TWI280284B - Hot-working tool steel - Google Patents
Hot-working tool steel Download PDFInfo
- Publication number
- TWI280284B TWI280284B TW091135361A TW91135361A TWI280284B TW I280284 B TWI280284 B TW I280284B TW 091135361 A TW091135361 A TW 091135361A TW 91135361 A TW91135361 A TW 91135361A TW I280284 B TWI280284 B TW I280284B
- Authority
- TW
- Taiwan
- Prior art keywords
- mass
- less
- area ratio
- hot
- carbide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
1280284 级丨1,:發明說明 (發明說明應敘明 說明) 發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單 【發明所屬之技術領域】 本發明係關於一種用於熱鍛造模具、擠出模具和 壓鑄模具等的熱間工具鋼,特別是控制碳化物和非 金屬夾雜物,提高切削性、耐熱裂性和耐熔損性的 熱間工具鋼。 【先前技術】 以往,曾經公開過通過提高非金屬夾雜物的純淨 度改善熱間工具鋼之韌性的技術(日本特許第2 8 0 9 6 2 2 號、特開平第11-61331號公報)。另外,還有人提出 了通過增加夾雜物的個數、使夾雜物的形狀成爲球 狀來改善切削性的技術(電氣製鋼64卷3號第191〜201 頁的圖2和圖4、特開平第1卜6 1 3 3 1號、特開平第 10- 6 05 8 5號公報)。但是,上述的現有技術是根據 JISG05 5 5或 ASTM E45 -76等標準來評價夾雜物,因 而僅規定了夾雜物的種類和數量,還不能定量評價 夾雜物的大小。 還有人曾提出了通過調整組成來改善切削性的技 術(日本特開平第 1 0 -60 5 8 5號、第 9-217147號、第 4-358040號和第 11-269603號公報)。此外,有人還 提出了通過改善組織,提高切削性的技術方案(熱處 -6 - 1280284 理39卷5號第225〜226頁、日本特許第2809622號)。 但是,這些公知技術沒有考慮碳化物和非金屬夾 雜物的大小,因而它們都是犧牲了其他性能而只改 善了切削性。 【發明內容】 本發明的目的是,通過適當限定碳化物和非金屬 夾雜物的大小,提供在改善耐熱裂性和耐熔損性的 同時顯著提高切削性的熱間工具鋼。 本發明的熱間工具鋼,其特徵在於,含有 C:0.10 〜0.70 質量 %、Si:0.10 〜0.80 質量 %、Μη:0·30 〜1.00 質量%、?:0.007〜0.020質量%、以:3.00〜7.00質量%、 1和“〇係單獨或複合(1/2〜+仏〇):0.20〜12.00質量%、 V:0.10 〜3.00 質量 %、Ni:0.05 〜0.80 質量 %、S:0.150 質 量%以下,餘量基本上由 Fe和不可避免的雜質所構 成,非金屬夾雜物的純淨度(JISG0555)是,dA60M00 在 0.020 %以下、dB60><400 在 0.020 %以下、dC60M00 在0.020 %以下、而d(A + B + C)在0.045 %以下,同時, 在退火時,粒徑超過1 .0微米的碳化物和非金屬夾雜 物的面積率是0.004 %以下。此外,更含有Co:6.50質 量%以下爲佳。 在該熱間工具鋼中,其退火時粒徑 1 . 0微米以下 的碳化物和非金屬夾雜物的面積率是1 0.5 %以上爲較 1280284 另外,在該熱間工具鋼中,其淬火回火時,粒徑 超過 1 . 〇微米的碳化物和非金屬夾雜物的面積率是 0.0 0 4 %以下爲較佳。 此外,在該熱間工具鋼中,其淬火回火時,粒徑 1.0微米以下的碳化物和非金屬夾雜物的面積率是 0.0 3 8 %以上爲較佳。 本發明的熱間工具鋼通過以下所述構成,可以進 一步發揮本發明的效果,即,C:0.3 5〜0.40質量%、 Si:0.55 〜0.65 質量 % 、 Mn:0.35 〜0.45 質量 % 、 P :0.007 〜0.010 質量 %、Cr:4.60 〜5.00 質量 %、W 和 Mo 係單獨或複合(1/2W + M〇):1.60〜1.80 質量 % 、 V:0.40 〜0.60 質量 %、Ni:0.08 〜0.15 質量 %、S:0.005 質 量%以下,。 本發明藉由適當地限定碳化物和非金屬夾雜物的 大小,改善了耐熱裂性和耐熔損性,提高了切削性。 但是,由於鋼材組成的原因,切削性明顯惡化,爲 了改善耐熱裂性和耐熔損性以及切削性這兩方面的 性能,本發明在減輕夾雜物的鋼中,對於同時改善 切削性以及耐熱裂性和耐熔損性的碳化物和夾雜物 的大小進行了限定。即,不改變熱間工具鋼的主要 成份,通過限定雜質的純淨度,控制夾雜物的形態, 通過預熱處理控制碳化物的形狀和數量,從而可以 同時提高切削性及耐熱裂性和耐熔損性。 -8- 1280284 【實施方式】 下面進一步詳細地說明本發明。當減少夾雜物 時,耐熱裂性可得到改善。但是,取決於鋼材的成 份,改善的效果並不一樣,而且切削性顯著惡化。 因此,耐熱裂性和切削性兩者難以兼顧。本發明人 發現,如果控制碳化物和非金屬夾雜物的粒徑,就 可以兼顧耐熱裂性和切削性。 延長工具壽命的方法,以往,夾雜物數量越多, 切削性越好係爲眾所周知的。但本發明人發現,在 硬度超過 45 HRC的調質鋼中,不管夾雜物量如何, 有的場合切削性好,有的場合切削性差。因此,本 發明人認爲,在純淨度良好的狀態下,通過適當控 制碳化物和非金屬夾雜物的粒徑和量,可以在不損 害其他性能的情況下改善切削性。 碳化物和非金屬夾雜物粒徑較大的鋼,切削性惡 化,1 .0微米以下的微小碳化物和非金屬夾雜物越 多,改善效果越大。 另外,與共晶碳化物相比,析出到基體中的碳化 物的改善效果較大。作爲非金屬夾雜物,與A 1 2 0 3相 比,B系氮化物和B系氧化物、MnS、A1N等微小且 長寬比在1 . 3以下的粒子具有延長切削刀具壽命的效 果、改善切削刀具壽命變異的效果以及改善耐熔損 性和耐熱裂性的效果。而且,粗大的非金屬夾雜物 -9- 1280284 和碳化物使得耐熔損性和耐熱裂性顯著惡化。 爲了得到改善切削性、減輕其變異以及耐熔 性、耐熱裂性和耐疲勞性都得到滿足的熱間工具鋼 重要的是,使碳化物和非金屬夾雜物的尺寸變得 小,碳化物和非金屬夾雜物的分佈十分均勻,除 公知的文獻中所記載的夾雜物的量以外,通過控 夾雜物的大小,可以減輕切削性的變異,改善耐 損性和耐熱裂性。 對於耐熔損性和耐熱裂性來說,存在對初期熱 不產生影響的碳化物和非金屬夾雜物的粒徑範圍 對耐熔損性和耐熱裂性產生影響的是粒徑超過1. 〇 米的碳化物和非金屬夾雜物。因此,在本發明中 減少粒徑超過 1.0微米的碳化物和非金屬夾雜物 量,增加改善切削性效果較大的粒徑1.0微米以下 碳化物和非金屬夾雜物。 碳化物和非金屬夾雜物的形態和量的控制,可 通過在退火處理之前在1 0 5 0〜119(TC下加熱1分鐘-小時進行溶體化處理,然後控制爐冷、空冷、油 等冷卻條件來實現。 下面說明本發明的熱間工具鋼的組成限定依據 夾雜物的限定依據。 熱間工具鋼的組成: C :0.10〜0.70質量%、較佳爲0.3 5〜0.40質量% 損 微 了 制 熔 裂 5 微 的 的 以 20 冷 和 1280284 c在淬火加熱時固溶到基體中,提供所需要的淬 火硬度,另外,特殊碳化物形成元素之間在回火時 形成特殊碳化物,並且通過這種特殊碳化物析出, 賦給回火時的軟化抗力和高溫強度。此外,c形成殘 留碳化物,提供高溫下的耐磨性,具有防止淬火加 熱時晶粒粗大化的作用。C過多時,碳化物量增加過 度,不能保持熱間工具所需要的韌性,而且引起高 溫強度降低,因此將其限定在 0.70質量%以下,其 含量過低時,不能得到上述添加效果,因而將其限 定爲 0.10質量%以上。較佳爲,C含量爲 0.35〜0.40 質量%。1280284 Level ,1: Description of the Invention (Description of the Invention) The technical field, prior art, contents, embodiments and drawings of the invention belong to the technical field of the invention. The present invention relates to a hot forging die. Hot-working tool steels such as extrusion dies and die-casting dies, especially heat-resistant tool steels that control carbide and non-metallic inclusions to improve machinability, heat crack resistance and melt resistance. [Prior Art] In the prior art, a technique for improving the toughness of a hot tool steel by improving the purity of a non-metallic inclusion has been disclosed (Japanese Patent No. 2,800,926, Unexamined-Japanese-Patent No. 11-61331). In addition, there is a technique for improving the machinability by increasing the number of inclusions and making the shape of the inclusions spherical (Electrical Steel, Vol. 64, No. 3, pp. 191 to 201, Fig. 2 and Fig. 4, special opening) 1Bu 6 1 3 3 No. 1 and Special Kaiping No. 10-6 05 8 No. 5). However, the above-mentioned prior art evaluates inclusions according to standards such as JISG05 5 5 or ASTM E45-76, and therefore only the type and number of inclusions are specified, and the size of inclusions cannot be quantitatively evaluated. A technique for improving the machinability by adjusting the composition has been proposed (Japanese Patent Laid-Open No. Hei 10-60 5 8 5, No. 9-217147, No. 4-358040, and No. 11-269603). In addition, some technical solutions have been proposed to improve the machinability by improving the organization (Hot -6 - 1280284, Vol. 39, No. 5, pp. 225-226, Japanese Patent No. 2,806,622). However, these known techniques do not take into account the size of carbides and non-metallic inclusions, so they sacrifice other properties and only improve machinability. SUMMARY OF THE INVENTION An object of the present invention is to provide an inter-heat tool steel which remarkably improves machinability while improving heat-resistant crack resistance and melt-resistance by appropriately limiting the sizes of carbides and non-metallic inclusions. The hot tool steel of the present invention contains C: 0.10 to 0.70% by mass, Si: 0.10 to 0.80% by mass, and Μη: 0·30 to 1.00% by mass. : 0.007 to 0.020 mass%, to: 3.00 to 7.00 mass%, 1 and "lanthanum alone or composite (1/2 to + 仏〇): 0.20 to 12.00% by mass, V: 0.10 to 3.00% by mass, Ni: 0.05 ~0.80% by mass, S: 0.150% by mass or less, the balance is basically composed of Fe and unavoidable impurities, and the purity of non-metallic inclusions (JISG0555) is dA60M00 below 0.020%, dB60><400 0.020% or less, dC60M00 is 0.020% or less, and d(A + B + C) is 0.045% or less. Meanwhile, at the time of annealing, the area ratio of carbides and non-metallic inclusions having a particle diameter of more than 1.0 μm is 0.004. In addition, it is preferable to contain Co: 6.50 mass% or less. In the hot tool steel, the area ratio of carbides and non-metallic inclusions having a particle diameter of 1.0 μm or less during annealing is 1 0.5 % or more. In addition, in the hot tool steel, in the case of quenching and tempering, the area ratio of the carbides and non-metallic inclusions having a particle diameter of more than 1. 〇 micron is preferably 0.04% or less. In the hot tool steel, when quenching and tempering, the carbide having a particle diameter of 1.0 μm or less The area ratio of the non-metallic inclusions is preferably 0.03 % or more. The heat-exchanger tool steel of the present invention can further exhibit the effects of the present invention, that is, C: 0.3 5 to 0.40% by mass, Si : 0.55 to 0.65 mass%, Mn: 0.35 to 0.45 mass%, P: 0.007 to 0.010 mass%, Cr: 4.60 to 5.00 mass%, W and Mo, alone or composite (1/2W + M〇): 1.60 to 1.80 Mass %, V: 0.40 to 0.60% by mass, Ni: 0.08 to 0.15 mass%, and S: 0.005 mass% or less. The present invention improves heat crack resistance by appropriately limiting the size of carbides and non-metallic inclusions. The melt resistance is improved, and the machinability is improved. However, the machinability is remarkably deteriorated due to the composition of the steel material, and the steel for reducing inclusions is reduced in order to improve the properties of heat crack resistance, melt resistance, and machinability. The size of carbides and inclusions that simultaneously improve machinability and thermal crack resistance and melt resistance are defined. That is, the main components of the hot tool steel are not changed, and the inclusions are controlled by limiting the purity of the impurities. In the form, the shape and the number of the carbides are controlled by the pre-heat treatment, so that the machinability, the heat-resistant crack resistance and the melt-resistance can be simultaneously improved. -8 - 1280284 [Embodiment] The present invention will be described in further detail below. When the inclusions are reduced, the heat crack resistance can be improved. However, depending on the composition of the steel, the improvement effect is not the same, and the machinability is remarkably deteriorated. Therefore, it is difficult to achieve both thermal crack resistance and machinability. The present inventors have found that if the particle diameters of carbides and non-metallic inclusions are controlled, heat crack resistance and machinability can be achieved. In the conventional method of extending the life of the tool, the more the number of inclusions, the better the machinability is known. However, the present inventors have found that in the quenched and tempered steel having a hardness exceeding 45 HRC, the machinability is good in some cases, and the machinability is poor in some cases. Therefore, the inventors believe that by appropriately controlling the particle size and amount of carbides and non-metallic inclusions in a state of good purity, the machinability can be improved without impairing other properties. Steels with large particle sizes of carbides and non-metallic inclusions have deteriorated machinability, and the more micro-carbides and non-metallic inclusions below 1.0 μm, the greater the improvement effect. Further, the effect of improving the carbonized matter precipitated into the matrix is larger than that of the eutectic carbide. As a non-metallic inclusion, compared with A 1 2 0 3, particles such as B-based nitride and B-based oxide, MnS, and A1N, and having an aspect ratio of 1.3 or less, have an effect of prolonging the life of the cutting tool and improving. The effect of cutting tool life variation and the effect of improving melt resistance and heat crack resistance. Moreover, the coarse non-metallic inclusions -9- 1280284 and carbides significantly deteriorate the melt resistance and heat crack resistance. In order to obtain an inter-heat tool steel that is improved in machinability, reduced in variation, and refractory, heat-resistant and fatigue-resistant, it is important to make carbides and non-metallic inclusions small in size, carbides and The distribution of non-metallic inclusions is very uniform, and in addition to the amount of inclusions described in the well-known literature, by controlling the size of inclusions, variation in machinability can be reduced, and damage resistance and heat crack resistance can be improved. For the melt resistance and the heat crack resistance, the particle size range of the carbides and non-metallic inclusions which do not affect the initial heat has an influence on the melt resistance and the heat crack resistance, and the particle diameter exceeds 1. 〇 Carbide and non-metallic inclusions of rice. Therefore, in the present invention, the amount of carbides and non-metallic inclusions having a particle diameter exceeding 1.0 μm is reduced, and carbides and non-metallic inclusions having a particle diameter of 1.0 μm or less which have a large effect of improving machinability are increased. The morphology and amount of carbide and non-metallic inclusions can be controlled by heating at 1 0 50 to 119 (TC for 1 minute-hour) before annealing, and then controlling furnace cooling, air cooling, oil, etc. The cooling condition is realized. The composition of the hot tool steel of the present invention is defined below according to the definition of the inclusion. The composition of the hot tool steel: C: 0.10~0.70% by mass, preferably 0.35~0.40% by mass The melt-forming 5 micro-solidification of 20 cold and 1280284 c in the matrix during quenching heating provides the required quenching hardness, and in addition, special carbides form special carbides during tempering, and By the precipitation of such special carbides, the softening resistance and the high-temperature strength at the time of tempering are imparted. Further, c forms residual carbides, provides wear resistance at high temperatures, and has an effect of preventing coarsening of crystal grains during quenching and heating. When the amount of carbide is excessively increased, the toughness required for the hot tool cannot be maintained, and the high temperature strength is lowered, so that it is limited to 0.70 mass% or less, and when the content is too low, The additive effect can not be obtained, thus defining its 0.10 mass% or more preferably, C content of 0.35~0.40% by mass.
Si:0.10〜0.80質量%、較佳爲0.55〜0.65質量% S i不足0.1 0質量%時,不發生微偏析,而切削性 惡化;另外,S i超過0.8 0質量%時,帶狀偏析嚴重, 切削刀具的刀刃卷刃,韌性降低,因而將 S i含量限 定爲0.10〜0.80質量%,較佳爲0.55〜0.65質量%。 Μη:0.30〜1.00質量%、較佳爲0.35〜0.45質量% Μη固溶在基體中,提高淬火性的效果很大。爲 了獲得其添加效果,Μη的添加量必需在0.3 0質量% 以上。Μ ϋ的添加量超過1 . 0 0質量%時,退火硬度過 高,切削性降低,而且A1轉變點過度降低。因此, Μη的添加量爲 0.30〜1.00質量%,較佳爲 0.35〜0.45 質量%。 -11 - 1280284 P:0.007〜0.020質量%、較佳爲0.007〜0.0 10質量% P在凝固時偏析於粒間,並且對於提高熱加工後 的帶狀部的偏析度是必不可少的。作爲維持本發明 特徵的良好切削性能的基本元素,P含量必需在0.007 質量%以上。但P添加過多時,韌性降低,爲了抑制 韌性的降低,P的上限値規定爲 0.020質量%,較佳 爲0.007〜0.010質量%。Si: 0.10 to 0.80% by mass, preferably 0.55 to 0.65 mass% When S i is less than 0.1% by mass, microsegregation does not occur, and machinability is deteriorated. When Si exceeds 0.80 mass%, band segregation is severe. In the cutting edge of the cutting tool, the toughness is lowered, so that the Si content is limited to 0.10 to 0.80% by mass, preferably 0.55 to 0.65 mass%. Μη: 0.30 to 1.00% by mass, preferably 0.35 to 0.45 mass% Μη is solid-solved in the matrix, and the effect of improving the hardenability is large. In order to obtain the effect of addition, the amount of Μη added must be 0.30% by mass or more. When the amount of ruthenium added exceeds 1.0% by mass, the annealing hardness is too high, the machinability is lowered, and the A1 transition point is excessively lowered. Therefore, the amount of Μη added is from 0.30 to 1.00% by mass, preferably from 0.35 to 0.45% by mass. -11 - 1280284 P: 0.007 to 0.020% by mass, preferably 0.007 to 0.010% by mass P is segregated between particles during solidification, and is indispensable for improving the degree of segregation of the strip portion after hot working. As a basic element for maintaining good cutting performance characteristic of the present invention, the P content must be 0.007% by mass or more. However, when P is excessively added, the toughness is lowered, and in order to suppress the decrease in toughness, the upper limit P of P is made 0.020% by mass, preferably 0.007 to 0.010% by mass.
Cr:3.00〜7.00質量%、較佳爲4.60〜5.00質量%Cr: 3.00 to 7.00% by mass, preferably 4.60 to 5.00% by mass
Cr是提供作爲工具所必需的淬火性之最重要的元 素。另外,Cr提高耐氧化性並使A1轉變點上升,而 且形成殘留碳化物,抑制淬火加熱時結晶粒粗大化, 還可以提高耐磨性,回火時析出特殊碳化物,改善 升溫時的軟化抗力,具有提高高溫強度的效果,其 添加量應在 3.00質量%以上。Cr過多時,會過度形 成 Cr碳化物,反而引起高溫強度降低,因而 Cr量 應在7.00質量%以下,較佳爲4.60~5.00質量%。 W 和 Mo:0.20 質量 (l/2W + Mo)S 12.00 質量 %、 較佳爲1.60質量(l/2W + Mo)S 1.80質量% W和Mo形成特殊碳化物,通過形成殘留碳化物, 可以防止淬火加熱時組織粗大化,另外,回火時析 出微小的特殊碳化物,並且提高回火軟化抗力和高 溫強度,因而是最重要的添加元素。而且,W和Mo 具有提高A 1轉變點的作用。W提高高溫強度和耐磨 -12- 1280284 性的作用特別大,而Μ 〇在韌性方面比W更爲有利。 Mo和W過多時,會形成粗大的碳化物,導致韌性過 度降低,因而,W和 Mo係單獨或複合添加時, (1/2W + MO)應在0.20質量%以上、12.00質量%以下。 V : 0 . 1 0〜3.0 0質量%、較佳爲0.4 0〜0.6 0質量% V是強而有力的碳化物形成元素,形成殘留碳化 物且使晶粒微小化的效果較大,而且可以提高高溫 下的耐磨性。此外,回火時在基體中析出微小的碳 化物,通過與W和Μ 〇共同添加,提高6 0 0〜6 5 0 °C以 上高溫區的強度的效果很大,而且具有提高A 1轉變 點的作用。V添加過多時,形成粗大的碳化物,導致 韌性降低,因而其上限値定爲3.00 %以下。爲了獲得 V的添加效果,V的含量必需在0. 1 0質量%以上。優 選的含量範圍是0.40〜0.60質量%。Cr is the most important element for providing the hardenability necessary as a tool. In addition, Cr improves oxidation resistance and raises the A1 transition point, and forms residual carbides, suppresses coarsening of crystal grains during quenching and heating, and improves wear resistance. When tempering, special carbides are precipitated, and softening resistance at elevated temperature is improved. It has an effect of increasing the high-temperature strength, and the addition amount thereof should be 3.00% by mass or more. When Cr is excessively excessive, Cr carbide is excessively formed, and the high-temperature strength is lowered. Therefore, the amount of Cr should be 7.00% by mass or less, preferably 4.60 to 5.00% by mass. W and Mo: 0.20 mass (l/2W + Mo)S 12.00% by mass, preferably 1.60 mass (l/2W + Mo)S 1.80% by mass W and Mo form a special carbide which can be prevented by forming residual carbide The structure is coarsened during quenching and heating, and fine special carbides are precipitated during tempering, and temper softening resistance and high temperature strength are enhanced, and thus are the most important additive elements. Moreover, W and Mo have the effect of increasing the A 1 transition point. W improves the high temperature strength and wear resistance -12- 1280284 The effect of the property is particularly large, and the enthalpy is more advantageous in terms of toughness than W. When Mo and W are too large, coarse carbides are formed and the toughness is lowered. Therefore, when W and Mo are added alone or in combination, (1/2W + MO) should be 0.20% by mass or more and 12.00% by mass or less. V : 0 . 1 0 to 3.0 0% by mass, preferably 0.4 0 to 0.6 0% by mass V is a strong and strong carbide-forming element, and the effect of forming residual carbides and miniaturizing crystal grains is large, and Improve wear resistance at high temperatures. In addition, when tempering, fine carbides are precipitated in the matrix, and by adding together with W and Μ, the effect of increasing the strength in the high temperature region of 60 to 600 ° C is high, and the A 1 transition point is improved. The role. When V is excessively added, coarse carbides are formed, resulting in a decrease in toughness, so the upper limit is made 3.00% or less. 0质量质量以上。 In order to obtain the effect of V, the content of V must be more than 0.1% by mass. A preferred content range is from 0.40 to 0.60% by mass.
Ni :0.05〜0.80質量%、較佳爲0.08〜0.15質量%Ni: 0.05 to 0.80% by mass, preferably 0.08 to 0.15% by mass
Ni固溶於基體中,提高韌性而且提高淬火性,因 而應添加 0.05質量%以上。Ni過多時,退火硬度過 高,切削性降低,而且引起A 1轉變點過度降低,偏 析顯著惡化,因而將Ni的上限値定爲0.80質量%。 較佳爲0.0 8〜0 . 1 5質量%。 C 〇: 6.5 0質量%以下 C 〇固溶於基體中,具有提高高溫強度的作用, 因而可以根據需要含有。另外,C 〇提高淬火加熱時 -13- 1280284 沃斯田鐵中的碳化物的固溶極限,增加回火時的特 殊碳化物的析出量,而且,提高升溫時析出碳化物 的凝集抗力,因此還具有改善高溫強度性能的作用。 此外,由於工具使用時的升溫,Co在表面上形成緻 密的附著力良好的氧化膜,具有提高高溫下的耐磨 性和耐燒焊性的作用。C 〇過多時,韌性降低,因而 在含有Co的場合,其含量應在6.50質量%以下。 S : 0.1 5 0質量%以下、較佳爲0.0 0 5質量%以下 S形成Μ n S等硫化物,在熱加工方向上延伸分佈, 引起Τ方向的韌性降低。因此,爲了維持Τ方向的 韌性,S的上限値應在0.150質量%以下,較佳爲0.005 質量%以下。 A s、S η、S b、C u、Β和 B i在凝固時濃縮於粒間 處,並且提高熱間加工後的帶狀偏析度,致使 T方 向的韌性降低,另外,在熱處理時偏析於沃斯田鐵 粒間處或者存在於基體中,使得韌性降低。而且,Pb 在熱加工方向上延伸分佈,使得T方向的韌性降低。Ni is dissolved in the matrix to improve the toughness and improve the hardenability, and therefore 0.05% by mass or more should be added. When the amount of Ni is too large, the annealing hardness is too high, the machinability is lowered, and the A 1 transition point is excessively lowered, and the segregation is remarkably deteriorated. Therefore, the upper limit of Ni is set to 0.80 mass%. It is preferably 0.0 8 to 0.15 mass%. C 〇: 6.5 0 mass% or less C 〇 is dissolved in the matrix and has an effect of increasing the high-temperature strength, and thus can be contained as needed. In addition, C 〇 increases the solid solution limit of carbides in the 13-1280284 Worth iron during quenching heating, increases the amount of precipitation of special carbides during tempering, and increases the agglomeration resistance of carbides precipitated at the time of temperature rise. Improve the performance of high temperature strength properties. Further, due to the temperature rise during use of the tool, Co forms a dense oxide film having a good adhesion on the surface, and has an effect of improving wear resistance and solder resistance at high temperatures. When C is too large, the toughness is lowered. Therefore, when Co is contained, the content should be 6.50% by mass or less. S: 0.15% by mass or less, preferably 0.05% by mass or less S forms a sulfide such as ΜnS, which is distributed in the hot working direction to cause a decrease in toughness in the radial direction. Therefore, in order to maintain the toughness in the radial direction, the upper limit S of S should be 0.150% by mass or less, preferably 0.005% by mass or less. A s, S η, S b, C u, Β and B i are concentrated at the intergranular position during solidification, and the banding degree of segregation after hot working is increased, resulting in a decrease in toughness in the T direction, and segregation during heat treatment. The toughness is reduced at or between the iron particles in the Worthfield. Moreover, Pb is distributed in the direction of hot working, so that the toughness in the T direction is lowered.
由於上述原因,As、Sn、Sb、Cu、B、Pb和 Bi 的含量應限制在特別低的水平,本發明人經過硏究 發現,這些元素合計量在0.1 3 %以下時,即使含有這 些雜質元素,也可以達到本發明的目的。對於各個 成份來說,希望其含量限度分別爲:As 0.00 5 %以下、 Sn 0.003 %以下、SbO.0015 %以下、Cu 0.08 %以下、B -14- 1280284 0.0005 %以下、Pb 0.0002 %以下、Bi 0.0001 %以下 其他的雜質元素還有Ti、Al和N等。其中 和 Ti是強而有力的碳化物形成元素,通過晶粒 小化以及回火時析出凝集抗力大的微小碳化物 有提高在 6 5 °C以上高溫區域的軟化抗力和高溫 的作用。但是,Nb和Ti過多時,形成粗大的難 溶的碳化物,導致韌性降低,因而它們各自的 必需在0.5 %以下。 另外,N固溶於基體和碳化物中,用於使結 微細化,提高韌性。而且,N是沃斯田鐵形成元 即使在低 C的情況下,也能防止淬火加熱時殘 粒鐵,是具有良好韌性的合金組成成份。但是 Cr等熱間工具鋼的合金成份範圍內具有含量極 因而N必需在0.2 0質量%以下。 夾雜物 根據JISG0 5 5 5規定的純淨度,A系夾雜物是 變形夾雜物,包括Mn S和矽酸鹽等。這些 A系 物使耐熱裂性和耐熔損性顯著惡化,因而,A系 物必需在0.0 2 0 %以下,最好是0 %。B系夾雜物 工方向上形成集團,以不連續的粒狀夾雜物形 列,包括氧化鋁和碳氮化物等。此外,C系夾雜 發生粘性變形,且呈不規則的分散形態,包括 氧化物和碳氮化物。這些B系夾雜物和C系夾 ,Nb 的微 ,具 強度 以固 含量 晶粒 素, 留肥 N在 限, 粘性 夾雜 夾雜 在加 態排 物不 粒狀 雜物 -15- 1280284 使得切削性惡化,因而其含量必需分別在0 · 0 2 0 %以 下,最好是Ο %。而且,這些夾雜物之和d (Α + B + c )必 須在Ο . Ο 4 5 %以下。 在本發明中 ,d A 6 Ο χ 4 0 0 = 0 · 0 2 0 %以下 、 dB 60 x400 = 0.020% U T 、dC6 Οx4〇Ο = Ο·Ο2 Ο % 以下、 d(A + B + C) = 0.045 %WT。 碳化物和非金屬夾雜物 在非金屬夾雜物較少的情況下,粒徑超過1 · 〇微 米的碳化物和非金屬夾雜物的面積率在退火狀態T 爲 0.0 04 %以下時,可以改善退火狀態下的切削性。 此外,粒徑1 .0微米以下的碳化物和非金屬夾雜物$ 面積率在退火狀態下爲1 0.5 %以上時,可以進一步提 高其切削性。 同樣,在非金屬夾雜物較少的情況下,粒徑超過 1 · 〇微米的碳化物和非金屬夾雜物的面積率在淬火回 火狀態下爲0.0 0 4 %以下時,可以同時提高耐熔損性、 耐熱裂性和切削性。此外,粒徑1 . 〇微米以下的碳化 物和非金屬夾雜物的面積率在淬火回火狀態下_ 〇· 〇3 8%以上時,可以進—步提高其耐熔損性、耐熟 裂性和切削性。 這樣,粒徑超過1 . 0微米的碳化物和非金屬夾雜 物的面積率在〇 · 〇 〇 4 %以下時,可以減輕切削刀具_ 命的變異。這樣的大尺寸的碳化物和非金屬夾雜物 1280284 在與切削刀具衝撞時’使得刀具的刀刃發生缺損, 因而使用壽命產生變異。 如上所述,對於切削性來說,非金屬夾雜物的大 小是個問題,但是,按照以往的JISG05 5 5或ASTM E45 -7 6評價夾雜物時,只評價其種類和個數,即使 按這些標準評價的結果爲良好時,也不能表明夾雜 物是微小的。 粒徑1 · 0微米以下的碳化物和非金屬夾雜物在偏 析帶上存在越多’工具的壽命越長。碳化物和非金 屬夾雜物的面積率在退火狀態下是1 〇 · 5 %以上、在淬 火回火狀態下是〇 · 〇 3 8 %以上時’切削性良好。 粒徑1 · 0微,米以下的微小碳化物所產生的效果, 不僅僅限於碳化物,非金屬夾雜物也是同樣。爲了 生成粒徑1 · 0微米以下的微小夾雜物,較佳爲’將Ti、 Zr、Ca、Al、Si、B、〇和N中的1種以上分別添加 0.0 0 1 0〜0.0 0 0 1質量%,通過A12〇3,生成B系氮化物 或B系氧化物、Μ n S和A1N等微細的、長寬比爲1 · 3 以下的非金屬夾雜物爲較佳。 另外,按照JISG0 5 5 5規定的純淨度將非金屬夾 雜物的純淨度限定爲dA6〇x4〇〇 = 〇%、dB60M00 = 0%、 dC6〇x 400 = 0%,可以顯著改善耐熱裂性。 以下,通過與本發明範圍以外的比較例進行比 較,具體地說明本發明的實施例的效果。 -17- 1280284 用10公斤真空熔化爐(VIF)熔煉下面表1和表2 中所示組成的熱間工具鋼,用鍛造裝置將所得到的 鑄錠鍛造成4〇x8〇x 2 5 0 mm大小,然後在83(TC下退 火。碳化物和非金屬夾雜物的形態和數量的控制, 是通過在1015〜1 240°(:加熱1分鐘至20小時、然後 爐冷、空冷或油冷來實現的。 -18- 1280284For the above reasons, the contents of As, Sn, Sb, Cu, B, Pb and Bi should be limited to a particularly low level, and the inventors have found through investigation that the total amount of these elements is less than 0.13%, even if these impurities are contained. Elements can also achieve the objects of the present invention. For each component, the content limit is desirably: As 0.00 5 % or less, Sn 0.003 % or less, SbO.0015 % or less, Cu 0.08 % or less, B -14-1280284 0.0005 % or less, Pb 0.0002 % or less, Bi. Below 0.0001%, other impurity elements include Ti, Al, and N. Among them, Ti and Ti are strong carbide forming elements, and the miniaturization of crystal grains and the precipitation of micro-carbides with high agglutination resistance during tempering have the effects of improving the softening resistance and high temperature in the high temperature region above 65 °C. However, when Nb and Ti are excessively large, coarse and insoluble carbides are formed, resulting in a decrease in toughness, and therefore they are each required to be 0.5% or less. Further, N is dissolved in the matrix and the carbide to make the knot finer and to improve the toughness. Further, N is a Worthite iron forming element. Even in the case of a low C, it is possible to prevent residual iron during quenching and heating, and is an alloy composition having good toughness. However, the hot component steel such as Cr has a content in the alloy composition range, so N must be 0.20 mass% or less. Inclusions According to the purity specified in JIS G0 5 5 5, the inclusions of the A system are deformed inclusions, including Mn S and citrate. These A-based products remarkably deteriorate the heat-resistant crack resistance and the melt-resistance, and therefore, the A-based product must be 0.02% or less, preferably 0%. The B-series inclusions form a group in the direction of discontinuous granular inclusions, including alumina and carbonitride. In addition, the C-based inclusions are viscous and deformed in an irregularly dispersed form, including oxides and carbonitrides. These B-series inclusions and C-clamps, Nb micro-, with strength to solid content of granules, retention of fertilizer N is limited, viscous inclusions in the addition of non-granular impurities -15 - 1280284 to make the machinability deteriorate Therefore, the content must be below 0 · 0 2 0 %, preferably Ο %. Moreover, the sum of these inclusions d (Α + B + c ) must be less than 5 4 5 %. In the present invention, d A 6 Ο χ 4 0 0 = 0 · 0 2 0 % or less, dB 60 x400 = 0.020% UT , dC6 Ο x4 〇Ο = Ο · Ο 2 Ο % or less, d (A + B + C) = 0.045 %WT. Carbide and non-metallic inclusions, when the non-metallic inclusions are less, the area ratio of carbides and non-metallic inclusions with a particle size of more than 1 · 〇 micron can improve the annealing when the annealing state T is 0.04 % or less. Machinability in the state. Further, when the area ratio of the carbide and the non-metallic inclusions having a particle diameter of 1.0 μm or less is 10.5 % or more in the annealed state, the machinability can be further improved. Similarly, in the case where the amount of non-metallic inclusions is small, the area ratio of carbides and non-metallic inclusions having a particle diameter of more than 1 · 〇 micron is 0.02% or less in the quenching and tempering state, and the refractory resistance can be simultaneously improved. Damage, heat crack resistance and machinability. In addition, when the area ratio of carbides and non-metallic inclusions having a particle diameter of less than 〇micron is more than 8% of _ 〇· 〇 in the quenching and tempering state, the resistance to melting and cracking can be further improved. Sex and machinability. Thus, when the area ratio of carbides and non-metallic inclusions having a particle diameter of more than 1.0 μm is less than 4 % of 〇 · 〇 ,, the variation of the cutting tool can be reduced. Such large-sized carbide and non-metallic inclusions 1280284 cause the cutting edge of the tool to be broken when it collides with the cutting tool, and the service life is mutated. As described above, the size of non-metallic inclusions is a problem for machinability. However, when the inclusions are evaluated in accordance with the conventional JIS G05 5 5 or ASTM E45 -7 6, only the types and the number are evaluated, even if they are When the result of the evaluation is good, it does not indicate that the inclusions are minute. The more carbides and non-metallic inclusions having a particle size of 1 · 0 μm or less are present on the segregation zone, the longer the tool life is. The area ratio of carbides and non-metallic inclusions is 1 〇 · 5 % or more in the annealed state, and 〇 · 〇 3 8 % or more in the quenching and tempering state. The effect of the fine carbides having a particle diameter of 1 · 0 μm or less is not limited to carbides, and the same applies to non-metallic inclusions. In order to form minute inclusions having a particle diameter of 1 μm or less, it is preferable to add one or more of Ti, Zr, Ca, Al, Si, B, yttrium and N to 0.00 1 0 to 0.0 0 0 1 . The mass %, by A12〇3, is preferably a fine non-metallic inclusion having a B-based nitride or a B-based oxide, Μ n S and A1N, and an aspect ratio of 1.3 or less. In addition, the purity of non-metallic inclusions is limited to dA6〇x4〇〇 = 〇%, dB60M00 = 0%, dC6〇x 400 = 0% according to the purity specified in JIS G0 5 5 5, which can significantly improve the thermal crack resistance. Hereinafter, the effects of the embodiments of the present invention will be specifically described by comparison with comparative examples outside the scope of the present invention. -17- 1280284 The hot-spot tool steel shown in Tables 1 and 2 below was smelted with a 10 kg vacuum melting furnace (VIF), and the obtained ingot was forged into a 4 〇 x 8 〇 x 2 50 mm with a forging device. The size is then annealed at 83 (TC). The morphology and quantity of carbides and non-metallic inclusions are controlled by passing at 1015~1 240° (: heating for 1 minute to 20 hours, then furnace cooling, air cooling or oil cooling) Realized. -18- 1280284
1280284 <Nm 1/2W +Mo 2.55 5.55 1.90 3.85 1.95 2.60 5.20 6.90 1.60 O r—^ 0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.004 0.004 pq 0.003 0.003 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.008 0.007 0.007 0.005 0.006 0.006 0.008 0.007 0.008 0.010 0.015 0.001 0.003 0.001 0.001 0.003 0.003 0.002 0.003 0.003 0.001 0.002 s 0.50 0.10 0.05 0.06 0.08 0.10 0.40 0.05 0.08 0.13 0.15 2.300 0.000 1.300 2.300 4.000 1.200 0.300 0.000 0.000 0.000 0.000 2.700 3.100 2.800 1.700 0.900 0.600 2.400 1.800 0.000 0.000 0.000 > 0.10 2.50 2.50 0.50 0.10 2.70 1.80 0.10 0.40 0.50 0.60 o s 4.00 0.50 3.00 1.50 2.30 4.00 6.00 1.60 o r—^ 1.80 6.50 3.50 6.60 4.50 3.20 6.80 5.40 3.00 4.60 4.80 5.00 00 0.001 0.007 0.008 0.009 0.006 0.010 0.014 0.012 0.001 0.003 0.005 Ph 0.0070 0.0100 0.0200 0.0200 0.0080 0.0087 0.0100 0.0007 0.0011 0.0080 0.0070 c s 0.80 0.30 0.95 0.30 0.34 0.70 0.32 0.30 0.35 0.40 0.45 0.67 0.60 0.65 0.50 0.48 0.40 0.30 0.10 0.55 0.60 0.65 U 0.18 0.20 0.30 0.45 0.52 0.61 0.65 0.70 0.35 0.37 0.40 卜 OO Os o <N m v〇 卜 佩 孽 丨 OOSI· 1280284 另外,所有鑄製材料的非金屬夾雜物的純淨度都在 JIS dA0.005 %以下、d(B + C)0.02 0 %以下,碳化物和非金 屬夾雜物的型數比爲1.3〜1.0。 材料的評價是,在9 8 0〜1 0 8 0 °C加熱3 0分鐘使之固 溶,然後淬火,在5 00〜6 7 0 °C加熱2小時回火,該回火 程序重復2次。這樣,將硬度調整爲43±1HRC,以SKD61 材料的性能爲5 0而指數化,並且比較其性能。 1 .0微米以下的碳化物和非金屬夾雜物的測定按下 面所述進行,即,對於退火材料,將硏磨後的試樣放 入古液酸+ 3 %硝酸溶液中浸漬,露出金屬組織,並且對 於淬火回火材料,將硏磨後的試樣用草酸腐蝕,露出 金屬組織。用SEM(掃描型電子顯微鏡)將該金屬組織放 大 4 0 0 0倍照相攝影,通過圖像分析測定面積率和平均 粒徑。另外,分散度是根據碳化物和非金屬夾雜物的 密集程度比非偏析部的面積率大 3 0 %以上時的距離來 評價。 粒徑超過 1 .0微米的碳化物和非金屬夾雜物的測 定,是用草酸腐鈾,然後用 1 000倍的照相進行 1mm2 視野內的圖像分析來進行。 碳化物和非金屬夾雜物的測定結果示於下面的表 3 和表4以及表5和表6中。 -21 - 1280284 表3 SKD 61 退火材料 淬火回火材料 超過Ι.Ομηι Ι.Ομιη以下 合計 超過Ι.Ομιη Ι.Ομιη以下 合計 習 知 例 ① 0.037 10.5 10.537 0.100 0.018 0.057 ② 0.032 11.0 11.032 0.037 0.020 0.047 ③ 0.028 11.7 11.728 0.032 0.015 0.038 ④ 0.026 15.0 15.026 0.028 0.010 0.040 ⑤ 0.003 32.0 . 32.003 0.002 0.038 0.413 ⑥ 0.001 14.0 14.001 0.003 0.410 0.118 比 較 例 1 0.005 17.0 17.005 0.006 0.222 0.057 2 0.012 21.0 21.012 0.008 0.800 0.808 3 0.009 27.4 27.409 0.004 1.200 1.204 4 0.006 23.0 23.006 0.003 0.400 0.403 5 0.007 22.0 22.007 0.001 0.100 0.101 6 0.003 10.2 10.203 0.01 0.035 0.036 表4 退火材料 淬火回火材料 超過Ι.Ομηι Ι.Ομιη以下 合計 超過Ι.Ομιη Ι.Ομηι以下 合計 7 0.004 9.5 9.504 0.002 0.032 0.032 8 0.002 8.4 8.402 0.002 0.028 0.030 9 0.002 10.4 10.402 0.001 0.012 0.013 10 0.003 8.7 8.703 0.001 0.008 0.009 實 11 0.001 12.0 12.001 0.003 0.007 0.010 施 12 0.004 13.2 13.204 0.004 0.042 0.046 例 13 0.001 15.2 15.201 0.002 0.046 0.048 14 0.001 13.5 13.501 0.003 0.042 0.045 15 0.000 10.5 10.500 0.000 0.042 0.042 16 0.000 12.3 12.300 0.000 0.054 0.054 17 0.000 10.5 10.500 0.000 0.048 0.048 -22- 1280284 表5 SKD 61 非金屬夾雜物 dA dB dC 合計 習 知 例 ① 0.030 0.015 0.012 0.057 ② 0.028 0.012 0.007 0.047 ③ 0.018 0.022 0.008 0.048 ④ 0.022 0.027 0.021 0.070 ⑤ 0.018 0.008 0.008 0.034 ⑥ 0.015 0.004 0.003 0.022 比 較 例 1 0.043 0.023 0.310 0.376 2 0.018 0.023 0.024 0.065 3 0.018 0.016 0.007 0.041 4 0.017 0.010 0.009 0.036 5 0.012 0.012 0.010 0.034 6 0.007 0.009 0.002 0.018 表 6 非金屬夾雜物 dA dB dC 合計 7 0.005 0.012 0.004 0.021 8 0.020 0.007 0.009 0.036 9 0.012 0.007 0.012 0.031 10 0.018 0.009 0.018 0.045 實 11 0.007 0.002 0.007 0.016 施 12 0.009 0.004 0.009 0.022 例 13 0.002 0.020 0.012 0.034 14 0.004 0.004 0.020 0.028 15 0.000 0.000 0.000 0.000 16 0.000 0.000 0.000 0.000 17 0.000 0.000 0.000 0.000 -23- 1280284 退火材料的切削性評價,是使用直徑1 〇mm的高遠 鋼製的立銑刀按照轉速5 2 0rpm、進給速度74mm/分鐘、 切削加工時的進刀量爲1 0 X 1 m m的條件切削來進行的, 求出到發生折損時的壽命,將以往例的S K D①的壽命作 爲100,用指數表示。所述的l〇xlmm表示,試驗材料 和銳刀在ϋ銳刀的長度方向上接觸爲10mm,在立銖 刀的軸向上接觸爲 1mm,在試驗材料的斷面上進刀 1 Ο X 1 mm的區域進行切削加工。因此,在試驗材料的側 面上形成寬lmm、深l〇mm的凹部。 另外,淬火回火材料的切削性評價是,將鋼材調質 處理成48HRC,使用在直徑10mm的粉末刀頭高速鋼上 塗覆TiAIN的兩刃瓣的立銑刀(MMC哥白尼戈公司製造 VA-2SS直徑6mm),按照轉速1 062rpm、進給速度212mm/ 分鐘、切削加工時的進刀量爲 9 X 0 · 6 m m的條件切削上 述鋼材,求出該立銑刀開始熔損時的壽命。將以往例 的SKD6 1①的壽命作爲100,用指數表示。 熱裂試驗係爲通過高頻感應加熱方式加熱直徑 30mm、長度50mm的試驗材料,在表面溫度達到650 °C 時澆水,冷卻至50°C,如此反復進行1 000次,測定裂 紋的平均長度(微米)。然後,將習知例的 SKD61①的壽 命作爲1 0 0,用指數表示。 熔損性的評價使用在壓鑄中通常使用的鋁合金(JIS ADC12)。該JIS ADC12是汽車(變速箱類)和家電產品的 壓鑄製品使用的鋁合金,其組成爲A1-0.43%、Ζη-〇·2〇%、 -24- 12802841280284 <Nm 1/2W +Mo 2.55 5.55 1.90 3.85 1.95 2.60 5.20 6.90 1.60 O r-^ 0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.006 0.006 0.008 0.007 0.008 0.010 0.015 0.001 0.003 0.001 0.001 0.003 0.003 0.002 0.003 0.003 0.001 0.002 s 0.50 0.10 0.05 0.06 0.08 0.10 0.40 0.05 0.08 0.13 0.15 2.300 0.000 1.300 2.300 4.000 1.200 0.300 0.000 0.000 0.000 0.000 2.700 3.100 2.800 1.700 0.900 0.600 2.400 1.800 0.000 0.000 0.000 > 0.10 2.50 2.50 0.50 0.10 2.70 1.80 0.10 0.40 0.50 0.60 os 4.00 0.50 3.00 1.50 2.30 4.00 6.00 1.60 or—^ 1.80 6.50 3.50 6.60 4.50 3.20 6.80 5.40 3.00 4.60 4.80 5.00 00 0.001 0.007 0.008 0.009 0.006 0.010 0.014 0.012 0.001 0.003 0.005 Ph 0.0070 0.0100 0.0200 0.0200 0.0080 0.0087 0.0100 0.0007 0.0011 0.0080 0.0070 cs 0.80 0.30 0.95 0.30 0.34 0.70 0.32 0.30 0.35 0.40 0.45 0.67 0.60 0.65 0.50 0.48 0.40 0.30 0.10 0.55 0.60 0.65 U 0.18 0. 20 0.30 0.45 0.52 0.61 0.65 0.70 0.35 0.37 0.40 Bu OO Os o <N mv〇布佩孽丨OOSI· 1280284 In addition, the purity of non-metallic inclusions of all cast materials is below JIS dA0.005 %, d (B + C) 0.02% or less, the ratio of the number of carbides to non-metallic inclusions is 1.3 to 1.0. The material was evaluated by solid-solving at 90 to 1800 °C for 30 minutes, then quenching, and tempering at 5000 to 600 °C for 2 hours. The tempering procedure was repeated twice. . Thus, the hardness was adjusted to 43 ± 1 HRC, the performance of the SKD61 material was 50, and the properties were compared. The determination of carbides and non-metallic inclusions below 1.0 μm is carried out as follows, ie, for the annealed material, the honed sample is immersed in the paleo-acid + 3 % nitric acid solution to expose the metal structure And for the quenched and tempered material, the honed sample is etched with oxalic acid to expose the metal structure. The metal structure was magnified by SEM (scanning electron microscope) at 4,000 times, and the area ratio and the average particle diameter were measured by image analysis. Further, the degree of dispersion is evaluated based on the distance between the carbide and the non-metallic inclusions, which is larger than the area ratio of the non-segregated portion by more than 30%. The determination of carbides and non-metallic inclusions with a particle size of more than 1.0 μm was carried out using uranyl oxalate and then image analysis in a 1 mm2 field of view with a 1,000-fold photograph. The results of the measurement of carbides and non-metallic inclusions are shown in Tables 3 and 4 below and Tables 5 and 6. -21 - 1280284 Table 3 SKD 61 Annealing material quenching and tempering material exceeds Ι.Οηηι Ι.Ομιη total more than Ι.Ομιη Ι.Ομιη below common example 1 0.037 10.5 10.537 0.100 0.018 0.057 2 0.032 11.0 11.032 0.037 0.020 0.047 3 0.028 11.7 11.728 0.032 0.015 0.038 4 0.026 15.0 15.026 0.028 0.010 0.040 5 0.003 32.0 . 32.003 0.002 0.038 0.413 6 0.001 14.0 14.001 0.003 0.410 0.118 Comparative Example 1 0.005 17.0 17.005 0.006 0.222 0.057 2 0.012 21.0 21.012 0.008 0.800 0.808 3 0.009 27.4 27.409 0.004 1.200 1.204 4 0.006 23.0 23.006 0.003 0.400 0.403 5 0.007 22.0 22.007 0.001 0.100 0.101 6 0.003 10.2 10.203 0.01 0.035 0.036 Table 4 The quenched and tempered material of the annealed material exceeds Ι.Ομηι Ι.Ομιη The total sum exceeds Ι.Ομιη Ι.Ομηι below total 7 0.004 9.5 9.504 0.002 0.032 0.032 8 0.002 8.4 8.402 0.002 0.028 0.030 9 0.002 10.4 10.402 0.001 0.012 0.013 10 0.003 8.7 8.703 0.001 0.008 0.009 Real 11 0.001 12.0 12.001 0.003 0.007 0.010 Shi 12 0.004 13.2 13.204 0.004 0.042 0.046 Example 13 0.001 15.2 15.201 0.002 0.046 0.048 14 0.001 13.5 13.501 0.003 0.042 0.045 15 0.000 10.5 10.500 0.000 0.042 0.042 16 0.000 12.3 12.300 0.000 0.054 0.054 17 0.000 10.5 10.500 0.000 0.048 0.048 -22- 1280284 Table 5 SKD 61 Non-metal Inclusions dA dB dC Total Example 1 0.030 0.015 0.012 0.057 2 0.028 0.012 0.007 0.047 3 0.018 0.022 0.008 0.048 4 0.022 0.027 0.021 0.070 5 0.018 0.008 0.008 0.034 6 0.015 0.004 0.003 0.022 Comparative Example 1 0.043 0.023 0.310 0.376 2 0.018 0.023 0.024 0.065 3 0.018 0.016 0.007 0.041 4 0.017 0.010 0.009 0.036 5 0.012 0.012 0.010 0.034 6 0.007 0.009 0.002 0.018 Table 6 Non-metallic inclusions dA dB dC Total 7 0.005 0.012 0.004 0.021 8 0.020 0.007 0.009 0.036 9 0.012 0.007 0.012 0.031 10 0.018 0.009 0.018 0.045 实11 0.007 0.002 0.007 0.016 施12 0.009 0.004 0.009 0.022 Example 13 0.002 0.020 0.012 0.034 14 0.004 0.004 0.020 0.028 15 0.000 0.000 0.000 0.000 16 0.000 0.000 0.00 0.00 0 17 0.000 0.000 0.000 0.000 -23- 1280284 The machinability of the annealed material is evaluated by using a high-end steel end mill with a diameter of 1 〇 mm at a speed of 520 rpm and a feed rate of 74 mm/min. When the amount of cutting is 10 × 1 mm, the life at the time of occurrence of the breakage is obtained, and the life of SK D1 of the conventional example is taken as 100, and is expressed by an index. The l〇xlmm indicates that the test material and the sharp knife are in contact with each other in the longitudinal direction of the sharpening knife by 10 mm, the contact in the axial direction of the vertical boring tool is 1 mm, and the infeed of the test material is 1 Ο X 1 mm. The area is cut. Therefore, a recess having a width of 1 mm and a depth of 10 mm was formed on the side surface of the test material. In addition, the machinability evaluation of the quenched and tempered material is that the steel is quenched and tempered to 48 HRC, and a two-blade end mill with TiAIN coated on a powder cutter high speed steel having a diameter of 10 mm (MMC Cognac VA manufactured by VA) is used. -2SS diameter 6mm), the steel is cut at a speed of 1 062 rpm, a feed rate of 212 mm/min, and a feed amount during cutting is 9 X 0 · 6 mm, and the life of the end mill is determined to be melted. . The life of the conventional example SKD6 11 is taken as 100 and expressed by an index. The thermal cracking test is a method of heating a test material having a diameter of 30 mm and a length of 50 mm by high-frequency induction heating, watering at a surface temperature of 650 ° C, and cooling to 50 ° C, thus repeating 1 000 times, and measuring the average length of cracks. (micron). Then, the life of the conventional example SKD611 is taken as 1 0 0 and expressed by an index. The evaluation of the melt loss property was performed using an aluminum alloy (JIS ADC 12) which is usually used in die casting. The JIS ADC12 is an aluminum alloy used for die-casting products of automobiles (transmission type) and home appliances, and its composition is A1-0.43%, Ζη-〇·2〇%, -24-1280284.
Mn-10.85%、Si-2.00%、Cu-1.01% 及 Fe-0.24%Mg。將該 鋁合金放入容器內加熱至 6 5 0 °C使之熔化,把直徑 5mm、長度30mm的實施例和比較例的試片放入該熔液 內以5 00rpm的轉速旋轉,攪拌ADC12熔液,保持該狀 態20分鐘,然後取出上述試片,用氫氧化鈉除去附著 在試片上的鋁合金,根據試片使用前和使用後的重量 差測定試片的損耗量(g)。將習知例的 SKD61©的壽命 作爲100,用指數表示。 這些切削性、耐熔損性和耐熱裂性的評價結果示於 下面的表7和表8中。 表7 SKD 61 切角 11性 耐熔損性 耐熱裂性 退火材料(10HRC) 淬火材料(48HRC) 習 知 例 ① 100 100 100 100 ② 102 104 100 102 ③ 105 103 102 104 ④ 103 107 101 106 ⑤ 123 102 98 98 ⑥ 120 104 104 99 比 較 例 1 100 100 100 95 2 97 98 102 101 3 102 99 98 104 4 103 102 99 99 5 100 98 97 101 6 180 186 217 180 -25- 1280284 表8 切肖 f生 耐熔損性 耐熱裂性 退火材料(10HRC) 淬火材料(48HRC) 7 180 190 210 184 8 182 184 207 191 9 180 180 214 197 實 10 183 181 218 194 11 218 180 213 184 施 12 223 228 222 243 13 220 232 223 254 例 14 216 251 200 280 15 304 332 220 333 16 332 301 260 345 17 340 351 320 380 習知例的 S KD①〜⑥,雖然改善了熔煉時作爲原料配 合的廢料配合率,提高了純淨度,但耐熱裂性、耐熔 損性和切削性沒有得到改善。另外,比較例 1〜6雖然 成份組成落入本發明的申請專利範圍所規定的範圍 內,但退火材料的粒徑超過1 .0微米的碳化物和夾雜物 如果沒有達到 0.004 %以下,則無法改善耐熱裂性、耐 熔損性和切削性。 與此相對,如實施例 7〜1 7所示,在滿足本發明的 申請專利範圍第 1項時,其退火材料和淬火回火材料 的切削性、耐熔損性和耐熱裂性與保有夾雜物的 S KD 6 1①相比提高1 . 8倍以上。 另外,如實施例1 1〜1 7所示,若滿足本發明的如申 請專利範圍第 2項,則其退火材料的切削性、耐熔損 -26- 1280284 性和耐熱裂性與保有夾雜物的SKD61①相比提高2.0倍 以上。但是,無法得到淬火回火材料的切削性和耐熱 裂性的改善效果。 此外,當滿足本發明的如申請專利範圍第3和4項 時,如實施例 1 2〜1 7所示,其退火材料和淬火回火材 料的切削性、耐熔損性和耐熱裂性與保有夾雜物的 * S KD 6 1①相比提高2,0倍以上。 當夾雜物爲 0%時,如實施例15〜17所示,其退火 材料和淬火回火材料的切削性、耐熔損性和耐熱裂性 ® _ 與保有夾雜物的SKD61①相比提高3.2倍以上。 如上所述,採用本發明可以顯著提高熱間工具鋼的 切削性、耐熔損性和耐熱裂性。Mn-10.85%, Si-2.00%, Cu-1.01% and Fe-0.24%Mg. The aluminum alloy was placed in a container and heated to 650 ° C to be melted. The test pieces of the examples and the comparative examples having a diameter of 5 mm and a length of 30 mm were placed in the melt to rotate at a speed of 500 rpm, and the ADC 12 was melted. The liquid was kept in this state for 20 minutes, and then the test piece was taken out, and the aluminum alloy adhering to the test piece was removed with sodium hydroxide, and the amount of loss (g) of the test piece was measured from the difference in weight before and after use of the test piece. The life of SKD61© of the conventional example is taken as 100 and expressed by an index. The evaluation results of these machinability, melt resistance and heat crack resistance are shown in Tables 7 and 8 below. Table 7 SKD 61 Cut Angle 11 Resistance to Fusible Heat Resistant Cracking Annealing Material (10HRC) Quenching Material (48HRC) Conventional Example 1 100 100 100 100 2 102 104 100 102 3 105 103 102 104 4 103 107 101 106 5 123 102 98 98 6 120 104 104 99 Comparative Example 1 100 100 100 95 2 97 98 102 101 3 102 99 98 104 4 103 102 99 99 5 100 98 97 101 6 180 186 217 180 -25- 1280284 Table 8 Resistance to fusible heat-resistant cracking annealed material (10HRC) Quenching material (48HRC) 7 180 190 210 184 8 182 184 207 191 9 180 180 214 197 Real 10 183 181 218 194 11 218 180 213 184 Application 12 223 228 222 243 13 220 232 223 254 Example 14 216 251 200 280 15 304 332 220 333 16 332 301 260 345 17 340 351 320 380 S KD1~6 of the conventional example improves the purity of the scrap as a raw material during smelting. Degree, but heat crack resistance, melt resistance and machinability were not improved. Further, in Comparative Examples 1 to 6, although the composition of the components falls within the range defined by the scope of the invention of the present invention, the carbides and inclusions having an annealed material having a particle diameter of more than 1.0 μm may not be 0.004% or less. Improve heat crack resistance, melt resistance and machinability. On the other hand, as shown in Examples 7 to 17, when the first item of the patent application range of the present invention is satisfied, the machinability, the melt resistance and the heat crack resistance of the annealed material and the quenched and tempered material are mixed and retained. The S KD 6 11 of the material is increased by 1.8 times or more. Further, as shown in Examples 1 to 17 , if the second aspect of the invention is satisfied, the machinability of the annealed material, the resistance to melt loss -26-1280284, the heat crack resistance and the retention of inclusions are satisfied. Compared with SKD611, it is 2.0 times higher. However, the effect of improving the machinability and heat crack resistance of the quenched and tempered material cannot be obtained. Further, when the present invention is satisfied as in the third and fourth aspects of the patent application, as shown in Examples 12 to 17, the machinability, the melt resistance and the heat crack resistance of the annealed material and the quenched and tempered material are * S KD 6 11 with inclusions increased by 2,0 times or more. When the inclusions are 0%, as shown in Examples 15 to 17, the machinability, melt resistance and heat crack resistance of the annealed material and the quenched and tempered material are increased by 3.2 times compared with the SKD611 holding the inclusions. the above. As described above, the use of the present invention can significantly improve the machinability, melt resistance and heat crack resistance of the hot tool steel.
-27--27-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002028298A JP3602102B2 (en) | 2002-02-05 | 2002-02-05 | Hot tool steel |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200302873A TW200302873A (en) | 2003-08-16 |
TWI280284B true TWI280284B (en) | 2007-05-01 |
Family
ID=27654649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091135361A TWI280284B (en) | 2002-02-05 | 2002-12-06 | Hot-working tool steel |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3602102B2 (en) |
KR (1) | KR100497446B1 (en) |
CN (1) | CN1173067C (en) |
TW (1) | TWI280284B (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3946684B2 (en) * | 2003-10-02 | 2007-07-18 | 日本高周波鋼業株式会社 | Hot work tool steel |
AU2003292572A1 (en) * | 2003-12-19 | 2005-07-14 | Daido Steel Co., Ltd | Hot work tool steel and mold member excellent in resistance to melting |
CN100342052C (en) * | 2004-01-20 | 2007-10-10 | 吉林大学 | Hot work die steel |
JP2005206913A (en) * | 2004-01-26 | 2005-08-04 | Daido Steel Co Ltd | Alloy tool steel |
FR2893954B1 (en) * | 2005-11-29 | 2008-02-29 | Aubert & Duval Soc Par Actions | STEEL FOR HOT TOOLS AND PART PRODUCED IN THIS STEEL AND METHOD FOR MANUFACTURING THE SAME |
JP5146063B2 (en) * | 2007-04-12 | 2013-02-20 | 新日鐵住金株式会社 | High strength steel with excellent internal fatigue damage resistance and method for producing the same |
WO2008130054A1 (en) * | 2007-04-18 | 2008-10-30 | Nippon Steel Corporation | Hot-worked steel material having excellent machinability and impact value |
US8012272B2 (en) | 2007-10-31 | 2011-09-06 | Daido Tokushuko Kabushiki Kaisha | Tool steels and manufacturing method thereof |
JP5504680B2 (en) * | 2008-07-23 | 2014-05-28 | 大同特殊鋼株式会社 | Free-cutting alloy tool steel |
JP5942119B2 (en) * | 2011-01-31 | 2016-06-29 | 栃木県 | Melting resistant casting, method for producing the same and molten metal contact member |
JP5942118B2 (en) * | 2011-01-31 | 2016-06-29 | 栃木県 | Melting resistant casting, method for producing the same, and molten metal contact member |
WO2012118053A1 (en) * | 2011-03-03 | 2012-09-07 | 日立金属株式会社 | Hot work tool steel having excellent toughness, and process of producing same |
TWI500781B (en) * | 2013-02-28 | 2015-09-21 | Hitachi Metals Ltd | Steel for mold and production method thereof |
EP3050986B1 (en) | 2013-09-27 | 2019-07-31 | Hitachi Metals, Ltd. | High-speed-tool steel and method for producing same |
CN103774062A (en) * | 2014-01-09 | 2014-05-07 | 马鞍山市恒毅机械制造有限公司 | Cutter alloy steel material for machining titanium alloy and preparation method thereof |
JP6366326B2 (en) * | 2014-03-31 | 2018-08-01 | 山陽特殊製鋼株式会社 | High toughness hot work tool steel and manufacturing method thereof |
WO2015182586A1 (en) * | 2014-05-28 | 2015-12-03 | 日立金属株式会社 | Hot work tool material and method for manufacturing hot work tool |
JP5744300B1 (en) * | 2014-11-11 | 2015-07-08 | 日本高周波鋼業株式会社 | Hot work tool steel |
CN105088051A (en) * | 2015-08-20 | 2015-11-25 | 无锡贺邦金属制品有限公司 | Hot work die steel |
KR101751530B1 (en) | 2015-12-28 | 2017-06-27 | 주식회사 포스코 | Steel sheet for tool and method of manufacturing for the same |
US11111568B2 (en) * | 2016-09-30 | 2021-09-07 | Nippon Steel Corporation | Steel for cold forging and manufacturing method thereof |
US10988823B2 (en) | 2017-03-28 | 2021-04-27 | Daido Steel Co., Ltd. | Annealed steel material and method for manufacturing the same |
CN109972059A (en) * | 2017-12-27 | 2019-07-05 | 天工爱和特钢有限公司 | A kind of high-strength die steel |
CN108385025A (en) * | 2018-04-09 | 2018-08-10 | 武汉科技大学 | A kind of Slab Deburring Machine blade and its manufacturing method |
KR102550394B1 (en) * | 2018-10-05 | 2023-07-03 | 가부시키가이샤 프로테리아루 | Hot work tool steels and hot work tools |
CN109295393B (en) * | 2018-12-13 | 2021-01-12 | 天津钢研海德科技有限公司 | High-toughness, high-polishing and high-corrosion-resistance plastic die steel and preparation method thereof |
CN110184540A (en) * | 2019-06-06 | 2019-08-30 | 南通聚星铸锻有限公司 | A kind of ESR ingot and its smelting process |
CN110923580B (en) * | 2019-11-19 | 2021-07-02 | 马鞍山钢铁股份有限公司 | Heat-resistant 12.9-grade steel for fasteners for rail transit and heat treatment process thereof |
SE544123C2 (en) * | 2020-06-12 | 2022-01-04 | Uddeholms Ab | Hot work tool steel |
SE544681C2 (en) * | 2020-11-05 | 2022-10-18 | Uddeholms Ab | Maraging steel for hot-work tools |
CN113604733A (en) * | 2021-07-05 | 2021-11-05 | 昆山东大特钢制品有限公司 | High-temperature-resistant and high-toughness high-end hot-work die steel and production process thereof |
CN114058957A (en) * | 2021-11-04 | 2022-02-18 | 佛山顶锋日嘉模具有限公司 | Alloy steel and production process thereof |
JP2023122766A (en) * | 2022-02-24 | 2023-09-05 | 大同特殊鋼株式会社 | Mold steel and metal mold |
JP2024060363A (en) * | 2022-10-19 | 2024-05-02 | 大同特殊鋼株式会社 | Steel material and mold |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100206354B1 (en) * | 1996-06-05 | 1999-07-01 | 전선기 | Manufacturing method of forging die and tool steel and the same product |
-
2002
- 2002-02-05 JP JP2002028298A patent/JP3602102B2/en not_active Expired - Fee Related
- 2002-12-06 TW TW091135361A patent/TWI280284B/en not_active IP Right Cessation
- 2002-12-09 KR KR10-2002-0077735A patent/KR100497446B1/en active IP Right Grant
- 2002-12-12 CN CNB021567182A patent/CN1173067C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
KR100497446B1 (en) | 2005-06-28 |
CN1173067C (en) | 2004-10-27 |
KR20030066305A (en) | 2003-08-09 |
JP3602102B2 (en) | 2004-12-15 |
TW200302873A (en) | 2003-08-16 |
CN1436874A (en) | 2003-08-20 |
JP2003226939A (en) | 2003-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI280284B (en) | Hot-working tool steel | |
JP5326114B2 (en) | High strength copper alloy | |
JP4764094B2 (en) | Heat-resistant Al-based alloy | |
TW574379B (en) | Cold work steel | |
WO2012118053A1 (en) | Hot work tool steel having excellent toughness, and process of producing same | |
KR102486303B1 (en) | Mold materials for casting, and copper alloy materials | |
JP2004501276A (en) | Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel | |
JP5029942B2 (en) | Hot work tool steel with excellent toughness | |
JP4123618B2 (en) | Hot work tool steel with excellent high temperature strength and toughness | |
RU2382099C2 (en) | Cast section from brass for manufacturing of rings of synchroniser | |
JP3613395B2 (en) | Hot work tool steel | |
JP2001089826A (en) | Hot working tool steel excellent in wear resistance | |
JP2020169378A (en) | Aluminum alloy for compressor slide components and compressor slide component forging | |
JP3920656B2 (en) | High rigidity aluminum alloy containing boron | |
JPS6086237A (en) | Cu-alloy for slide member | |
CN106282782B (en) | High alloy hot-puncturing process comes directly towards | |
JP2001214238A (en) | Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die | |
JPH0428837A (en) | Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture | |
SE542781C2 (en) | A method of producing a high speed steel alloy | |
JP5907416B2 (en) | Method for producing hot work tool steel with excellent toughness | |
JP2003096538A (en) | Die-use steel having excellent wear resistance | |
AU2020378914B2 (en) | Alloy for high-stress gouging abrasion | |
JPH10175004A (en) | Powder metallurgy high speed tool steel rolling roll | |
JP2003313642A (en) | Steel for high-speed tool and manufacturing method therefor | |
JP2015160957A (en) | Powder high speed tool steel excellent in abrasion resistance and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |