substrate, 2 ... buffer layer, 3 ... InGaAs layer,
4 ... Non-doped InGaAs layer, 5,7 ... Planar-doped Si
Layers, 6,8 ... Non-doped InAlAs layers, 9 ... n-type InGaAs
Layer, 10 ... Semi-insulating GaAs substrate, 11 ... GaAs buffer layer,
12 …… Non-doped In x Ga 1-x As buffer layer, 13 …… Non-doped In 0.52 Al 0.48 As barrier layer, 14 …… In 0.53 Ga 0.47 As channel layer, 15 …… Non-doped In 0.52 Al 0.48 As spacer layer, 16 ... n-type In 0.52 Al 0.48 As layer.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/808 29/812 (56)参考文献 特開 平1−158719(JP,A) 特開 昭61−268069(JP,A) 特開 平2−271638(JP,A)Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01L 29/808 29/812 (56) Reference JP-A-1-158719 (JP, A) JP-A 61- 268069 (JP, A) JP-A-2-271638 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】GaAs基板上に、 InAs組成比xを0からyまで厚みと共に1.5×10-3/nm以
下の変化率でほぼ直線的に変化せしめたInxGa1-xAs結晶
のバッファ層と、 InyGa1-yAsとほぼ格子整合するInAlAsバリア層と、 InyGa1-yAsチャンネル層およびn型InAlAs層とが順次形
成されてなるヘテロ構造を少なくとも含む半導体ヘテロ
構造。
1. A buffer of In x Ga 1-x As crystals on a GaAs substrate in which the InAs composition ratio x is changed substantially linearly from 0 to y with the thickness at a rate of change of 1.5 × 10 -3 / nm or less. layer and, in y Ga 1-y as and the InAlAs barrier layer substantially lattice-matched, in y Ga 1-y as channel layer and the n-type InAlAs layer and the semiconductor heterostructure comprising at least a heterostructure formed by sequentially formed.
【請求項2】GaAs基板上にInAs組成比xを0からyまで
厚みと共にほぼ直線的に変化させ、かつxの変化率を1.
5×10-3/nm以下としたInxGa1-xAsバッファ層を形成する
工程と、 このInxGa1-xAsバッファ層上にInyGa1-yAsを含む活性層
を形成する工程とを少なくとも含み、 且つ、上記のInxGa1-xAsバッファ層と上記の活性層が分
子線エピタキシー法により、450℃以下の成長温度で形
成されることを特徴とする半導体ヘテロ構造の製造方
法。
2. An InAs composition ratio x on a GaAs substrate is changed substantially linearly with thickness from 0 to y, and a rate of change of x is 1.
A step of forming an In x Ga 1-x As buffer layer at 5 × 10 -3 / nm or less, and forming an active layer containing In y Ga 1-y As on this In x Ga 1-x As buffer layer And an In x Ga 1-x As buffer layer and the active layer are formed at a growth temperature of 450 ° C or lower by a molecular beam epitaxy method. Manufacturing method.
JP1180574A 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof Expired - Lifetime JP2530496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180574A JP2530496B2 (en) 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180574A JP2530496B2 (en) 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0346241A JPH0346241A (en) 1991-02-27
JP2530496B2 true JP2530496B2 (en) 1996-09-04

Family

ID=16085658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180574A Expired - Lifetime JP2530496B2 (en) 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2530496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098255A (en) * 2008-10-20 2010-04-30 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774100A (en) * 1993-08-31 1995-03-17 Nec Corp Manufacture of semiconductor device
JPH10256154A (en) * 1997-03-06 1998-09-25 Mitsubishi Electric Corp Semiconductor hetero-structure, manufacture thereof and semiconductor device
KR100660011B1 (en) * 2006-09-08 2006-12-20 주식회사 유일종합기술단 Structure of breakwater for seashore bank

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268069A (en) * 1985-05-23 1986-11-27 Agency Of Ind Science & Technol Semiconductor device
JPH01158719A (en) * 1987-12-15 1989-06-21 Sharp Corp Compound semiconductor device
JPH02271638A (en) * 1989-04-13 1990-11-06 Hitachi Ltd Semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098255A (en) * 2008-10-20 2010-04-30 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0346241A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
TWI404209B (en) High electron mobility transistor and method for fabricating the same
US5633516A (en) Lattice-mismatched crystal structures and semiconductor device using the same
US5831296A (en) Semiconductor device
EP0381396A1 (en) Compound semiconductor devices
US6919589B2 (en) HEMT with a graded InGaAlP layer separating ohmic and Schottky contacts
US8441037B2 (en) Semiconductor device having a thin film stacked structure
JPH07183494A (en) Heterojunction fet
JP2530496B2 (en) Semiconductor heterostructure and manufacturing method thereof
US5338942A (en) Semiconductor projections having layers with different lattice constants
JP3141838B2 (en) Field effect transistor
JP2964637B2 (en) Field effect transistor
US20070158684A1 (en) Compound semiconductor, method of producing the same, and compound semiconductor device
JP2730524B2 (en) Field effect transistor and method of manufacturing the same
EP0718890B1 (en) Field effect transistor
JP2572484B2 (en) Field effect transistor
WO2000007248A1 (en) High electron mobility transistor
JP3423812B2 (en) HEMT device and manufacturing method thereof
JP2917719B2 (en) Field effect transistor
JP4347919B2 (en) Semiconductor device
JP2708492B2 (en) Method for manufacturing semiconductor device
JP3121671B2 (en) Method for manufacturing semiconductor device
JP2006114659A (en) Field effect transistor
JPH09283745A (en) High-electron mobility transistor
JPH0695534B2 (en) Heterostructure semiconductor device and manufacturing method thereof
JPH0818037A (en) Compound semiconductor device