JPH034618B2 - - Google Patents

Info

Publication number
JPH034618B2
JPH034618B2 JP6576382A JP6576382A JPH034618B2 JP H034618 B2 JPH034618 B2 JP H034618B2 JP 6576382 A JP6576382 A JP 6576382A JP 6576382 A JP6576382 A JP 6576382A JP H034618 B2 JPH034618 B2 JP H034618B2
Authority
JP
Japan
Prior art keywords
alloy
powder
less
steel
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6576382A
Other languages
Japanese (ja)
Other versions
JPS58181848A (en
Inventor
Toyoaki Ishibachi
Takashi Takuma
Yasunori Fukuya
Masayuki Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Kanto Denka Kogyo Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kanto Denka Kogyo Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6576382A priority Critical patent/JPS58181848A/en
Publication of JPS58181848A publication Critical patent/JPS58181848A/en
Publication of JPH034618B2 publication Critical patent/JPH034618B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた耐熱性、耐摩耗性及び硬度を有
し、切削工具として快削性(発熱の解消、切削層
の不連続、仕上り面の美麗、作業時間の短縮)を
有する含窒化物焼結高V工具鋼とその製造方法に
関するものである。 工具鋼の代表である高速度鋼は、W+2Mo(W
当量)10.0〜24wt%(以下wt%を単に%と略
記)、Cr3.0〜6.0%、V1〜5%、Co18%以下、
C0.3〜1.5%、その他の金属としてMn、Siを合計
1%以下、残部Feと不可避的不純物からなる組
成を有し、組織的にはオーステナイト基質(熱処
理でマルテンサイト化)中にM6C、M23C6
MC、M2C等の炭化物(Mは1種又は2種以上の
金属元素)を分散させたもので、V(鋼中ではほ
とんど炭化物VC又はV4C3として存在する)の増
加によつて硬度、耐摩耗性及び耐熱性が向上する
ことは古くから指摘されてきたが、製造上の制約
からVの含有量は5%程度が限界となつている。
即ち、Vの増加により溶解が困難となる一方、凝
固時に発生した羽毛状炭化物の破砕を目的とする
熱間鍛造が困難となることがその理由である。 また、上記組成の合金溶湯を噴霧急冷すること
により、炭化物の凝集を阻止して得られた粉末を
熱間成型して素材化するアトマイズ高速度鋼が知
られており、この方法によれば、高V化が可能で
あるが、それでも塑性変形を目的とする熱間加
工、その他の制約からVの含有量は7%程度が限
界となつている。 これに鑑み本発明者等な種々研究の結果、耐熱
性、耐摩耗性及び硬度の優れた焼結高V高速度鋼
とその製造方法を開発し、先きに特願昭56−
52709により提案した。その骨子は然るべく配合
した金属酸化物粉末と炭素粉末の混合粉を水素雰
囲気下で還元して合金粉を造り、これを真空焼結
した後必要に応じて熱間静水圧処理により高密度
化したもので、これによればV含有量が8.5〜38
%の焼結高V高速度鋼が得られる。この方法の特
徴は合金の成分金属元素の酸化物粉末を炭素と水
素で同時還元れば高V合金粉が得られることと、
この間固相反応で終始するため炭化物の粗大化が
起きないことにある。 このようにして得られた焼結高V合金鋼は、従
来の高速度鋼の利点を生かしつつ炭化物(VC)
の増加により耐熱性、耐摩耗性、硬度等の諸性質
が優れたものとなる。 本発明者等はこの焼結高V合金鋼について更に
検討を重ねた結果、この合金に窒化物又は/及び
炭窒化物(以下単に窒化物と総称する)を併存さ
せることにより上記諸特性が一層向上し、かつ快
削性を付与し得ることを知見し、本発明を達成し
たものである。 即ち、本発明の一つはW+2Mo(W当量)10.0
〜24%、Cr3.0〜6.0%、V6.0〜25%、Co18%以
下、C1.0〜7.0%、Mn+Si<1.0%、残部Feと不
可避的不純物からなる高V高速度鋼相当の合金鋼
にTiC1-xNx(1≧x≧0.5)を1.0〜25.0%分散さ
せたことを特徴とする含窒化物焼結高V工具鋼に
係る。 また、本発明の他の一つはW+2Mo(W当量)
10.0〜24%、Cr3.0〜6.0%、V6.0〜25%、Co18%
以下、C1.0〜7.0%、Mn+Si<1.0%、残部Feと
不可避的不純物からなる高V高速度鋼相当の各金
属成分元素の酸化物粉末と、炭素粉末とを混合
し、これを水素雰囲気中で加熱して合金化した粉
末にTiC1-xNx(1≧x≧0.5)粉末を1.0〜25.0%
混合して成型し、これを真空焼結した後、熱間静
水圧処理により高密度化することを特徴とする含
窒化物焼結高V工具鋼の製造方法に係る。 窒化物と混合される高V高速度鋼の組成は、多
量のVを除けば、従来高速度鋼の骨子そのもので
あり、単にこれを承継したにすぎない(参照文献
‘今藤正男’金属学会会報、vol.5、No.7(1966)、
p.445〜449) 次に本発明高V工具鋼において、その成分組成
を上記の如く限定した理由を以下に述べる。 WとMoは鋼のオーステナイト相を安定化させ
る元素であり、かつM6C炭化物の形成に寄与し、
W+2Moの含有量を10.0〜24%と限定したのは、
これらが10%未満では十分な硬度と耐摩耗性が得
られず、24%を超えると靭性が損なわれるからで
ある。なおW+2Moの合計量で規定したのは1
%のMoは2%のWと同等の効果を有するからで
ある。 次にCrの添加はオーステナイト相を安定化し
て材料の高温硬さを改善するためであり、その含
有量を3.0〜6.0%としたのは3%未満ではオース
テナイト相の安定化、高温硬さの改善が不十分で
あり、また6%を超えるとオーステナイト相の安
定化、高温硬さの改善効果が飽和すると共にコス
トアツプとなるからである。 またCoは耐熱性を高め、高温硬さを改善する
効果を有し、その含有量を18%以下としたのは、
18%を超えると材料を脆化してしまうからであ
る。 さらにCはM6C等の炭化物を形成して硬度、
耐摩耗性の向上に寄与するが、その含有量を1.0
〜7.0%と限定したのは、1%未満では十分な硬
度や耐摩耗性が得られず、7%を超えると靭性が
損なわれるからである。なおCは通常次式に基づ
いて添加する。 C(%)=0.19+0.17(W+Mo)(%)+0.22V(%) さらにMn+Siは不純物として混入するもので
あるが、その合計の含有量が1.0%を超えると加
工性を害するという悪影響を生ずる。 また本発明においてV及び窒化物の添加とそれ
らの含有量の臨界的意義については以下の通りで
ある。 即ち高V合金に窒化物を併存せしめる直接の理
由は二つある。その一つは高V合金が焼鈍状態で
はねばく、被切削性が悪いため、切削抵抗が大き
く、バイト、被加工体共に加熱され、きれいな仕
上り面にならない。これに窒化物を添加すると、
被切削性が著しく向上する。この効果は1%以上
の窒化物の添加で出現する。他の一つは靭性との
見合いである。V炭化物も窒化物も硬度、耐摩耗
性等を向上させる点では共通しているが、寄与の
度合いは窒化物の方が強い。更に窒化物には耐焼
付性、耐熱性の向上という独自の効果がある。高
V化による靭性の低下は軽微である。これに対し
て低V合金鋼に窒化物を添加すれば靭性が急激に
低下する。一方、V量が6%以上の高V合金鋼に
添加したときは低下の度合いが軽減されるが、V
量が25%を越えると高V添加の効果が飽和する。
従つて、靭性を低下させないという条件下で特定
の特性を向上させるに当つては高V化だけで目的
をとげれば、それにこしたことはないが、向上の
度合いが不足か或いは窒化物により独特の特性を
合金に付与したいときには、高V化しておいて窒
化物を添加し、両者を併存せしめることにより、
目的を達し得ることになる。このためにはVを
6.0以上、25%以下のレベルに保ち、窒化物を25
%以下の適量に選べばよい。しかして窒化物が1
%未満の場合は、窒化物添加の効果が不充分であ
り、窒化物が25%を越えると材料が脆くなつて抵
折力が低下するからである。 このような本発明含窒化物焼結高V工具鋼は次
のようにして造られる。 即ち窒化物を除いた合金粉を造り、これに窒化
物粉末を添加し、混合粉砕して粒度を調整した後
成型し、該成形体を真空焼結して対理論密度比95
%以上とし、これを更に熱間静水圧加工により密
度比を100%以上に高めればよい。窒化物を除い
た合金粉は、その構成元素の酸化物からなる混合
粉(但し炭素は単体で混合)を水素気流中、比較
的低温で還元して得られる。この方法では炭素と
水素によるいわゆる共還元と合金化が同時に進行
し、高温を必要としないため、その結果得られた
合金粉は実質的に二次成長を起さない。従つて容
易に破砕することができる。尚、構成元素の酸化
物粉の一部を金属粉又は炭化物粉で置換してもよ
い。 炭素は最終的に合金に取り込ませる量(炭化物
形成と固溶する量)に、酸化物をCOとして還元
するのに要する量の約半分を加えることを目安と
する。還元に必要な残りの半分は水素還元で肩替
わりさせる。 以上の条件は一応の指針であつて、詳しくは還
元量、炉寸法、水素供給条件等によつて多少変動
する。還元による合金粉の粒度は10μ以下、望ま
しくは3μ以下となるようにし、還元温度は還元
を速める場合は高目に、合金粉の二次成長をさけ
るためには低目とし、950〜1200℃の温度範囲で
行なえばよい。 このようにして得られた合金粉に窒化物粉末を
加えて混合粉砕し、全体をミクロンオーダーの粉
末にする。この際、必要に応じて炭素含有量を調
整するために炭素粉末を加えたり、或いは新たに
金属炭化物、特にV炭化物を添加してもよい。窒
化物としては、IVa又はVa族の金属窒化物、例
えばTiN、ZrN、HfN、TaN、NbN、VN、
TiCN、ZrCN、HfCN、TaCN、NbCN、VCN
等の何れか1種又は2種以上が考えられるが、
TiN以外の窒化物は何れも重く、高価であり、
耐熱性、硬度、窒素含有量の点でTiN又はTiCN
が最も望ましい。非化学当量論的TiCNは、正し
くはTiC1-xNxであるが、x≧0.5)であればTiN
と均等である。以下この意味に用いる。 窒化物を添加して粉砕した混合粉に結合剤を加
え又は加えることなく成型し、焼結することは通
常の粉末治金法と同じであるが、脱ガスを完全な
らしめるためには真空焼結を行ない、脱窒素を少
なくするためには窒素雰囲気中で焼結することが
望ましい。 また焼結は組織が荒れない固相領域で行ない、
対理論密度比95%以上とする。このような固相焼
結により密度比を100%とすることは困難であり、
その結果、靭性は低い値にとどまる。もつとも高
V合金は焼結性がよいので、用途によつては焼結
のままでも使用に耐えうる。 高密度化するためには熱間鍛造が考えられるが
被加工体の形状等に制限があり、材質的にも炭化
物及び窒化物の多い本発明合金では鍛造割れを起
す危険があり、かかる制約を受けない熱間静水圧
加工による高密度化が最も望ましい。 以下、本発明を実施例について説明する。 実施例 1 WO31.261Kg、MoO30.525Kg、Cr2O30.585Kg、
V2O52.321Kg、CoO1.271Kg、Fe2O38.049Kgと炭素
粉末1.90Kgをボールミルにより混合粉砕して平均
粒径を2μ以下とし、これを軽くペレツトに成型
してから水素気流下1120℃の温度で4時間加熱
し、残存酸素量0.62%のSKH57相当組成[10%
W−3.5%Mo−4%Cr−3.5%V−10%Co−1.25
%C−67−75%Fe(合計1%以下のMn、Siを含
む)]において、Vを13.0%、Cを3,2%に増
し、Feを56.3%に減じた高V合金粉を10Kg造つ
た。この合金粉に残存酸素を除くための炭素0.48
Kgと、平均粒径1.2μ以下のTiNを1.11Kg(10%)
を加えてアルコール中で混合粉砕した。合金粉は
二次成長を起しておらず、粉砕は容易であつた。
これに2%のパラフイン結合剤を加えて乾燥して
から試験片を成型し、真空中(0.01mmHg以下)
で焼結(300℃で脱パラフイン、900〜1000℃で脱
ガス、1200℃で1時間本焼結)して、対理論密度
比96%の焼結体を得た。これを熱間静水圧圧縮
(1100℃、1500気圧、30分)処理して密度比を100
%とした後熱処理(1200℃、空冷気焼入れ、560
×1時間焼戻を3回)した。 同様にしてSKH57相当組成でV量を3.5%、8
%、13%、25%に変化させて造つた合金粉に、
TiC1-xNx(1≧X≧0.5)を0%、5%、10%、
15%、20%添加して第1表に示す種々の組成の高
V合金鋼を製造した。これ等の高V合金鋼につい
て硬度、抗折力及び850×1時間焼鈍後の被切削
性を試験した。その結果を第1表に併記した。 また第1表中、比較合金No.14(18%V−0%
TiN)と本発明合金No.6(8%V−10%TiN)及
びNo.10(13%V−5%TiN)からスローアウエイ
インサート(形状TNPR332)を造り、直径43mm
のSUS304の切削テストを行なつた。切削テスト
は切込み深さ1.0mm、送り0.21mmとし、切削液を
用い、回転数を変化させて行なつた。その結果を
第1表に併記した。
The present invention is a nitride-containing sintered material that has excellent heat resistance, wear resistance, and hardness, and has free machinability as a cutting tool (elimination of heat generation, discontinuity of cutting layer, beautiful finished surface, and shortening of working time). The present invention relates to a V-shaped tool steel and its manufacturing method. High-speed steel, which is a typical tool steel, is W + 2Mo (W
Equivalent weight) 10.0 to 24 wt% (hereinafter wt% is simply abbreviated as %), Cr3.0 to 6.0%, V1 to 5%, Co18% or less,
It has a composition consisting of 0.3 to 1.5% C, 1% or less of Mn and Si as other metals, and the balance Fe and unavoidable impurities, and the structure is M 6 in an austenitic matrix (turned into martensite by heat treatment). C, M23C6 ,
It is a product in which carbides such as MC and M 2 C (M is one or more metal elements) are dispersed, and by increasing V (almost present in steel as carbide VC or V 4 C 3 ) Although it has been pointed out for a long time that hardness, wear resistance, and heat resistance are improved, the V content has been limited to about 5% due to manufacturing constraints.
That is, the reason for this is that while an increase in V makes melting difficult, hot forging for the purpose of crushing feather-like carbides generated during solidification becomes difficult. In addition, atomized high-speed steel is known, in which a molten alloy having the above composition is rapidly cooled by spraying to prevent agglomeration of carbides, and the resulting powder is hot-formed into a material. According to this method, Although it is possible to increase the V content, the V content is still limited to about 7% due to hot working for the purpose of plastic deformation and other constraints. In view of this, as a result of various research conducted by the present inventors, we developed a sintered high-V high-speed steel with excellent heat resistance, wear resistance, and hardness, and a manufacturing method for the same.
Suggested by 52709. The basic idea is to create an alloy powder by reducing a mixed powder of metal oxide powder and carbon powder in a hydrogen atmosphere, sintering it in vacuum, and then subjecting it to high density by hot isostatic pressure treatment if necessary. According to this, the V content is 8.5 to 38
% of sintered high V high speed steel is obtained. The feature of this method is that a high V alloy powder can be obtained by simultaneously reducing the oxide powder of the component metal element of the alloy with carbon and hydrogen.
During this period, the solid-phase reaction occurs from start to finish, so that coarsening of the carbide does not occur. The sintered high-V alloy steel obtained in this way takes advantage of the advantages of conventional high-speed steel while adding carbide (VC)
As a result of this increase, various properties such as heat resistance, abrasion resistance, and hardness become superior. As a result of further studies on this sintered high-V alloy steel, the present inventors found that the above-mentioned properties could be further improved by adding nitrides and/or carbonitrides (hereinafter simply referred to as nitrides) to this alloy. The present invention was achieved based on the finding that it is possible to improve the machinability and provide free machinability. That is, one of the present inventions is W+2Mo (W equivalent) 10.0
~24%, Cr3.0~6.0%, V6.0~25%, Co18% or less, C1.0~7.0%, Mn+Si<1.0%, balance Fe and unavoidable impurities. Alloy equivalent to high V high speed steel. The present invention relates to a nitride-containing sintered high-V tool steel characterized by having 1.0 to 25.0% TiC 1-x N x (1≧x≧0.5) dispersed in the steel. Another aspect of the present invention is W+2Mo (W equivalent)
10.0~24%, Cr3.0~6.0%, V6.0~25%, Co18%
Below, oxide powder of each metal component element equivalent to high V high speed steel consisting of C1.0~7.0%, Mn+Si<1.0%, balance Fe and unavoidable impurities is mixed with carbon powder, and this is heated in a hydrogen atmosphere. Add 1.0 to 25.0% TiC 1-x N x (1≧x≧0.5) powder to the powder heated and alloyed in
The present invention relates to a method for manufacturing a nitride-containing sintered high-V tool steel, which is characterized in that the mixture is mixed and molded, vacuum sintered, and then densified by hot isostatic pressure treatment. The composition of high-V high-speed steel that is mixed with nitrides is the same as that of conventional high-speed steel, except for a large amount of V, and is merely a successor of this (Reference: 'Masao Kondo', Bulletin of the Japan Institute of Metals) , vol.5, No.7 (1966),
(p. 445-449) Next, the reason why the composition of the high V tool steel of the present invention is limited as described above will be described below. W and Mo are elements that stabilize the austenite phase of steel, and also contribute to the formation of M 6 C carbides,
The content of W+2Mo was limited to 10.0 to 24% because
If these are less than 10%, sufficient hardness and wear resistance cannot be obtained, and if they exceed 24%, toughness is impaired. The total amount of W + 2Mo is specified as 1.
This is because % Mo has the same effect as 2% W. Next, the addition of Cr is to stabilize the austenite phase and improve the high-temperature hardness of the material, and the reason why the content is 3.0 to 6.0% is that if it is less than 3%, it will stabilize the austenite phase and improve the high-temperature hardness. This is because the improvement is insufficient, and if it exceeds 6%, the effects of stabilizing the austenite phase and improving high-temperature hardness are saturated and the cost increases. In addition, Co has the effect of increasing heat resistance and improving high temperature hardness, and the reason why the content is 18% or less is that
This is because if it exceeds 18%, the material becomes brittle. Furthermore, C forms carbides such as M 6 C and hardness.
It contributes to improving wear resistance, but its content is reduced to 1.0
The reason why it is limited to ~7.0% is that if it is less than 1%, sufficient hardness and wear resistance cannot be obtained, and if it exceeds 7%, toughness will be impaired. Note that C is usually added based on the following formula. C (%) = 0.19 + 0.17 (W + Mo) (%) + 0.22 V (%) Furthermore, Mn + Si are mixed as impurities, but if their total content exceeds 1.0%, workability will be impaired. This causes an adverse effect. Further, in the present invention, the addition of V and nitrides and the critical significance of their contents are as follows. That is, there are two direct reasons why nitrides are made to coexist in high V alloys. One of these is that the high V alloy is sticky in the annealed state and has poor machinability, resulting in large cutting resistance and heating of both the cutting tool and the workpiece, resulting in a poor finished surface. When nitride is added to this,
Machinability is significantly improved. This effect appears when 1% or more of nitride is added. Another reason is the trade-off with toughness. Although V carbide and nitride both improve hardness, wear resistance, etc., nitride makes a stronger contribution. Furthermore, nitrides have the unique effect of improving seizure resistance and heat resistance. The decrease in toughness due to high V is slight. On the other hand, if nitrides are added to low V alloy steel, the toughness will drop sharply. On the other hand, when added to high V alloy steel with a V content of 6% or more, the degree of decrease is reduced;
When the amount exceeds 25%, the effect of high V addition becomes saturated.
Therefore, in order to improve a specific property under the condition that toughness is not reduced, it is possible to achieve the objective by simply increasing V, but the degree of improvement may be insufficient or the nitride may When you want to impart unique properties to an alloy, increase the V and add nitrides to make both coexist.
You will be able to reach your goal. For this purpose, use V
Keep nitrides at levels above 6.0 and below 25%
% or less. However, nitride is 1
If it is less than 25%, the effect of nitride addition is insufficient, and if it exceeds 25%, the material becomes brittle and its resistive strength decreases. The nitride-containing sintered high-V tool steel of the present invention is manufactured as follows. That is, an alloy powder excluding nitrides is made, nitride powder is added to this, mixed and pulverized to adjust the particle size, and then molded, and the molded body is vacuum sintered to have a theoretical density ratio of 95.
% or more, and further increase the density ratio to 100% or more by hot isostatic processing. The alloy powder excluding nitrides is obtained by reducing a mixed powder consisting of oxides of the constituent elements (however, carbon is mixed alone) in a hydrogen stream at a relatively low temperature. In this method, co-reduction by carbon and hydrogen and alloying proceed simultaneously, and high temperatures are not required, so that the resulting alloy powder does not substantially undergo secondary growth. Therefore, it can be easily crushed. Note that a part of the oxide powder of the constituent elements may be replaced with metal powder or carbide powder. As a guideline, the amount of carbon that is ultimately incorporated into the alloy (the amount that forms carbides and forms a solid solution) should be approximately half of the amount required to reduce the oxide to CO. The remaining half required for reduction is taken over by hydrogen reduction. The above conditions are just a guideline, and the details vary somewhat depending on the amount of reduction, furnace dimensions, hydrogen supply conditions, etc. The particle size of the alloy powder due to reduction should be 10μ or less, preferably 3μ or less, and the reduction temperature should be set high to speed up the reduction, and low to avoid secondary growth of the alloy powder, at 950 to 1200℃. It can be carried out within a temperature range of Nitride powder is added to the alloy powder thus obtained, and the mixture is mixed and ground to form a powder of micron order. At this time, carbon powder may be added to adjust the carbon content as necessary, or metal carbide, particularly V carbide, may be newly added. Nitrides include IVa or Va group metal nitrides, such as TiN, ZrN, HfN, TaN, NbN, VN,
TiCN, ZrCN, HfCN, TaCN, NbCN, VCN
One or more of the following may be considered,
All nitrides other than TiN are heavy and expensive;
TiN or TiCN in terms of heat resistance, hardness and nitrogen content
is the most desirable. Non-stoichiometric TiCN is correctly TiC 1-x N x , but if x≧0.5) then TiN
It is equal to It will be used in this meaning below. It is the same as the normal powder metallurgy method to mold and sinter the mixed powder that has been pulverized with the addition of nitrides, with or without the addition of a binder, but vacuum sintering is required to ensure complete degassing. In order to perform sintering and reduce denitrification, it is desirable to sinter in a nitrogen atmosphere. In addition, sintering is performed in a solid phase region where the structure is not rough.
The theoretical density ratio shall be 95% or more. It is difficult to achieve a density ratio of 100% through such solid phase sintering,
As a result, the toughness remains at a low value. Of course, high V alloys have good sinterability, so depending on the application, they can be used as they are sintered. Hot forging can be considered to increase the density, but there are restrictions on the shape of the workpiece, and there is a risk of forging cracks in the alloy of the present invention, which contains many carbides and nitrides. Densification by hot isostatic pressing without undergoing heat is most desirable. Hereinafter, the present invention will be explained with reference to examples. Example 1 WO 3 1.261Kg, MoO 3 0.525Kg, Cr 2 O 3 0.585Kg,
2.321Kg of V 2 O 5 , 1.271Kg of CoO, 8.049Kg of Fe 2 O 3 and 1.90Kg of carbon powder were mixed and pulverized in a ball mill to give an average particle size of 2μ or less, which was lightly formed into pellets and then pulverized for 1120 minutes under a hydrogen stream. After heating for 4 hours at a temperature of
W-3.5%Mo-4%Cr-3.5%V-10%Co-1.25
%C-67-75%Fe (including 1% or less of Mn and Si in total)], 10kg of high V alloy powder with V increased to 13.0%, C increased to 3.2%, and Fe reduced to 56.3%. I built it. Carbon 0.48 to remove residual oxygen from this alloy powder
Kg and 1.11Kg (10%) of TiN with an average particle size of 1.2μ or less
were added and mixed and ground in alcohol. The alloy powder did not undergo secondary growth and was easily pulverized.
Add 2% paraffin binder to this, dry it, then mold the test piece in a vacuum (0.01 mmHg or less).
(deparaffinization at 300°C, degassing at 900-1000°C, main sintering at 1200°C for 1 hour) to obtain a sintered body with a theoretical density ratio of 96%. This was subjected to hot isostatic compression (1100°C, 1500 atm, 30 minutes) to reduce the density ratio to 100.
% post-heat treatment (1200℃, air-cooled air quenching, 560
Tempering was performed 3 times for 1 hour). Similarly, with a composition equivalent to SKH57, increase the V amount to 3.5%, 8
%, 13%, and 25%.
TiC 1-x N x (1≧X≧0.5) 0%, 5%, 10%,
High V alloy steels with various compositions shown in Table 1 were manufactured by adding 15% and 20%. These high V alloy steels were tested for hardness, transverse rupture strength, and machinability after annealing at 850 x 1 hour. The results are also listed in Table 1. Also, in Table 1, comparative alloy No. 14 (18%V-0%
Throwaway inserts (shape TNPR332) were made from alloys No. 6 (8% V - 10% TiN) and No. 10 (13% V - 5% TiN) of the present invention, with a diameter of 43 mm.
We conducted a cutting test on SUS304. Cutting tests were conducted at a depth of cut of 1.0 mm and a feed of 0.21 mm, using cutting fluid and varying the rotational speed. The results are also listed in Table 1.

【表】【table】

【表】 第1表中比較合金No.1とNo.2を比較すれば明ら
かなようにV量3.5%の合金ではTiN5%の添加に
より抗折力が280Kg/mm2も低下しているのに対し、
比較合金No.4と本発明合金No.5を比較すれば明ら
かなようにV量8%の合金では同量のTiNの添
加で抗折力の低下は31Kg/mm2と小さくなつてお
り、同様のことが比較合金No.9と本発明合金No.10
及び比較合金No.14と本発明合金No.15にも認められ
る。 またV量3.5%の比較合金No.1では回転数
290rpm(切削速度42m/min)における切削長が
数mm程度であることが知られており、比較合金No.
14のように高V化すれば切削性は向上するも、更
に本発明合金のように高V量と窒化物を併存させ
ると効果は顕著になり、しかも窒化物の多い方が
切削性の向上に有効であることが判る。 実施例 2 実施例1の第1表に示す合金No.1(比較合金、
SKH57組成相当)、No.3(比較合金)、No.7(本発
明合金)、No.14(比較合金)から、それぞれ2枚
刃、直径10mm、短長で標準寸法のエンドミルを製
作し、切削能を比較した。条件は回転数580rpm、
送り51mm/分、切り込み9mm、乾式で相手材は
HRC20〜25のSKD−11である。 その結果、No.1は切削長800mmでエンドミル直
径の摩耗が0.08mmに達し、ほぼ寿命に近かつたの
に対し、No.3は1600mmで0.075mm、No.7は0.025
mm、No.4は0.040mmにとどまつた。No.3、No.7、
No.14は何れもV+TiNがほぼ18%に近いから、
同一のV+TiN量ではTiNよりはVCが更にTiN
とVCを併存させた方が、この順に耐摩耗性が強
くなることがわかる。 回転数を2倍にするとエンドミルは赤熱するが
依然として切削能を失なわない。 耐熱性も上の順序に位づけられた。尚、何れの
場合も仕上り面は良好であつた。 従来、切削工具鋼では、その寿命を延ばす目的
で、TiC、TiN等による表面処理が一般化しつつ
あるが、この方法によるものは表面層が剥離する
恐れがあるのに対し、本発明によれば、合金の地
中に窒化物がとりこまれているので、表面層が剥
離する心配がなく、摩耗によつても常に窒化物が
露出し、優れた切削性能が保証されかつ寿命が向
上する等顕著な効果を奏するものである。
[Table] Comparing Comparative Alloys No. 1 and No. 2 in Table 1, it is clear that in the alloy with a V content of 3.5%, the transverse rupture strength is reduced by 280 Kg/mm 2 due to the addition of 5% TiN. For,
Comparing Comparative Alloy No. 4 and Invention Alloy No. 5, it is clear that in an alloy with a V content of 8%, the decrease in transverse rupture strength is as small as 31 Kg/mm 2 with the addition of the same amount of TiN. The same thing happened with comparison alloy No. 9 and invention alloy No. 10.
It is also observed in Comparative Alloy No. 14 and Invention Alloy No. 15. In addition, in comparison alloy No. 1 with a V content of 3.5%, the rotation speed
It is known that the cutting length at 290 rpm (cutting speed 42 m/min) is about several mm, and comparative alloy No.
Although machinability improves when V is increased as in No. 14, the effect becomes more pronounced when a high V content and nitride coexist as in the alloy of the present invention, and moreover, the machinability improves with more nitride. It turns out that it is effective. Example 2 Alloy No. 1 shown in Table 1 of Example 1 (comparative alloy,
SKH57 composition equivalent), No. 3 (comparison alloy), No. 7 (invention alloy), and No. 14 (comparison alloy) were each made into standard-sized end mills with two flutes, a diameter of 10 mm, and short length. The cutting ability was compared. The conditions are rotation speed 580 rpm,
Feed rate: 51 mm/min, depth of cut: 9 mm, dry method for mating material
It is SKD-11 with HRC20-25. As a result, the end mill diameter wear of No. 1 reached 0.08 mm at a cutting length of 800 mm and was almost at the end of its life, whereas No. 3 had wear of 0.075 mm at 1600 mm, and No. 7 had wear of 0.025 mm.
mm, No. 4 remained at 0.040 mm. No.3, No.7,
No. 14 has V+TiN of almost 18%, so
At the same amount of V + TiN, VC is more TiN than TiN.
It can be seen that the coexistence of VC and VC increases the wear resistance in this order. When the rotational speed is doubled, the end mill becomes red hot, but it still maintains its cutting ability. Heat resistance was also ranked high. The finished surface was good in all cases. Conventionally, surface treatments using TiC, TiN, etc. have become commonplace for the purpose of extending the life of cutting tool steel.However, with this method, there is a risk of the surface layer peeling off, but with the present invention, Since the nitrides are incorporated into the alloy, there is no need to worry about the surface layer peeling off, and the nitrides are always exposed even when worn, ensuring excellent cutting performance and significantly increasing service life. This has the following effects.

Claims (1)

【特許請求の範囲】 1 W+2Mo(W当量)10.0〜24wt%、Cr3.0〜
6.0wt%、V6.0〜25wt%、Co18wt%以下、C1.0
〜7.0wt%、Mn+Si1.0wt%以下、残部Feと不可
避的不純物からなる高V高速度鋼相当の合金鋼に
TiC1-xNx(1≧x≧0.5)を1.0〜25.0wt%分散さ
せたことを特徴とする含窒化物焼結高V工具鋼。 2 W+2Mo(W当量)10.0〜24wt%、Cr3.0〜
6.0wt%、V6.0〜25wt%、Co18wt%以下、C1.0
〜7.0wt%、Mn+Si1.0wt%以下、残部Feと不可
避的不純物からなる高V高速度鋼相当の各金属成
分元素の酸化物粉末と炭素粉末とを混合し、これ
を水素雰囲気中で加熱して合金化した粉末に
TiC1-xNx(1≧x≧0.5)粉末を1.0〜25.0wt%混
合して成型し、これを真空焼結した後、熱間静水
圧処理により高密度化することを特徴とする含窒
化物焼結高V工具鋼の製造方法。
[Claims] 1 W+2Mo (W equivalent) 10.0 to 24 wt%, Cr3.0 to
6.0wt%, V6.0~25wt%, Co18wt% or less, C1.0
~7.0wt%, Mn + Si 1.0wt% or less, balance Fe and unavoidable impurities, making it an alloy steel equivalent to high-V high-speed steel.
A nitride-containing sintered high-V tool steel, characterized in that TiC 1-x N x (1≧x≧0.5) is dispersed in an amount of 1.0 to 25.0 wt%. 2 W+2Mo (W equivalent) 10.0~24wt%, Cr3.0~
6.0wt%, V6.0~25wt%, Co18wt% or less, C1.0
Oxide powder of each metal component element equivalent to high V high speed steel consisting of ~7.0wt%, Mn+Si1.0wt% or less, balance Fe and unavoidable impurities is mixed with carbon powder, and this is heated in a hydrogen atmosphere. into an alloyed powder
TiC 1 -x N A method for manufacturing nitride sintered high V tool steel.
JP6576382A 1982-04-20 1982-04-20 Nitride containing sintered high vanadium tool steel and preparation thereof Granted JPS58181848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6576382A JPS58181848A (en) 1982-04-20 1982-04-20 Nitride containing sintered high vanadium tool steel and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6576382A JPS58181848A (en) 1982-04-20 1982-04-20 Nitride containing sintered high vanadium tool steel and preparation thereof

Publications (2)

Publication Number Publication Date
JPS58181848A JPS58181848A (en) 1983-10-24
JPH034618B2 true JPH034618B2 (en) 1991-01-23

Family

ID=13296384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6576382A Granted JPS58181848A (en) 1982-04-20 1982-04-20 Nitride containing sintered high vanadium tool steel and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58181848A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204860A (en) * 1984-03-29 1985-10-16 Mitsubishi Metal Corp Manufacture of sintered high-speed steel containing dispersed titanium compound
JPS60204868A (en) * 1984-03-29 1985-10-16 Mitsubishi Metal Corp Sintered alloy steel for hot working tool having superior hot wear resistance
JPS61223165A (en) * 1985-03-28 1986-10-03 Mitsubishi Metal Corp Dispersion strengthening sintered alloy steel having high strength and wear resistance
JPS61279660A (en) * 1985-06-04 1986-12-10 Daijietsuto Kogyo Kk Sintered high hardness alloy steel
JPH0676648B2 (en) * 1985-10-14 1994-09-28 株式会社神戸製鋼所 Sintered tool steel
JPS62146246A (en) * 1985-12-19 1987-06-30 Tatsuro Kuratomi High speed steel type compound sintered compact and its production

Also Published As

Publication number Publication date
JPS58181848A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
CN100355928C (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
TWI280284B (en) Hot-working tool steel
EP2138597A1 (en) Hot-worked steel material having excellent machinability and impact value
JPH0369962B2 (en)
EP2253727B1 (en) Iron-based alloy powder
RU2290452C2 (en) Steel for cold treatment
WO2003069004A1 (en) High chromium and carbide rich tool steel made by powder metallurgi and tool made of the steel
JP2004501276A (en) Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel
JPH034618B2 (en)
EP1024207A1 (en) Cemented carbide with a hardenable binder phase
JP3616204B2 (en) Cold tool steel suitable for surface treatment, its mold and tool
JPH0143017B2 (en)
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
JPH08209202A (en) Alloy steel powder for high strength sintered material excellent in machinability
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JPH05171373A (en) Powder high speed tool steel
JP2001073087A (en) Nitrided die for warm and hot working, excellent in wear resistance
JPH0321621B2 (en)
JP3497387B2 (en) Molds and tools made of high hardness cold tool steel
JPH0256419B2 (en)
JPS5937742B2 (en) High wear resistance sintered high speed steel
JPH025811B2 (en)
JP3558600B2 (en) Low alloy tool steel with excellent machinability after tempering
JPS62124259A (en) Super head high-speed tool steel
JPH06256915A (en) Powder high speed steel tool