JPH0344702B2 - - Google Patents

Info

Publication number
JPH0344702B2
JPH0344702B2 JP60001111A JP111185A JPH0344702B2 JP H0344702 B2 JPH0344702 B2 JP H0344702B2 JP 60001111 A JP60001111 A JP 60001111A JP 111185 A JP111185 A JP 111185A JP H0344702 B2 JPH0344702 B2 JP H0344702B2
Authority
JP
Japan
Prior art keywords
signal
circuit
transmission signal
clock
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60001111A
Other languages
Japanese (ja)
Other versions
JPS61159841A (en
Inventor
Akihiro Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60001111A priority Critical patent/JPS61159841A/en
Priority to US06/775,565 priority patent/US4689785A/en
Publication of JPS61159841A publication Critical patent/JPS61159841A/en
Publication of JPH0344702B2 publication Critical patent/JPH0344702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems

Description

【発明の詳細な説明】[Detailed description of the invention]

イ) 産業上の利用分野 本発明はデジタルデータ伝送に用いられる受信
機の同期方式に関する。 ロ) 従来の技術 従来、送信機から送られてくるデジタル信号と
受信機のクロツク信号の同期を採るに際し、例え
ば特開昭58−223944号のように両信号間の位相の
ずれの方向と大きさを検出して、適当な補正を掛
ける方式や、位相ずれの方向のみを検出して一定
量の補正を適当な方向にかける方式がある。 ハ) 発明が解決しようとする問題点 ところで、こうしたデジタルデータ伝送の同期
方式では、例えばバイフエーズ符号等の符号規則
を有する信号を用いてこの符号規則により周期的
に発生するレベル変化時点を監視して、送信側か
ら送られる信号とクロツク信号との位相のずれを
検出していた。このため送信側からの伝送信号に
ノイズが乗つている場合はこの周面を符号規則に
より周期的に発生するレベル変化点として誤つた
検出をし、間違つた補正をして同期状態を乱す惧
れがあつた。 ニ) 問題点を解決するための手段 本発明は送信側から送られてくる信号の複数の
検出時点での“H”、“L”レベルを検出し、これ
等の内多数のレベルを出力する多数決論理回路
と、クロツク信号を発生するクロツク発生回路
と、このクロツク発生回路からのクロツク信号及
び上記多数決論理回路からの出力間の位相ずれ方
向を検出する位相比較回路と、が設けられてい
る。 ホ) 作用 位相比較回路で、上記多数決論理回路からの出
力と上記クロツク発生回路からのクロツク信号間
の位相ずれの方向を検出して、上記クロツク発生
回路でのクロツク信号の発生状態を変化させてい
るので、ノイズが乗つた伝送信号であつてもクロ
ツク信号との位相ずれが正確に検出され、確実な
同期が採れる。 ヘ) 実施例 第1図は、本発明クロツク同期方式に利用され
る受信器のブロツク回路図であつて、1は送信側
からの伝送信号を受ける3ビツトシフトレジスタ
を示し発振器2からの基本クロツクにより順次伝
送信号の“H”、“L”レベルを読み込んでシフト
する。3はこのシフトレジスタ1の各ビツトから
信号を受け、“H”、“L”の内多い方のレベルを
出力する多数決論理回路である。4は上記発振器
2からの基本クロツクを分周する可変分周回路を
示し、例えば送信側から送られてくるバイフエー
ズ符号1ビツト分の長さが上記基本クロツク32個
分の長さに略調整されている場合、その上下の分
周状態例えば31分周、33分周に切り換えられる。
5はこの分周器4の出力をデコードするデコーダ
であり、上記可変分周器4の出力値が8,16,24
に対応して夫々信号φa,φb,φcが出力される。
6,7はデータ入力端子Dに上記多数決論理回路
3出力を受ける第1、第2のフリツプフロツプ回
路を示し、これ等第1、第2のフリツプフロツプ
回路6,7のタイミング端子Tには夫々上記デコ
ーダ5からの信号φa、φbが入力される。8は上
記第1、第2のフリツプフロツプ回路6,7のQ
出力の排他的論理和を採るゲートを示し、その出
力は上記可変分周回路4へ送られ、分周出力を切
り換える。つまりここでは上記第1、第2のフリ
ツプフロツプ回路6,7及びゲート8によつて位
相比較回路が構成されている。 このようなクロツク同期方式において上述した
ように送信側から上記発振器2のクロツクパルス
の略32個分の長さで例えば第2図のようなバイフ
エーズ符号が伝送信号として、送られてくる。こ
のバイフエーズ符号は発振器2からの基本クロツ
クにより順次上記3ビツトのシフトレジスタ1に
読み込まれ、多数決論理回路3がこのシフトレジ
スタ1の各ビツトの内容を見て“H”、“L”のど
ちらが多いかを検出し多い方のレベル信号を出力
する。これにより伝送信号のノイズ、具体的には
発振器2の基本クロツクの1クロツク長までのノ
イズは除去される。こうした多数決論理回路3出
力は上記第1、第2のフリツプフロツプ回路6,
7のデータ入力端子Dに与えられ、これ等第1、
第2のフリツプフロツプ回路6,7は夫々可変分
周器4出力8,16をデコーダ5でデコードした
タイミング信号ta及びtbのタイミングでデータ入
力端子Dに入力されている信号を出力端子Qから
出力する。これ等の第1、第2のフリツプフロツ
プ回路6,7の出力を受け、ゲート回路8はその
排他的論理を採りその出力により可変分周回路4
の分周出力を31分周にするか33分周にするかを切
り換える。即ちここでは上記ゲート8出力が
“H”のときは送信側から送られてきた伝送デー
タのビツト端がこのTa,Tbのタイミング間にあ
るため伝送信号に対し可変分周器4からの信号tb
が遅れているものと見なして、上記可変分周回路
4は31分周をするようになつて分周周期が短かく
なる。これに対し、ゲート8出力が“L”のとき
上記送信側から送られてきた伝送信号のビツト端
がこのTa,Tbのタイミング間になく、伝送信号
に対して可変分周器4からの信号tbが進んでいる
ものとみなして、可変分周器4は33分周するよう
になり分周周期を長くする。 こうしたクロツク同期方式において、ノイズ除
去をした伝送信号とクロツク信号の位相ずれの方
向を検知して補正をかけているのでノイズの影響
によつて位相ずれの方法を間違う恐れもなく、可
変分周器4で31分周33分周を切り換えて位相調整
が為される。また、この受信器においてバイフエ
ーズ符号で送られてくる伝送信号の読み取りはデ
コーダ5からの信号φcを用いて1ビツト期間の
前半を読み取りデコーダ5からの信号φaを用い
て1ビツト期間の後半を読み取ることにより行
う。 第3図は本発明方式に使用される受信器の異な
る実施例ブロツク図であり、上記第1図と同一部
分には同一符号が付してある。本実施例ではシフ
トレジスタ3の入力段の出力段の内容の排他的論
理和を採るゲート回路9と、このゲート回路9出
力をデータ端子Dに上記デコーダ回路5出力Tb
をタイミング端子Tに受ける第3のフリツプフロ
ツプ回路10とが設けられていてこの第3のフリ
ツプフロツプ回路10出力により可変分周器4で
の分周周期の変化量が大きくするか小さくするか
切り換える。 即ち、この実施例ではデコーダ5から信号tbが
発せられるタイミングにおいて、上記シフトレジ
スタ3内に伝送信号の“H”、“L”の変化点(ビ
ツトの変化点)があり、ゲート9で排他的論理和
が採られていて第3のフリツプフロツプ回路10
出力が“H”にされる場合、上記可変分周器4で
の分周状態はゲート8からの信号の“H”、“L”
に応じて夫々31分周、又は33分周に切り換わる。
これに対し、信号tbが発せられるタイミングにお
いて上記シフトレジスタ3内に伝送信号の“H”、
“L”の変化点(ビツトの変化点)がなく、ゲー
ト9で排他的論理和が採られず、第3のフリツプ
フロツプ回路10出力が“L”にされる場合、上
記可変分周器4での分周状態はゲート8からの信
号の“H”、“L”に応じて夫々29分周又は35分周
に切り換わる。 以下、デコーダ5からの信号tbの出力タイミン
グ時のゲート9及び第3のフリツプフロツプ回路
10の出力と、分周状態の切り換わりを表に示
す。
B) Industrial Application Field The present invention relates to a synchronization method for a receiver used in digital data transmission. B) Conventional technology Conventionally, when synchronizing the digital signal sent from the transmitter and the clock signal of the receiver, the direction and magnitude of the phase shift between the two signals has been studied, for example, as disclosed in Japanese Patent Application Laid-open No. 58-223944. There are two methods: a method that detects the phase shift and applies an appropriate correction, and a method that detects only the direction of the phase shift and applies a fixed amount of correction in an appropriate direction. C) Problems to be Solved by the Invention Incidentally, in such a synchronization system for digital data transmission, for example, a signal having a code rule such as a biphase code is used to monitor level change points that occur periodically according to the code rule. , the phase shift between the signal sent from the transmitting side and the clock signal was detected. Therefore, if there is noise on the transmission signal from the transmitting side, there is a risk that this peripheral surface may be mistakenly detected as a level change point that occurs periodically due to the code rule, and incorrect correction may be made, disturbing the synchronization state. It was hot. D) Means for solving the problem The present invention detects "H" and "L" levels at multiple detection points of the signal sent from the transmitting side, and outputs a large number of these levels. A majority logic circuit, a clock generation circuit that generates a clock signal, and a phase comparison circuit that detects the direction of phase shift between the clock signal from the clock generation circuit and the output from the majority logic circuit are provided. E) Effect: The phase comparator circuit detects the direction of phase shift between the output from the majority logic circuit and the clock signal from the clock generation circuit, and changes the generation state of the clock signal in the clock generation circuit. Therefore, even if the transmission signal contains noise, the phase shift with the clock signal can be detected accurately, and reliable synchronization can be achieved. f) Embodiment FIG. 1 is a block circuit diagram of a receiver used in the clock synchronization system of the present invention, in which numeral 1 indicates a 3-bit shift register that receives a transmission signal from the transmitting side, and a basic clock from an oscillator 2. The "H" and "L" levels of the transmission signal are sequentially read and shifted. 3 is a majority logic circuit which receives signals from each bit of the shift register 1 and outputs the higher level of "H" or "L". Reference numeral 4 denotes a variable frequency divider circuit that divides the basic clock from the oscillator 2. For example, the length of one bit of the biphasic code sent from the transmitting side is approximately adjusted to the length of 32 of the basic clocks. , the upper and lower frequency division states can be switched to, for example, 31 frequency division and 33 frequency division.
5 is a decoder that decodes the output of this frequency divider 4, and the output value of the variable frequency divider 4 is 8, 16, 24.
Signals φa, φb, and φc are output corresponding to the respective signals.
Reference numerals 6 and 7 indicate first and second flip-flop circuits whose data input terminals D receive the outputs of the majority logic circuit 3, and the timing terminals T of these first and second flip-flop circuits 6 and 7 are connected to the decoders described above, respectively. Signals φa and φb from 5 are input. 8 is the Q of the first and second flip-flop circuits 6 and 7.
This shows a gate that takes the exclusive OR of outputs, and its output is sent to the variable frequency divider circuit 4, which switches the frequency division output. That is, here, the first and second flip-flop circuits 6 and 7 and the gate 8 constitute a phase comparison circuit. In such a clock synchronization system, as described above, a biphase code with a length of about 32 clock pulses from the oscillator 2, for example, as shown in FIG. 2, is sent as a transmission signal from the transmitting side. This biphasic code is sequentially read into the 3-bit shift register 1 by the basic clock from the oscillator 2, and the majority logic circuit 3 checks the contents of each bit of the shift register 1 to determine which is more "H" or "L". The higher level signal is output. This eliminates noise in the transmission signal, specifically, noise up to one clock length of the basic clock of the oscillator 2. The output of the majority logic circuit 3 is transmitted to the first and second flip-flop circuits 6,
7 data input terminals D, these are the first,
The second flip-flop circuits 6 and 7 output the signals input to the data input terminal D from the output terminal Q at the timing of the timing signals ta and tb which are decoded by the decoder 5 from the outputs 8 and 16 of the variable frequency divider 4, respectively. . Upon receiving the outputs of these first and second flip-flop circuits 6 and 7, the gate circuit 8 adopts the exclusive logic and uses the output to output the variable frequency divider circuit 4.
Switches whether the divided output is divided by 31 or 33. That is, here, when the output of the gate 8 is "H", the bit end of the transmission data sent from the transmitting side is between the timings of Ta and Tb, so the signal tb from the variable frequency divider 4 is
The variable frequency divider circuit 4 divides the frequency by 31, thereby shortening the frequency division period. On the other hand, when the output of the gate 8 is "L", the bit end of the transmission signal sent from the transmission side is not between the timings of Ta and Tb, and the signal from the variable frequency divider 4 is Assuming that tb is advanced, the variable frequency divider 4 begins to divide the frequency by 33 and lengthens the frequency division period. In this type of clock synchronization method, the direction of the phase shift between the noise-removed transmission signal and the clock signal is detected and corrected, so there is no risk of mistaking the phase shift method due to the influence of noise, and the variable frequency divider Phase adjustment is performed by switching between 31 division and 33 division in 4. In addition, this receiver reads the transmission signal sent in the biphase code by using the signal φc from the decoder 5 to read the first half of the 1-bit period, and by using the signal φa from the decoder 5 to read the second half of the 1-bit period. To do this. FIG. 3 is a block diagram of a different embodiment of a receiver used in the system of the present invention, and the same parts as in FIG. 1 are given the same reference numerals. In this embodiment, there is provided a gate circuit 9 that takes the exclusive OR of the contents of the input stage and output stage of the shift register 3, and the output of this gate circuit 9 is connected to the data terminal D to output Tb of the decoder circuit 5.
A third flip-flop circuit 10 is provided which receives the frequency at its timing terminal T, and the output of the third flip-flop circuit 10 switches whether the amount of change in the frequency division period in the variable frequency divider 4 is increased or decreased. That is, in this embodiment, at the timing when the signal tb is issued from the decoder 5, there is a change point between "H" and "L" of the transmission signal (bit change point) in the shift register 3, and the gate 9 exclusively The third flip-flop circuit 10 has a logical sum.
When the output is set to "H", the frequency division state of the variable frequency divider 4 is "H" or "L" of the signal from the gate 8.
The frequency is switched to 31 division or 33 division depending on the frequency.
On the other hand, at the timing when the signal tb is issued, the transmission signal is "H" in the shift register 3.
When there is no "L" change point (bit change point), exclusive OR is not taken at gate 9, and the output of third flip-flop circuit 10 is set to "L", the variable frequency divider 4 The frequency division state is switched to 29 frequency division or 35 frequency division according to the "H" or "L" level of the signal from gate 8, respectively. The following table shows the outputs of the gate 9 and the third flip-flop circuit 10 at the output timing of the signal tb from the decoder 5, and the switching of the frequency division state.

【表】 このように、この実施例では、tbの立ち上がり
タイミングと送信側から送られてくる伝送信号の
ビツトの変化点が近いとき可変分周器4での分周
の切り換え量を小さくしている。 ト) 発明の効果 以上述べた如く、本発明クロツク同期方式は受
信器側において、位相比較回路で、上記多数決論
理回路からの出力と上記クロツク発生回路からの
クロツク信号間の位相ずれの方向を検出して、上
記クロツク発生回路でのクロツク信号の発生状態
を変化させているので、ノイズが乗つた伝送信号
であつてもクロツク信号との位相ずれが正確に検
出され、確実な同期が採れ、伝送信号に乗つて送
られてくるデータの復号化に誤りが生じることは
ない。
[Table] In this way, in this embodiment, when the rising timing of tb is close to the bit change point of the transmission signal sent from the transmitting side, the amount of frequency division switching in the variable frequency divider 4 is reduced. There is. G) Effects of the Invention As described above, the clock synchronization system of the present invention detects the direction of phase shift between the output from the majority logic circuit and the clock signal from the clock generation circuit using the phase comparator circuit on the receiver side. As a result, the generation state of the clock signal in the clock generation circuit is changed, so even if the transmission signal contains noise, the phase shift with the clock signal is accurately detected, reliable synchronization is achieved, and the transmission No errors occur in the decoding of data sent on the signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明クロツク同期方式に用いられ
る受信器のブロツク図、第2図はこの受信器の動
作を説明するためのタイミングチヤート、第3図
は本発明に用いられる受信器の他の実施例ブロツ
ク図である。 1……シフトレジスタ、3……多数決論理回
路、4……可変分周回路、5……デコーダ、6,
7,10……フリツプフロツプ回路、8,9……
ゲート。
FIG. 1 is a block diagram of a receiver used in the clock synchronization system of the present invention, FIG. 2 is a timing chart for explaining the operation of this receiver, and FIG. 3 is a diagram of another receiver used in the present invention. FIG. 2 is a block diagram of an embodiment. 1...Shift register, 3...Majority logic circuit, 4...Variable frequency divider circuit, 5...Decoder, 6,
7, 10... flip-flop circuit, 8, 9...
Gate.

Claims (1)

【特許請求の範囲】[Claims] 1 所定の周期で“H”、“L”レベル間を規則的
に変化する信号によりデータ伝送を行うデータ伝
送システムにおいて、受信側には、送信側から送
られる伝送信号の変化する周期より短い周期を有
する基本クロツクに従つて上記伝送信号のレベル
を順次取り込む少なくとも3ビツトのシフトレジ
スタと、上記シフトレジスタに取り込まれた上記
伝送信号の“H”、“L”レベルの内多い方のレベ
ルを取り出す多数決論理回路と、上記基本クロツ
クを分周して上記伝送信号の変化する周期に対応
するタイミング信号を発生する分周回路と、上記
伝送信号のレベルの変化に従う多数決論理回路の
出力に対する上記分周回路からのタイミング信号
の位相ずれ方向を検出する位相比較回路と、から
成り、上記位相比較回路で比較検出した位相ずれ
方向に応じて上記分周回路の分周率を変化させて
上記タイミング信号の上記伝送信号に対する位相
差を減少させることを特徴としたクロツク同期方
式。
1. In a data transmission system that transmits data using a signal that regularly changes between "H" and "L" levels at a predetermined period, the receiving side has a signal with a period shorter than the changing period of the transmission signal sent from the transmitting side. at least a 3-bit shift register that sequentially takes in the level of the transmission signal according to a basic clock having a basic clock, and extracts the higher level of the "H" or "L" level of the transmission signal taken into the shift register. a majority logic circuit; a frequency divider circuit that divides the basic clock to generate a timing signal corresponding to a changing period of the transmission signal; and a frequency division circuit for the output of the majority logic circuit according to changes in the level of the transmission signal. a phase comparison circuit that detects the phase shift direction of the timing signal from the circuit, and changes the frequency division ratio of the frequency divider circuit according to the phase shift direction comparatively detected by the phase comparison circuit to detect the timing signal. A clock synchronization method characterized by reducing the phase difference with respect to the transmission signal.
JP60001111A 1984-09-14 1985-01-08 Clock synchronizing system Granted JPS61159841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60001111A JPS61159841A (en) 1985-01-08 1985-01-08 Clock synchronizing system
US06/775,565 US4689785A (en) 1984-09-14 1985-09-13 Data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001111A JPS61159841A (en) 1985-01-08 1985-01-08 Clock synchronizing system

Publications (2)

Publication Number Publication Date
JPS61159841A JPS61159841A (en) 1986-07-19
JPH0344702B2 true JPH0344702B2 (en) 1991-07-08

Family

ID=11492354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001111A Granted JPS61159841A (en) 1984-09-14 1985-01-08 Clock synchronizing system

Country Status (1)

Country Link
JP (1) JPS61159841A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0621012A2 (en) * 2006-02-02 2011-11-29 Thomson Licensing Two-level current limiting power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765946A (en) * 1980-10-13 1982-04-21 Hitachi Ltd Mfm demodulating circuit
JPS5794915A (en) * 1980-12-03 1982-06-12 Matsushita Electric Ind Co Ltd Demodulating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765946A (en) * 1980-10-13 1982-04-21 Hitachi Ltd Mfm demodulating circuit
JPS5794915A (en) * 1980-12-03 1982-06-12 Matsushita Electric Ind Co Ltd Demodulating circuit

Also Published As

Publication number Publication date
JPS61159841A (en) 1986-07-19

Similar Documents

Publication Publication Date Title
EP0688447B1 (en) De-skewer for serial data bus
US4584695A (en) Digital PLL decoder
JPH0124385B2 (en)
EP0194385B1 (en) Decoder for manchester encoded data
JPH0344702B2 (en)
US4808970A (en) Decoding device for CMI code
US5479456A (en) Automatic false synchronization correction mechanism for biphase-modulated signal reception
JP3371913B2 (en) Waveform distortion correction device
JPH0157539B2 (en)
JPH0325101B2 (en)
KR100200826B1 (en) Phase locked loop circuit
KR100526937B1 (en) Differential Code Generator
JPH0272719A (en) Split phase decoding circuit
JP2754577B2 (en) Clock regeneration circuit
JPS62111550A (en) Clock control circuit
JPS6051353A (en) Bipolar code decoding circuit
JPH1155235A (en) Digital communication equipment
JPS5912654A (en) Synchronism circuit of error correcting decoder
JPH0530144A (en) Parallel data transmission system
JPH07221634A (en) Synchronization of clock
JPH0983354A (en) Dpll circuit
JPH07288472A (en) Nrz-rz signal conversion circuit
JPS62111549A (en) Clock control circuit
JPS59144248A (en) Cmi encoding and decoding circuit
JPH05160738A (en) Cmi decoding system