JPH0325101B2 - - Google Patents

Info

Publication number
JPH0325101B2
JPH0325101B2 JP59204731A JP20473184A JPH0325101B2 JP H0325101 B2 JPH0325101 B2 JP H0325101B2 JP 59204731 A JP59204731 A JP 59204731A JP 20473184 A JP20473184 A JP 20473184A JP H0325101 B2 JPH0325101 B2 JP H0325101B2
Authority
JP
Japan
Prior art keywords
clock
signal
circuit
code
data signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59204731A
Other languages
Japanese (ja)
Other versions
JPS6187446A (en
Inventor
Akihiro Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59204731A priority Critical patent/JPS6187446A/en
Priority to US06/775,565 priority patent/US4689785A/en
Publication of JPS6187446A publication Critical patent/JPS6187446A/en
Publication of JPH0325101B2 publication Critical patent/JPH0325101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はデジタルデータ伝送に用いられる受信
機の同期方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a synchronization method for a receiver used in digital data transmission.

(ロ) 従来の技術 従来、送信機から送られてくるデジタル信号と
受信機のクロツク信号の同期を採るに際し、例え
ば特開昭58−223944号のように両信号間の位相の
ずれの方向と大きさを検出して、適当な補正を掛
ける方式や、位相ずれの方向のみを検出して一定
量の補正を適当な方向にかける方式がある。
(b) Conventional technology Conventionally, when synchronizing a digital signal sent from a transmitter and a clock signal of a receiver, the direction of the phase shift between the two signals and the There are methods that detect the size and apply appropriate correction, and methods that detect only the direction of the phase shift and apply a fixed amount of correction in the appropriate direction.

(ハ) 発明が解決しようとする問題点 然し乍ら、前者の位相ずれの方向と大きさを検
出して適当な補正をかける方式では回路規模が非
常に大きくなり発振回路の安定性がある程度確保
されているシステムの場合初期同期の速やかさを
除けば後者に対して、極端に優れている点はない
と考えられる。すなわち回路規模が大きい割に大
した性能は得られないのである。
(c) Problems to be solved by the invention However, in the former method of detecting the direction and magnitude of the phase shift and applying appropriate correction, the circuit scale becomes very large and the stability of the oscillation circuit cannot be ensured to a certain extent. In the case of the system with the latter, it is thought that there is no point that is extremely superior to the latter, except for the speed of initial synchronization. In other words, even though the circuit scale is large, great performance cannot be obtained.

一方、位相のずれの方向のみを検出する方式で
は、回路構成は簡単になるが同期の安定性を考え
た場合、補正量を大きくとる事はできない。この
ため受信機での受信開始時に大きく位相がずれて
いると、初期同期が採れるまでに非常に時間が掛
り伝送効率が悪くなると云う問題があつた。
On the other hand, in the method of detecting only the direction of phase shift, the circuit configuration is simple, but when considering the stability of synchronization, the amount of correction cannot be made large. For this reason, if there is a large phase shift when the receiver starts receiving signals, there is a problem in that it takes a very long time to achieve initial synchronization, resulting in poor transmission efficiency.

(ニ) 問題点を解決するための手段 本発明は周期的な符号規則を有した符号を用い
てデータ伝送を行い、受信側には、クロツク発生
回路と、このクロツク発生回路からのクロツク信
号及び送信側からのデータ信号によつてデータ信
号内の符号違反を検出する符号違反検出回路と、
を設け受信開始時この符号違反検出回路で符号違
反が検出されたとき上記クロツク発生回路のクロ
ツク信号発生状態を変化させる。
(d) Means for solving the problem The present invention transmits data using codes with a periodic code rule, and the receiving side includes a clock generation circuit and a clock signal from the clock generation circuit. a code violation detection circuit that detects a code violation in a data signal based on a data signal from a transmitting side;
is provided, and when a code violation is detected by the code violation detection circuit at the start of reception, the clock signal generation state of the clock generation circuit is changed.

(ホ) 作 用 受信開始時、符号違反検出回路で符号違反が検
出されたときクロツク発生回路のクロツク信号発
生状態を変化させているので新たな初期同期回路
を用いることなく初期同期が行なえる。
(E) Operation At the start of reception, when a code violation is detected by the code violation detection circuit, the clock signal generation state of the clock generation circuit is changed, so initial synchronization can be performed without using a new initial synchronization circuit.

(ヘ) 実施例 第1図は本発明クロツク同期方式に用いられる
受信機の要部概略図であつて、1は周期的な符号
規則を有した符号例えばバーフエイズ符号を用い
て送られてくるデータ信号Dを受信々号として受
ける符号規則違反検出回路、2はこの符号規則違
反検出回路1からの出力によりクロツク信号の発
生周期を大きく変化させるクロツク発生回路であ
つて、その出力は上記符号違反検出回路1へ与え
られている。3は上記データ信号とクロツク信号
の位相を比較して、これ等の信号が同期するよう
クロツク発生回路2のクロツク同期を微調整する
位相比較回路である。
(F) Embodiment FIG. 1 is a schematic diagram of the main parts of a receiver used in the clock synchronization system of the present invention, in which 1 indicates data sent using a code with a periodic code rule, for example, a barfase code. A code rule violation detection circuit 2 receives the signal D as a received signal, and 2 is a clock generation circuit that largely changes the generation period of the clock signal by the output from the code rule violation detection circuit 1. is applied to circuit 1. A phase comparison circuit 3 compares the phases of the data signal and the clock signal and finely adjusts the clock synchronization of the clock generation circuit 2 so that these signals are synchronized.

第2図に上記バーフエイズ符号によるデータ信
号Dの波形を示し、このバーフエイズ符号では各
ビツト期間端部で信号の“H”、“L”の変化があ
り、さらにφを表わすビツト期間では信号レベル
の変化が無く、1を表わすビツト期間中央部では
“H”、“L”の信号レベルの変化がある。このた
め、通常、各ビツト期間の前半部の値を検出する
クロツクφ1と各ビツト区間の後半部の値を検出
するタイミングを与えるクロツクφ2によつて各
ビツト区間の前半の値と後半の値を比較してデー
タを読み取る方式が採られる。
FIG. 2 shows the waveform of the data signal D based on the above-mentioned barphas code. In this barphas code, the signal changes between "H" and "L" at the end of each bit period, and furthermore, the signal level changes in the bit period representing φ. In the center of the bit period where there is no change and represents 1, there is a change in the signal level of "H" and "L". For this reason, normally, the values in the first half of each bit period and the values in the second half are determined by clock φ1 , which detects the value in the first half of each bit period, and clock φ2 , which provides the timing to detect the value in the second half of each bit period. A method is used to read data by comparing values.

こうしたデータ伝送方式において第3図のよう
にデータ信号Dとクロツク信号φ1,φ2の同期が
採られているときはφ2時のデータ信号Dの検出
値と次のφ1時のデータ信号Dの検出値は必ず異
なる。これに対し、全てφのデータが送られてい
るとき、このデータ信号Dとクロツク信号φ1
φ2の位相が大きくずれた場合、第4図の如く、
φ2時のデータ信号Dの検出値と次のφ1時のデー
タ信号Dの検出値は同じになる。本発明ではこう
した原理を用いて、データ信号受信初期時の同期
を採る。
In such a data transmission system, when data signal D and clock signals φ 1 and φ 2 are synchronized as shown in FIG. 3, the detected value of data signal D at φ 2 and the data signal at the next φ 1 The detected values of D are always different. On the other hand, when data of all φ is being sent, this data signal D and the clock signal φ 1 ,
If the phase of φ 2 is significantly shifted, as shown in Figure 4,
The detected value of the data signal D at the time of φ2 and the detected value of the data signal D at the next time of φ1 are the same. In the present invention, synchronization at the initial stage of data signal reception is achieved using this principle.

第5図は上記第1図の詳細回路図であつて、上
記原理によつて初期同期を採るよう構成されてい
る。また同図において、第1図と同一部分には同
一符号が符してある。同図において4,5はデー
タ信号Dをドライブ端子Dに受けるフリツプフロ
ツプ回路、6はこれ等のフリツプフロツプ回路
4,5のQ出力の排他的論理和を採るゲート、7
はこのゲート6出力をドライブ端子Dで受けるフ
リツプフロツプ回路、8は基本クロツク発生回路
を内蔵した可変分周器を示しCA入力端子に信号
が与えられているとき15分周、CB入力端子に信
号が与えられているとき17分周、CC入力端子に
信号が与えられているときCA,CB入力端子への
信号に拘らず24分周を行う。尚、この可変分周器
8に使用される基本クロツクは16パルス時間が伝
送されてくる伝送データDの1ビツト期間長に略
対応するよう設定されている。また、上記CC入
力端子には上記フリツプフロツプ回路7の出力
が与えられている。9は上記分周器8の出力をデ
コードするデコーダであつて、上記分周器8の出
力値が夫々4、8、12、14に対応して夫々信号
φ2、φb、φ1、φaが出力されておりこのφ1、φ2
φaは夫々フリツプフロツプ回路5,4,7のク
ロツク端子(CLK)に与えられる。また、この
φ1、φ2はバイフエーズ符号より成る伝送データ
信号Dを復号するために用いられる。また位相比
較回路3はデータ信号Dと上記デコーダ9からの
信号φ2、φbを受け、φ2タイミング時のデータ信
号Dの値とφbタイミング時のデータ信号Dの値
を比較して異つているとき上記可変分周器8の
CA端子へ信号を与え、異つていないとき、上記
可変分周器8のCB端子へ信号を与える。
FIG. 5 is a detailed circuit diagram of FIG. 1, and is constructed to achieve initial synchronization based on the principle described above. Also, in this figure, the same parts as in FIG. 1 are designated by the same reference numerals. In the figure, 4 and 5 are flip-flop circuits that receive the data signal D at the drive terminal D, 6 is a gate that takes the exclusive OR of the Q outputs of these flip-flop circuits 4 and 5, and 7
8 is a flip-flop circuit that receives the output of gate 6 at drive terminal D, and 8 is a variable frequency divider with a built-in basic clock generation circuit. When a signal is given to the CC input terminal, the frequency is divided by 17, and when a signal is given to the CC input terminal, the frequency is divided by 24 regardless of the signals to the CA and CB input terminals. The basic clock used in the variable frequency divider 8 is set so that 16 pulse times approximately correspond to the 1-bit period length of the transmitted data D. Further, the output of the flip-flop circuit 7 is applied to the CC input terminal. A decoder 9 decodes the output of the frequency divider 8, and outputs signals φ 2 , φ b , φ 1 , φ corresponding to output values of 4, 8, 12, and 14, respectively. a is output, and these φ 1 , φ 2 ,
φ a is applied to the clock terminals (CLK) of flip-flop circuits 5, 4, and 7, respectively. Further, φ 1 and φ 2 are used to decode the transmission data signal D consisting of a biphase code. Further, the phase comparison circuit 3 receives the data signal D and the signals φ 2 and φ b from the decoder 9, and compares the value of the data signal D at the φ 2 timing with the value of the data signal D at the φ b timing to determine whether there is a difference. When the variable frequency divider 8 is
A signal is applied to the CA terminal, and when there is no difference, a signal is applied to the CB terminal of the variable frequency divider 8.

こうした構成の回路において、データ伝送開始
時0\を表わすデータ信号Dが連続的に送られてく
る。このとき、第6図のように、このデータ信号
Dと復号用の信号φ1,φ2の位相がずれていて、
データ信号Dの各ビツトの前半にφ2のタイミン
グがあり、各ビツトの後半にφ1のタイミングが
あるとすると、フリツプ・フロツプ回路5,4に
より検出されるタイミングφ2のときのデータ信
号Dの値と次のタイミングφ1のときのデータ信
号Dの値は等しく、ゲート6からフリツプフロツ
プ回路7に“L”信号が与えられる。可変分周器
8が14カウントをしたときデコーダ9からφa
このフリツプフロツプ回路7のクロツク端子
(CLK)に与えられるため、このフリツプフロツ
プ回路7の出力は“H”となつて可変分周器8
のCC入力端子に“H”信号が与えられる。これ
に応じてこの分周器8は24分周状態になり、次の
φ2の発生が1/2周期遅らされる。これにより、
信号φ1,φ2が夫々各ビツト期間の前半及び後半
に対応したタイミングになる。その後φ2と次の
φ1の間にビツト端が存在するため、φ2とこのφ2
の次のφ1のタイミングにおいてデータ信号Dの
値が異なり、ゲート6で排他的論理和が採れるよ
うになる。このため、上記φ1に続くφaのタイミ
ングでフリツプフロツプ回路7の出力は“L”
となつて、可変分周器8の分周出力は位相比較回
路3の出力によつて制御される。
In a circuit having such a configuration, a data signal D representing 0\ is continuously sent at the start of data transmission. At this time, as shown in FIG. 6, the data signal D and the decoding signals φ 1 and φ 2 are out of phase,
Assuming that there is a timing φ 2 in the first half of each bit of the data signal D and a timing φ 1 in the second half of each bit, the data signal D at the timing φ 2 detected by the flip-flop circuits 5 and 4 The value of the data signal D at the next timing φ 1 is equal to the value of the data signal D at the next timing φ 1 , and an “L” signal is applied from the gate 6 to the flip-flop circuit 7 . When the variable frequency divider 8 counts 14, φ a is applied from the decoder 9 to the clock terminal (CLK) of the flip-flop circuit 7, so that the output of the flip-flop circuit 7 becomes "H" and the output from the variable frequency divider 8 becomes "H".
An “H” signal is applied to the CC input terminal of Correspondingly, this frequency divider 8 enters the frequency dividing state by 24, and the generation of the next φ 2 is delayed by 1/2 period. This results in
Signals φ 1 and φ 2 have timings corresponding to the first and second half of each bit period, respectively. After that, there is a bit edge between φ 2 and the next φ 1 , so φ 2 and this φ 2
At the next timing φ 1 , the value of the data signal D changes, and the gate 6 can perform an exclusive OR. Therefore, at the timing of φ a following φ 1 above, the output of the flip-flop circuit 7 goes “L”.
Therefore, the frequency-divided output of the variable frequency divider 8 is controlled by the output of the phase comparison circuit 3.

即ち、位相比較回路3はφ2のタイミングにお
けるデータ信号Dの値とこのφ2の次のφbのタイ
ミングにおけるデータ信号Dの値を比較し、これ
等の値が等しければ、データ信号Dに対し、クロ
ツク信号φ1,φ2が少し進んでいると判断して可
変分周器8のCB入力端子に信号を与え、可変分
周器8は17分周状態になつてクロツク信号φ1
φ2の位相を1/16周期遅らせる。これに対し、
上記φ2のタイミングと、このφ2の次のφbのタイ
ミングで検出されるデータ信号Dの値が等しくな
いときは、データ信号Dに対してクロツク信号
φ1,φ2が少し遅れていると判断され、可変分周
器8のCA入力端子に信号が与えられる。これに
より、可変分周器8は15分周状態になつてクロツ
ク信号φ1,φ2の位相を1/16周期進ませる。つ
まり、この位相比較回路3ではデータ信号Dの各
ビツト期間端部にφbが略同期するよう上記可変
分周器8の分周状態を切り換えて微調整が為され
る。こうした第5図の回路の動作波形を第6図に
示す。
That is, the phase comparator circuit 3 compares the value of the data signal D at the timing of φ 2 with the value of the data signal D at the timing of φ b following this φ 2 , and if these values are equal, the data signal D is On the other hand, it is determined that the clock signals φ 1 and φ 2 are slightly ahead, and a signal is applied to the CB input terminal of the variable frequency divider 8, and the variable frequency divider 8 enters the frequency division state by 17, and the clock signals φ 1 ,
Delay the phase of φ 2 by 1/16 period. In contrast,
If the value of the data signal D detected at the timing of φ 2 described above and the timing of φ b following this φ 2 are not equal, the clock signals φ 1 and φ 2 are slightly delayed with respect to the data signal D. , and a signal is given to the CA input terminal of the variable frequency divider 8. As a result, the variable frequency divider 8 enters a frequency dividing state by 15 and advances the phases of the clock signals φ 1 and φ 2 by 1/16 period. That is, in this phase comparison circuit 3, fine adjustment is made by switching the frequency division state of the variable frequency divider 8 so that φ b is substantially synchronized with the end of each bit period of the data signal D. The operating waveforms of the circuit shown in FIG. 5 are shown in FIG.

また、こうしたバーフエイズ符号によるデータ
信号Dの伝送中、ノイズ等がこのデータ信号Dに
乗つて符号規則違反が発生すると、上述と同じ動
作でフリツプフロツプ回路7の出力から“H”
信号を受信機の制御回路(図示せず)へ伝え、符
号規則違反を検出した旨を知らせる。
Furthermore, during the transmission of the data signal D using the barfaze code, if noise or the like gets on the data signal D and a code rule violation occurs, the output of the flip-flop circuit 7 goes high in the same operation as described above.
A signal is transmitted to a control circuit (not shown) of the receiver to notify that a code rule violation has been detected.

(ト) 発明の効果 以上述べた如く、本発明クロツク同期方式は、
周期的な符号規則を有した符号を用いてデータ伝
送を行い、受信側にはクロツク発生回路と、この
クロツク発生回路からのクロツク信号及び送信側
からのデータ信号によつてこのデータ信号内の符
号違反を検出する符号違反検出回路とを設け、受
信開始時、この符号違反検出回路で符号違反が検
出されたとき、上記クロツク発生回路のクロツク
信号発生状態を変化させているので、新たな初期
同期回路を設けることなく大まかな初期同期が行
え、その後、位相比較回路を使つた位相の微調整
に移行することが出来、位相比較回路のみを使用
していた従来のものに比して初期同期に用する時
間が少くなり、この種、クロツク同期方式を用い
た伝送システムの伝送効率が高くなる。
(g) Effects of the invention As stated above, the clock synchronization method of the present invention has the following effects:
Data transmission is performed using codes with a periodic code rule, and the receiving side has a clock generation circuit, and the code in this data signal is determined by the clock signal from this clock generation circuit and the data signal from the transmitting side. A code violation detection circuit is provided to detect a violation, and when a code violation is detected by this code violation detection circuit at the start of reception, the clock signal generation state of the clock generation circuit is changed, so that a new initial synchronization is performed. It is possible to perform rough initial synchronization without installing a circuit, and then move on to fine adjustment of the phase using a phase comparison circuit, which improves initial synchronization compared to conventional methods that only use a phase comparison circuit. This reduces the amount of time required and increases the transmission efficiency of a transmission system using this type of clock synchronization method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明クロツク同期方式に用いられる
受信機の要部概略ブロツク図、第2図乃至第4図
は本発明の動作原理を説明するための波形図、第
5図は第1図の詳細ブロツク回路図、第6図は第
5図の動作波形図である。 1…符号規則違反検出回路、2…クロツク発生
回路、3…位相比較回路、4,5,6…フリツプ
フロツプ回路、8…可変分周器、9…デコーダ。
FIG. 1 is a schematic block diagram of the main parts of a receiver used in the clock synchronization system of the present invention, FIGS. 2 to 4 are waveform diagrams for explaining the operating principle of the present invention, and FIG. The detailed block circuit diagram, FIG. 6, is an operating waveform diagram of FIG. 5. DESCRIPTION OF SYMBOLS 1... Code rule violation detection circuit, 2... Clock generation circuit, 3... Phase comparison circuit, 4, 5, 6... Flip-flop circuit, 8... Variable frequency divider, 9... Decoder.

Claims (1)

【特許請求の範囲】[Claims] 1 周期的な符号規則を有するバーフエイズ符号
によりデータ伝送を行うデータ伝送システムに於
いて、受信側には、送信側からのデータ信号の各
ビツト区間の前半及び後半で夫々検出タイミング
を設定する第1及び第2のクロツクを発生するク
ロツク発生回路と、一定周期の同期信号より上記
第1及び第2のクロツク信号の位相関係が反転し
たときに符号違反を検出する符号違反検出回路
と、を設け、送信側から上記データ信号に従う一
定周期の同期信号を受信側に与えて受信側を送信
側に同期させる際に、上記符号違反検出回路で符
号違反が検出されたときに上記第1及び第2のク
ロツク信号の発生タイミングを上記同期信号に対
して1/2の周期で変更することを特徴としたク
ロツク同期方式。
1. In a data transmission system that transmits data using a barphas code having a periodic code rule, the receiving side has a first detection timing that sets the detection timing in the first half and the second half of each bit period of the data signal from the transmitting side. and a clock generation circuit that generates a second clock, and a code violation detection circuit that detects a code violation when the phase relationship between the first and second clock signals is reversed based on a synchronization signal of a constant period, When synchronizing the receiving side with the transmitting side by giving a synchronization signal of a constant period according to the data signal from the transmitting side to the receiving side, when a code violation is detected by the code violation detection circuit, the first and second A clock synchronization method characterized in that the timing of generation of a clock signal is changed by half the cycle of the synchronization signal.
JP59204731A 1984-09-14 1984-09-28 Clock synchronizing system Granted JPS6187446A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59204731A JPS6187446A (en) 1984-09-28 1984-09-28 Clock synchronizing system
US06/775,565 US4689785A (en) 1984-09-14 1985-09-13 Data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204731A JPS6187446A (en) 1984-09-28 1984-09-28 Clock synchronizing system

Publications (2)

Publication Number Publication Date
JPS6187446A JPS6187446A (en) 1986-05-02
JPH0325101B2 true JPH0325101B2 (en) 1991-04-05

Family

ID=16495377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204731A Granted JPS6187446A (en) 1984-09-14 1984-09-28 Clock synchronizing system

Country Status (1)

Country Link
JP (1) JPS6187446A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128643A (en) * 1978-03-28 1979-10-05 Ampex Improved biphase decoder system
JPS55124343A (en) * 1979-03-20 1980-09-25 Hitachi Ltd Clock signal extracting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128643A (en) * 1978-03-28 1979-10-05 Ampex Improved biphase decoder system
JPS55124343A (en) * 1979-03-20 1980-09-25 Hitachi Ltd Clock signal extracting system

Also Published As

Publication number Publication date
JPS6187446A (en) 1986-05-02

Similar Documents

Publication Publication Date Title
US5889820A (en) SPDIF-AES/EBU digital audio data recovery
IE45458B1 (en) Miller-encoded message decoder
US6072370A (en) Clock extraction circuit
US4288874A (en) Timing data reproduction system
JP3346445B2 (en) Identification / timing extraction circuit
US4831338A (en) Synchronizing clock signal generator
US4153814A (en) Transition coding method for synchronous binary information and encoder and decoder employing the method
JPH0325101B2 (en)
US4514840A (en) Data transmission systems for full duplex communication
JPS61127243A (en) Bit phase synchronizing circuit
JPH0157539B2 (en)
US5311559A (en) Apparatus for correcting waveform distortion
US6066970A (en) Circuit for producing clock pulses from an inputted base band signal
JPH0344702B2 (en)
JP3008659B2 (en) Clock extraction circuit for CMI code signal
JPH08335932A (en) Inter-station clock synchronization circuit
JP2696812B2 (en) Clock pulse regeneration device
JP2003174484A (en) Data transmission system, data transmitter-receiver therefor, and data transmission method
JPH0666694B2 (en) D / A converter
JP2514819B2 (en) Carrier wave regenerator
JPH0272719A (en) Split phase decoding circuit
JPH01240024A (en) Clock reproducing circuit
JPS62111550A (en) Clock control circuit
JPH01272324A (en) Digital phase control circuit
JPS62111549A (en) Clock control circuit