JPH0341740A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPH0341740A
JPH0341740A JP17680289A JP17680289A JPH0341740A JP H0341740 A JPH0341740 A JP H0341740A JP 17680289 A JP17680289 A JP 17680289A JP 17680289 A JP17680289 A JP 17680289A JP H0341740 A JPH0341740 A JP H0341740A
Authority
JP
Japan
Prior art keywords
epitaxial growth
melt
substrate
solute
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17680289A
Other languages
Japanese (ja)
Inventor
Hiroshi Takigawa
宏 瀧川
Tetsuo Saito
哲男 齊藤
Tamotsu Yamamoto
保 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17680289A priority Critical patent/JPH0341740A/en
Publication of JPH0341740A publication Critical patent/JPH0341740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the decrease in concentration of Cd atoms in melt under epitaxial growth and to make the composition gradient in the direction of a thickness small by arranging an epitaxial growth substrate 1 on the lower side along the depth direction of the melt, and arranging a solute supplying substrate 11 on the upper side along the depth direction of the melt so as to face the substrate. CONSTITUTION:The parts of a pair of cylindrical members of fixing jugs 6 made of quartz are linked. An epitaxial growth substrate 1 comprising a Cd0.96Zn0.04Te substrate whose lattice matches the lattice of an Hg0.8Cd0.2Te epitaxial crystal to be grown is arranged in grooves 3A at the upper parts of the fixing jigs 6. A solute supplying substrate 11 comprising a Hg0.8Cd0.2Te substrate having the same crystal composition as that of an epitaxial crystal layer to be grown is provided in grooves 3B at the lower parts of the fixing jigs 6. A forming material of solid-phase epitaxial growth melt 4 having the component composition of hg0.2Cd0.009Te0.791 is arranged at the lower part of the solute supplying substrate 11. Under this state, said device is sealed into an ampul 7. Then, the forming material is fused at the temperature of 500 deg.. Thereafter, the ampul 7 is rotated by 180 degrees. Under the state wherein the forming material is fused and the epitaxial growth substrate 1 and the solute supplying substrate are brought into contact, the epitaxial growth is started.

Description

【発明の詳細な説明】 〔概 要〕 液相エピタキシャル成長方法に関し、 エピタキシャル成長用基板上に形成したエピタキシャル
結晶層が、エピタキシャル成長方向に沿って均一な組成
分布が得られるようにした液相エピタキシャル成長方法
を目的とし、 エピタキシャル成長容器内に収容された固定冶具にエピ
タキシャル成長用基板を保持し、前記基板にエピタキシ
ャル成長用メルトを接触させて該基板上にエピタキシャ
ル結晶を成長する方法に於いて、 前記基板にエピタキシャル成長用メルトを接触する際、
前記エピタキシャル成長用メルトの下部側にエピタキシ
ャル成長用基板が位置するように該基板を配置するとと
もに、前記エピタキシャル成長用メルトの上部側に溶質
供給用基板を配置し、該溶質供給用基板より溶解した溶
質と前記エピタキシャル成長用メルトの溶媒との比重差
と重力により、前記エピタキシャル成長時に消費される
エピタキシャル成長用メルトの内の溶質を補給するよう
にして構成する。
[Detailed Description of the Invention] [Summary] Regarding a liquid phase epitaxial growth method, the object is to provide a liquid phase epitaxial growth method in which an epitaxial crystal layer formed on an epitaxial growth substrate has a uniform composition distribution along the epitaxial growth direction. In the method of growing an epitaxial crystal on the substrate by holding the substrate for epitaxial growth in a fixture housed in an epitaxial growth container and bringing the melt for epitaxial growth into contact with the substrate, the melt for epitaxial growth is applied to the substrate. When contacting
The substrate for epitaxial growth is placed on the lower side of the melt for epitaxial growth, and the substrate for solute supply is placed on the upper side of the melt for epitaxial growth, and the solute dissolved from the solute supply substrate and the The solute in the epitaxial growth melt consumed during the epitaxial growth is replenished by gravity and the specific gravity difference between the epitaxial growth melt and the solvent.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線センサ用材料として使用される水銀カド
ミウム、テルル系の多元化合物半導体結晶の液相エピタ
キシャル成長方法に係り、特に成長層の厚さ方向に均一
な組成分布を有するエピタキシャル結晶層を得るための
方法に関する。
The present invention relates to a method for liquid-phase epitaxial growth of mercury-cadmium and tellurium-based multicomponent semiconductor crystals used as materials for infrared sensors, and particularly for obtaining an epitaxial crystal layer having a uniform composition distribution in the thickness direction of the grown layer. Regarding the method.

近年、赤外線センサの高度化、多画素化の要望が大とな
り、ホトダイオードを光検知素子とする赤外電荷結合デ
バイス等の多画素赤外センサの開発が要望されており、
特に画素間の特性の均一化が要求されている。
In recent years, there has been a growing demand for infrared sensors to be more sophisticated and have more pixels, and there is a demand for the development of multi-pixel infrared sensors such as infrared charge-coupled devices that use photodiodes as light detection elements.
In particular, uniformity of characteristics between pixels is required.

このため、上記赤外線センサに用いるウェハ面方向に組
成の均一なエピタキシャル結晶層が得られる液相エピタ
キシャル成長法による結晶製造方法が提供されているが
、fJlIFcがエピタキシャル結晶層の厚さ方向に変
化していると、エピタキシャル結晶層の厚さの僅かな差
により画素間で分光感度特性がばらつくので、厚さ方向
の組成についても均一な成長層が得られることが必要で
ある。
For this reason, a crystal manufacturing method using a liquid phase epitaxial growth method that can obtain an epitaxial crystal layer with a uniform composition in the direction of the wafer surface used in the above-mentioned infrared sensor has been provided, but fJlIFc changes in the thickness direction of the epitaxial crystal layer. In this case, slight differences in the thickness of the epitaxial crystal layer cause variations in spectral sensitivity characteristics between pixels, so it is necessary to obtain a grown layer with a uniform composition in the thickness direction.

〔従来の技術〕[Conventional technology]

従来の液相エピタキシャル成長方法に用いる装置として
は、第4図に示すようにエピタキシャル成長用基板1を
保持する板状の基板ホルダ2を挟持する溝3を有し、エ
ピタキシャル成長時の装置の回転時にエピタキシャル成
長用メルト4を収容する空間部5を有した対向せる一対
の円柱形状の石英部材よりなる固定治具6と、該固定治
具6を封入するアンプル7とよりなる。
As shown in FIG. 4, the apparatus used in the conventional liquid phase epitaxial growth method has a groove 3 that holds a plate-shaped substrate holder 2 that holds a substrate 1 for epitaxial growth. It consists of a fixing jig 6 made of a pair of opposing cylindrical quartz members having a space 5 for accommodating the melt 4, and an ampoule 7 enclosing the fixing jig 6.

このような装置を用い、従来の方法でエピタキシャル結
晶を基板上に形成する場合に付いて説明する。
A case in which epitaxial crystals are formed on a substrate by a conventional method using such an apparatus will be described.

第4図および第4図のv−v”線に沿った断面図の第5
図(alに示すように、基板1を板状の基板ホルダ2に
設装置し、該基板ホルダ2を前記した固定治具6の溝3
内に設置し、該基板1を設置した固定治具6を、該基板
と対向する反対側の位置に水銀、カドミウムおよびテル
ルを溶融後、固化したエピタキシャル成長用メルト4の
形成材料を、充填した状態でアンプル7内に封入する。
4 and 5 of the cross-sectional view taken along the v-v" line in FIG.
As shown in FIG.
The fixing jig 6 on which the substrate 1 is installed is filled with a material for forming the epitaxial growth melt 4, which is obtained by melting mercury, cadmium, and tellurium and solidifying it at the opposite position facing the substrate. and seal it in ampoule 7.

次いで上記アンプル7を加熱炉内の炉芯管(図示せず)
内に挿入し、アンプル7を加熱してアンプル7内の固化
したエピタキシャル成長用材料を溶融してエピタキシャ
ル成長用メルト(溶液)とする。
Next, the ampoule 7 is placed in a furnace core tube (not shown) in a heating furnace.
The ampoule 7 is heated to melt the solidified epitaxial growth material in the ampoule 7 to form an epitaxial growth melt (solution).

次いでアンプル7を矢印A方向に沿って180 度回転
し、第5図(ロ)に示すように、エピタキシャル成長用
メルト4に基板1を接触させ、上記メルトの温度を所定
の温度勾配で下降させながら所定時間保って、基板上に
’g+−x Cdx Teのエピタキシャル結晶を成長
している。
Next, the ampoule 7 is rotated 180 degrees along the direction of arrow A, and as shown in FIG. After a predetermined period of time, an epitaxial crystal of 'g+-x Cdx Te is grown on the substrate.

次いで該アンプル7を矢印B方向に更に180度回転し
、第5図(C)に示すように基板上に付着しているエピ
タキシャル成長用メルトを下部に落下させるワイプオフ
の作業によってエピタキシャル成長を停止している。
Next, the ampoule 7 is further rotated 180 degrees in the direction of arrow B, and as shown in FIG. 5(C), the epitaxial growth is stopped by a wipe-off operation in which the epitaxial growth melt adhering to the substrate falls to the bottom. .

このような従来の方法でエピタキシャル成長する際、水
銀、カドミウムおよびテルルの合金の溶液のエピタキシ
ャル成長用メルト中のCd原子は、該メルトの他の構成
原子に比して偏析係数が大きいため、エピタキシャル層
の成長に伴って消費され易く、該メルト中のCd原子の
濃度が低下する。
When performing epitaxial growth using such a conventional method, Cd atoms in the epitaxial growth melt of a solution of an alloy of mercury, cadmium, and tellurium have a large segregation coefficient compared to other constituent atoms of the melt, so that the epitaxial layer is It is easily consumed as it grows, and the concentration of Cd atoms in the melt decreases.

そのため、従来はエピタキシャル成長用メルトの量を多
くして該メルト中のCd原子の濃度の低下を防ぎ、これ
によってエピタキシャル層の厚さ方向の組成勾配の変動
を防止するようにしていた。
Therefore, in the past, the amount of epitaxial growth melt was increased to prevent the concentration of Cd atoms in the melt from decreasing, thereby preventing variations in the composition gradient in the thickness direction of the epitaxial layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、上記した従来の方法では、エピタキシャル成長用
メルト中に於けるCd原子の拡散速度は小さいため、該
メルトの量を増加してメルト中のCd原子の総量を増加
させても、該メルト全体のCd原子を利用するには、エ
ピタキシャル成長面に拡散して来る迄の時間が必要であ
り、M1或勾配の小さい所定の厚さのエピタキシャル層
が成長出来るのは、エピタキシャル成長を開始してから
長時間を経過した後に成る問題がある。
However, in the conventional method described above, the diffusion rate of Cd atoms in the epitaxial growth melt is low, so even if the total amount of Cd atoms in the melt is increased, the total amount of Cd atoms in the melt is increased. Utilizing Cd atoms requires time for them to diffuse into the epitaxial growth surface, and an epitaxial layer of a given thickness with a small M1 gradient can be grown only after a long period of time from the start of epitaxial growth. There are problems that arise after the time has passed.

つまり従来の方法では、エピタキシャル成長用メルトの
温度を下降させて、エピタキシャル成長用基板表面に、
例えばHgo、 s Cdo、 zTeの組成を有する
エピタキシャル結晶を成長させるに伴って、該メルト中
のCd/ HgJM度比が、成長するエピタキシャル結
晶のCd/ HgtM度比に比較して小さいため、該メ
ルト中のCd濃度が相対的に大きく低下し、メルトより
析出するエピタキシャル結晶のX値が、x =0.2よ
り小さく戒り、エピタキシャル成長方向に沿ってエピタ
キシャル結晶のX値は小さくなり、成長方向に組成勾配
を持つことになる。
In other words, in the conventional method, the temperature of the epitaxial growth melt is lowered and the surface of the epitaxial growth substrate is
For example, as an epitaxial crystal having a composition of Hgo, sCdo, or zTe is grown, the Cd/HgJM degree ratio in the melt is small compared to the Cd/HgtM degree ratio of the growing epitaxial crystal. The Cd concentration in the melt decreases relatively greatly, and the X value of the epitaxial crystal precipitated from the melt becomes smaller than x = 0.2, and the X value of the epitaxial crystal decreases along the epitaxial growth direction. It will have a compositional gradient.

従って、エピタキシャル成長用メルトの量をj告別した
場合でも、U或の均一なエピタキシャル層を得るには長
時間を必要とし、エピタキシャル成長中にエピタキシャ
ル成長用基板とエピタキシャル結晶層との間で相互拡散
が発生し、基板とエピタキシャル結晶層との間のへテロ
界面近傍の組成勾配が大きくなるという問題を生じる。
Therefore, even if the amount of epitaxial growth melt is specified, it takes a long time to obtain a uniform epitaxial layer, and interdiffusion occurs between the epitaxial growth substrate and the epitaxial crystal layer during epitaxial growth. , a problem arises in that the composition gradient near the heterointerface between the substrate and the epitaxial crystal layer becomes large.

更にエピタキシャル成長用メルトの量を増加させると、
成長装置も大型に威るため、アンプル等のエピタキシャ
ル成長系内を均一な温度に保つことが困難となり、主成
分の11g原子が成長系内の低温部分に偏在して組成制
御精度が低下する問題がある。
Furthermore, when the amount of epitaxial growth melt is increased,
Because the growth equipment is also large, it is difficult to maintain a uniform temperature in the epitaxial growth system such as an ampoule, and the main component, 11g atoms, is unevenly distributed in the low temperature part of the growth system, reducing the accuracy of composition control. be.

またエピタキシャル成長用メルトはHgを主成分として
いるので、高い組成制御精度を得るためには、成長系を
閉管に近い系ですることが必要であるので、成長中にエ
ピタキシャル成長用メルI・を撹拌したり、咳メルト中
にCd金属を追加供給することも困難である。
In addition, since the epitaxial growth melt has Hg as its main component, in order to obtain high composition control accuracy, it is necessary to use a growth system close to a closed tube, so the epitaxial growth melt I is stirred during growth. It is also difficult to add Cd metal to cough melts.

本発明は上記した問題点を解決し、エピタキシャル成長
用メルトの量を増加させることなく、エピタキシャル成
長中のメルト中のCd原子の濃度の低下を防止し、かつ
メルト中のCd原子がエピタキシャル成長面に迅速に供
給でき、更に厚さ方向の!lJl或勾配が小さいエピタ
キシャル結晶が製造できる方法の提供を目的とする。
The present invention solves the above-mentioned problems, prevents a decrease in the concentration of Cd atoms in the melt during epitaxial growth without increasing the amount of melt for epitaxial growth, and allows Cd atoms in the melt to quickly reach the epitaxial growth surface. It can be supplied, and even in the thickness direction! The object of the present invention is to provide a method that can produce an epitaxial crystal with a small lJl gradient.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の液相エピタキシャル成長方
法は、第1図の原理図に示すように、エピタキシャル成
長容器7内に収容された固定治具6にエピタキシャル成
長用基板1を保持し、該基板1にエピタキシャル成長用
メルト4を接触させて該基板上にエピタキシャル結晶を
成長する方法に於いて、 前記基板1に溶融したエピタキシャル成長用メルト4を
接触する際、前記エピタキシャル成長用メルトの下部側
にエピタキシャル成長用基板lが位置するように該基板
を配置するとともに、前記エピタキシャル成長用メルト
の上部側に溶質供給用基板11を配置し、該溶質供給用
基板で前記エピタキシャル成長時に消費されたエピタキ
シャル成長用メルトの内の溶質を補給するようにして構
成する。
In the liquid phase epitaxial growth method of the present invention which achieves the above object, as shown in the principle diagram of FIG. In the method of growing epitaxial crystals on the substrate by bringing the epitaxial growth melt 4 into contact with the substrate 1, when the molten epitaxial growth melt 4 is brought into contact with the substrate 1, the epitaxial growth substrate 1 is placed on the lower side of the epitaxial growth melt. At the same time, a solute supply substrate 11 is disposed above the epitaxial growth melt, and the solute supply substrate replenishes the solute in the epitaxial growth melt consumed during the epitaxial growth. Configure it as follows.

〔作 用〕[For production]

本発明の方法は、第1図の原理図に示すようにエピタキ
シャル成長用基板1を、エピタキシャル成長用メルト4
に接触してエピタキシャル成長する場合、該メルトの深
さ方向に沿って下部側にエピタキシャル成長用基板1を
配置し、該基板に対向して上記メルトの深さ方向に沿っ
た上部側に溶質供給用基板11を配置する。このエピタ
キシャル成長メルト4の溶媒となるTe原子の比重が6
.24であるのに対し、該メルトの?8tとなるCd原
子の比重は8,65であるので、メルトの深さ方向に沿
った下部の部分の溶質の濃度が、メルトの深さ方向の上
部の部分の溶質の濃度に比して大になる。
In the method of the present invention, as shown in the principle diagram of FIG.
When performing epitaxial growth in contact with the melt, an epitaxial growth substrate 1 is placed on the lower side along the depth direction of the melt, and a solute supply substrate 1 is placed on the upper side along the depth direction of the melt, facing the substrate. Place 11. The specific gravity of Te atoms serving as the solvent for this epitaxial growth melt 4 is 6.
.. 24, whereas that of the melt? Since the specific gravity of Cd atoms, which is 8t, is 8.65, the concentration of solute in the lower part along the depth direction of the melt is larger than that in the upper part in the depth direction of the melt. become.

そのため、第2図に示す水SBJUg)−カド藁ウム(
Cd)−テルル(Te)系の状態図より、横軸のCdの
モル濃度が大になる程、つまり溶質の濃度が大になる程
、図のエピタキシャル成長用メルトの液相化温度を示す
等液相化温度線21.22.23.24・・・で示され
るように、液相化温度は高く成る傾向に有り、該メルト
の下部側程、メルト内に於ける溶質が飽和の状態になり
、メルトの上部に成る程メルト内の溶質が未飽和の状態
になる。
Therefore, as shown in Figure 2, water SBJUg) - kado straw um (
From the phase diagram of Cd)-tellurium (Te) system, as the molar concentration of Cd on the horizontal axis increases, that is, as the concentration of solute increases, the figure shows the liquid phase temperature of the epitaxial growth melt. As shown by the phase temperature lines 21, 22, 23, 24..., the liquid phase temperature tends to become higher, and the lower the melt, the more the solute in the melt becomes saturated. , the solute in the melt becomes less saturated as it approaches the upper part of the melt.

そのため、エピタキシャル成長はエピタキシャル成長用
メルトの下部側のエピタキシャル成長用基板表面で選択
的に行われ、成長用基板の近傍の該メルト中の溶質濃度
がエピタキシャル成長に伴い減少し始めると、その部分
に於けるエピタキシャル成長用メルトの比重も減少する
ので、該メルト内で比重が反転した分布を示さないよう
にメルトの上部側より成長基板表面近傍に溶質濃度の高
いメルトが重力により供給される。
Therefore, epitaxial growth is selectively performed on the surface of the epitaxial growth substrate on the lower side of the epitaxial growth melt, and when the solute concentration in the melt near the growth substrate begins to decrease with epitaxial growth, the epitaxial growth in that part is performed selectively. Since the specific gravity of the melt also decreases, a melt with a high solute concentration is supplied by gravity from the upper side of the melt to the vicinity of the growth substrate surface so that the specific gravity does not exhibit an inverted distribution within the melt.

この溶質の供給により溶質濃度が低下し、未飽和度が大
きく或った上部側のエピタキシャル成長用メルトは、溶
質供給用基板11に接しているため、溶質供給用基板を
溶解する。このためメルトの上部側の溶質濃度の低下を
防ぐことができる。
The solute concentration decreases due to this supply of solute, and the upper epitaxial growth melt, which has a large degree of unsaturation, is in contact with the solute supply substrate 11, and thus melts the solute supply substrate. Therefore, it is possible to prevent the solute concentration from decreasing in the upper part of the melt.

このようにして溶質供給用基板よりエピタキシャル成長
用基板に拡散速度の小さい溶質も短時間に供給されるよ
うになるため、成長に伴うエピタキシャル成長用メルト
中のCd原子の濃度の低下を防ぐことができる。
In this way, the solute with a low diffusion rate is also supplied to the epitaxial growth substrate from the solute supply substrate in a short time, so that it is possible to prevent the concentration of Cd atoms in the epitaxial growth melt from decreasing due to growth.

なお、エピタキシャル成長用メルト中のCd原子以外の
溶質であるHg (比重=13.5)は、CdやTe原
子より比重が大きいが、該メルト中のHg’tljt度
は、Hgが易蒸発性元素であり、該メルトの水根分圧が
高いので、該メルト内で水銀分圧が一定に成る条件を満
たすように分布し、重力によりメルトの下部に過剰に偏
在することは無い。
Note that Hg (specific gravity = 13.5), which is a solute other than Cd atoms in the epitaxial growth melt, has a higher specific gravity than Cd or Te atoms, but the degree of Hg'tljt in the melt is such that Hg is an easily evaporable element. Since the water root partial pressure of the melt is high, mercury is distributed so as to satisfy the condition that the partial pressure of mercury is constant within the melt, and is not excessively unevenly distributed in the lower part of the melt due to gravity.

従って、本発明に於けるようにエピタキシャル成長用基
板の上部方向にエピタキシャル成長用メルトを挟んで対
向した位置に溶質供給用基板を配置した場合、溶媒に対
する溶質の比重差により、溶質供給用基板からノル5ト
を経て成長用基板に拡散速度の遅い溶質が短時間で供給
されるため、短時間で成長方向にMi戒勾配の少ないエ
ピタキシャル結晶が成長可能となる。
Therefore, when the solute supply substrate is disposed above the epitaxial growth substrate at a position facing the epitaxial growth melt across the epitaxial growth substrate, the difference in the specific gravity of the solute to the solvent will cause the solute supply substrate to Since the solute with a slow diffusion rate is supplied to the growth substrate through the substrate in a short time, it is possible to grow an epitaxial crystal with a small Mi gradient in the growth direction in a short time.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第3図(a)および第3図(b)は、本発明のエピタキ
シャル成長方法の説明図であり、第3図(a)はエピタ
キシャル成長の開始前の状態を示し、第3図(b)はエ
ピタキシャル成長の開始後の状態を示し、Hg。1Cd
o、zTeの結晶を成長方法を示す図である。
3(a) and 3(b) are explanatory diagrams of the epitaxial growth method of the present invention, with FIG. 3(a) showing the state before the start of epitaxial growth, and FIG. 3(b) showing the state before the start of epitaxial growth. shows the state after the start of Hg. 1Cd
FIG. 2 is a diagram showing a method of growing o,zTe crystals.

第3図(a)に示すように、一対の円柱状部材が一部連
結した石英製の固定治具6の上部の溝3Aに、成長すべ
きHgo、 * Cdo、 zTeエピタキシャル結晶
と格子整合するCdo、 +raZn6.。aTe基板
よりなるエピタキシャル成長用基板1を設置し、該固定
治具6の下部の溝3Bに成長ずべきエピタキシャル結晶
層と同一の結晶組成を有するHge、 a Cdo、 
zTe基板より成る溶質供給用基板11を設置し、該溶
質供給用基板11の下部にllgo、 zcdo、 0
09T’eO,ff’l+の成分組成を持つ固相のエピ
タキシャル成長用メルト4の形成材料を設置した状態で
アンプル7に封入する。
As shown in FIG. 3(a), in the groove 3A of the upper part of the quartz fixing jig 6, in which a pair of cylindrical members are partially connected, the Hgo, *Cdo, and zTe epitaxial crystals to be grown are lattice-matched. Cdo, +raZn6. . An epitaxial growth substrate 1 made of an aTe substrate is installed, and Hge, aCdo, and aCdo having the same crystal composition as the epitaxial crystal layer to be grown are placed in the groove 3B at the bottom of the fixing jig 6.
A solute supply substrate 11 made of a zTe substrate is installed, and llgo, zcdo, 0 are placed below the solute supply substrate 11.
A material for forming a solid-phase epitaxial growth melt 4 having a component composition of 09T'eO, ff'l+ is placed and sealed in an ampoule 7.

次いでエピタキシャル成長用メルト4の形成材料を50
0″Cの温度で溶解した後、該アンプル7を180度回
転してして3図(b)に示すような状態とし、前記形成
材料が溶融して形成されたエピタキシャル成長用メルト
4にエピタキシャル成長用基板1と溶質供給用基板11
とを接触させた状態でエピタキシャル成長を開始する。
Next, 50% of the material for forming the epitaxial growth melt 4 was added.
After melting at a temperature of 0''C, the ampoule 7 is rotated 180 degrees to obtain a state as shown in FIG. Substrate 1 and solute supply substrate 11
Epitaxial growth is started with the two in contact with each other.

本発明のエピタキシャル成長の実施例について第2−1
図、第2−2図および第2−3図を用いて更に詳述する
About the embodiment of epitaxial growth of the present invention Part 2-1
This will be further explained in detail with reference to FIGS. 2-2 and 2-3.

第2−1図はエピタキシャル成長用メルト4のTeを溶
媒とした状態図で、図で縦軸は該メルト中に於けるtt
gのモル濃度、横軸は該メルト中に於けるCdのモル濃
度を示す。図の実線の曲線の等液相化温度線21,22
,23.24は該メルトの一部が、液相より固相に移行
する温度、或いはメルトが完全に液相に成る温度を示し
、図の点線の曲線の等固相値線31,32,33,34
.35.36は該メルトより析出するHg1−xCdイ
Teの結晶のX値を示す。
Figure 2-1 is a phase diagram of the epitaxial growth melt 4 using Te as a solvent, in which the vertical axis is the tt in the melt.
The horizontal axis shows the molar concentration of Cd in the melt. Equiliquid phase temperature lines 21 and 22 of the solid curve in the figure
, 23 and 24 indicate the temperature at which a part of the melt transitions from the liquid phase to the solid phase, or the temperature at which the melt completely becomes the liquid phase, and the isosolidus value lines 31, 32, 33, 34
.. 35.36 indicates the X value of the Hg1-xCd-Te crystal precipitated from the melt.

エピタキシャル成長用メルト4は、第2−1図の状態図
に於いてA点で示すようにHgo、 zC(L、 +1
09Tea、y*+の成分組成を持ち、咳メルトより析
出するHg1−x CdつTeのエピタキシャル結晶の
X値は、0.2となり、その液相化温度は約500℃で
ある。
The epitaxial growth melt 4 has Hgo, zC(L, +1
The X value of the epitaxial crystal of Hg1-xCdTe having the component composition of 09Tea,y*+ and precipitated from the cough melt is 0.2, and its liquidus temperature is about 500°C.

第2−2図はメルトと平衡状態にあるltg、−XCd
XTe結晶の水銀分圧と、X値が0.20の)Igl−
x CdxTe結晶を析出するメルトの水銀分圧を表す
関係図で、縦軸は水銀分圧(気圧)で横軸は温度(°C
)を示す。
Figure 2-2 shows ltg, -XCd in equilibrium with the melt.
Mercury partial pressure of XTe crystal and )Igl- with X value of 0.20
x Cdx This is a relationship diagram showing the mercury partial pressure of the melt that precipitates the Te crystal, where the vertical axis is the mercury partial pressure (atmospheric pressure) and the horizontal axis is the temperature (°C
) is shown.

図の曲線41はメルトと平衡状態に有るX値が0゜19
のHg、、CdNTe結晶の水銀分圧を表す曲線であり
、X値が0.19のl’1g+−X Cdx Teの結
晶が析出するメルトの液相化温度に於ける水銀分圧に等
しい。
Curve 41 in the figure has an X value of 0°19 in equilibrium with the melt.
Hg, , is a curve representing the mercury partial pressure of a CdNTe crystal, and is equal to the mercury partial pressure at the liquidus temperature of the melt at which l'1g+-X Cdx Te crystals with an X value of 0.19 precipitate.

図の曲線42はメルトと平衡状態にあるX値が0゜20
の11g1−、xCd、 Teの結晶の水銀分圧を表す
曲線であり、X値が0.20のHgI−ウCdXTeの
結晶が析出するタルトの液相化温度に於ける水銀1分圧
に等しい。
Curve 42 in the figure has an X value of 0°20 in equilibrium with the melt.
This is a curve representing the partial pressure of mercury in crystals of 11g1-, .

図の曲線43,44.45はメルトの液相化温度がt1
12、 13と異なった場合の固相値x =0.2のメ
ルトの液相化温度より高い温度に於ける水銀分圧曲線で
ある。図示するように、メルトの水銀分圧は固相値が小
さい程高く、またメルトの温度が高く成る程大になる。
Curves 43, 44, and 45 in the figure have melt liquidus temperature t1.
12 and 13 are mercury partial pressure curves at a temperature higher than the liquidus temperature of a melt with a solid phase value x = 0.2. As shown in the figure, the smaller the solid phase value, the higher the mercury partial pressure in the melt, and the higher the temperature of the melt, the higher the mercury partial pressure.

第2−3図はメルトと平衡状態にあるHg、−XCd、
 Te結晶の水根分圧と、X値の異なるt1g+□Cd
Figure 2-3 shows Hg, -XCd, in equilibrium with the melt.
Water root partial pressure of Te crystal and t1g+□Cd with different X values
.

Teの結晶を析出するメルトの水銀分圧を表す図で、縦
軸は水銀分圧(気圧)で横軸は温度(’C)を示す。図
の曲線41はメルトと平衡状態にあるX値が0.19の
HgI−x ca、 Te結晶の水銀分圧を表す曲線で
あり、メルトの液相化温度に於ける水銀分圧に等しい。
This is a diagram showing the mercury partial pressure of the melt in which Te crystals are precipitated, where the vertical axis shows the mercury partial pressure (atmospheric pressure) and the horizontal axis shows the temperature ('C). A curve 41 in the figure represents the mercury partial pressure of a HgI-x ca, Te crystal with an X value of 0.19 in equilibrium with the melt, and is equal to the mercury partial pressure at the melt's liquidus temperature.

曲線42はメルトと平衡状態にあるX値が0゜20のH
gI−x Cd)(Te結晶の水銀分圧を表す曲線であ
り、X値が0.20のHgI−x Cd)I Teの結
晶が析出するメルトの液相化温度に於ける水銀分圧に等
しい。
Curve 42 shows H with an X value of 0°20 in equilibrium with the melt.
This is a curve representing the mercury partial pressure of the HgI-x Cd) (Te crystal, with an X value of 0.20.) equal.

図の曲線5]、、52は固相値が異なり、異なる液相化
温度り、 tsを有し、液相化温度12以上で水銀分圧
が一致するメルトの水銀分圧曲線を示している。
Curves 5] and 52 in the figure show mercury partial pressure curves for melts with different solidus values, different liquidus temperatures, ts, and with the same mercury partial pressure at the liquidus temperature of 12 or higher. .

第2−3図に示すように液相化温度1..1.、より高
い成る温度で水銀分圧が一致すると、液相化温度t4.
.tsより高い他の温度でも一致する性質が有る。その
ため、メルトの温度が均一な場合、水銀分圧が均一とな
るためには、図より固相値Xの大きい部分の液相化温度
は高くなり、固相値にの小さい部分の液相化温度は低く
成ることが必要である。
As shown in Figure 2-3, liquidus temperature 1. .. 1. , if the mercury partial pressures match at a higher temperature, the liquidus temperature t4.
.. Similar properties exist even at other temperatures higher than ts. Therefore, if the temperature of the melt is uniform, in order for the mercury partial pressure to be uniform, the liquidus temperature will be higher in the area where the solidus value The temperature needs to be low.

従って第2−1図の状態図に於いて、平均メルト組成を
A点とし、該メルト内が同一温度であり、水銀分圧が各
部で一致する条件を満たすためには該メルトの各部の組
成は、斜線部Bの領域の組成を持つメルト部分と、斜線
部Cの領域の組成を持つメルト部分にしか分離しないこ
とに成る。 Cdが重力により該メルトの下部に偏在す
れば、メルトの下部の組成は斜線部Cの領域、メルトの
上部の組成は斜線部Bの領域に該当することになる。そ
の結果としてメルトの下部程液相化温度が高くて溶媒で
あるTeに対するCdおよびl1gで構成される溶質の
飽和度が高くなるが、メルトの下部にHgが過剰に偏在
してメルトの下部の固相値が小さく成ることは無い。他
方、メルトの上部側では、メルトの液相化温度が低くて
未飽和の状態となる。
Therefore, in the phase diagram shown in Figure 2-1, the average melt composition is set as point A, and in order to satisfy the conditions that the temperature inside the melt is the same and the mercury partial pressure is the same in each part, the composition of each part of the melt must be This results in separation into only a melt portion having a composition in the shaded area B and a melt portion having a composition in the shaded area C. If Cd is unevenly distributed in the lower part of the melt due to gravity, the composition in the lower part of the melt corresponds to the shaded area C, and the composition in the upper part of the melt corresponds to the shaded area B. As a result, the liquidus temperature is higher in the lower part of the melt, and the degree of saturation of the solute composed of Cd and l1g with respect to the solvent Te is higher, but Hg is excessively unevenly distributed in the lower part of the melt, and The solid phase value never becomes small. On the other hand, on the upper side of the melt, the liquid phase temperature of the melt is low and the melt is in an unsaturated state.

エピタキシャル成長用基板1はエピタキシャル成長用メ
ルト4の下部側に位置するので、エピタキシャル成長用
基板1表面でエピタキシャル成長が選択的に行われ、成
長用基板近傍のエピタキシャル成長用メルト4中の溶質
、特にcd濃度がエピタキシャル成長に伴い減少し始め
ると、その部分のメルトの比重も減少するので、メルト
内で比重が反転した分布を示さないように該メルトの上
部側より、エピタキシャル成長用基板表面近傍に溶’i
’hM度の高いメルトが重力により供給される。
Since the epitaxial growth substrate 1 is located on the lower side of the epitaxial growth melt 4, epitaxial growth is selectively performed on the surface of the epitaxial growth substrate 1, and the solute, especially the CD concentration, in the epitaxial growth melt 4 near the growth substrate influences the epitaxial growth. As the specific gravity of the melt starts to decrease, the specific gravity of that part also decreases, so in order to prevent the specific gravity from showing an inverted distribution within the melt, the melt is poured from the upper side of the melt near the surface of the substrate for epitaxial growth.
'hM melt is fed by gravity.

この溶質の供給により溶質濃度が低下し、未飽和度が大
きく或った上部側のエピタキシャル成長用メルトは、溶
質供給用基板11に接しているために、溶質供給用基板
を溶解して該メルトの上部側の溶質濃度の低下が防止さ
れる。即ち、このように、溶質供給用基板Hよりエピタ
キシャル成長用基板1に拡散速度の小さいCd原子の溶
質も短時間に供給されるように成るため、エピタキシャ
ル或長に伴うメルト中のCd濃度の低下、言い換えれぼ
メルトよりエピタキシャル成長するHg1−x cdX
TeのX値の変化を防ぐことができ、エピタキシャル成
長層の成長方向に沿った組成勾配を小さくすることかで
きる。
The solute concentration decreases due to this supply of solute, and since the upper epitaxial growth melt with a large degree of unsaturation is in contact with the solute supply substrate 11, the solute supply substrate is melted and the melt is A decrease in solute concentration on the upper side is prevented. That is, in this way, since the solute of Cd atoms with a low diffusion rate is also supplied from the solute supply substrate H to the epitaxial growth substrate 1 in a short time, the Cd concentration in the melt decreases as the epitaxial growth progresses. In other words, Hg1-x cdX grows epitaxially from melt.
Changes in the X value of Te can be prevented, and the composition gradient along the growth direction of the epitaxially grown layer can be reduced.

また短時間で所定の厚さのエピタキシャル結晶が形成さ
れ、基板とエピタキシャル層との間の相互拡散も少なく
することができ高品質のエピタキシャル結晶が得られる
Furthermore, an epitaxial crystal with a predetermined thickness is formed in a short time, and mutual diffusion between the substrate and the epitaxial layer can be reduced, resulting in a high-quality epitaxial crystal.

なお、本実施例ではエピタキシャル結晶を、Hg1−x
 Cd、 Teとしたが、FlgZnCdTe等のHg
CdTe系化合物半導体であっても良い。またエピタキ
シャル成長用基板はCdZnTeとしたが、結晶構造の
類似したCdTeやCdTeSe等であっても良い。
In addition, in this example, the epitaxial crystal is Hg1-x
Although Cd and Te were used, Hg such as FlgZnCdTe etc.
It may also be a CdTe-based compound semiconductor. Further, although the epitaxial growth substrate is made of CdZnTe, it may be made of CdTe, CdTeSe, or the like having a similar crystal structure.

また本実施例では、溶質供給用基板は成長ずべきエピタ
キシャル結晶と同一の結晶組成を持つようにしたが、偏
析係数の大きいCdを供給することを第一目的としてい
るので、必ずしも同−U或で有る必要は無(、CdTe
を主成分として含む結晶であれば、他の結晶を用いても
良い。
In addition, in this example, the solute supply substrate was made to have the same crystal composition as the epitaxial crystal to be grown, but since the primary purpose is to supply Cd with a large segregation coefficient, it is not necessary to use the same crystal composition as the epitaxial crystal to be grown. There is no need for it to be (, CdTe
Other crystals may be used as long as they contain as a main component.

また本実施例では、エピタキシャル成長用メルトからの
水銀の蒸発を防ぐために、エピタキシャル成長系は閉管
系としたが、密閉構造のアンプルを用いずに蓋付きのエ
ピタキシャル成長容器を用いた擬似的な閉管系であって
も良い。
Furthermore, in this example, in order to prevent evaporation of mercury from the epitaxial growth melt, the epitaxial growth system was a closed tube system, but instead of using an ampoule with a closed structure, it was a pseudo closed tube system using an epitaxial growth container with a lid. It's okay.

またエピタキシャル成長用メルトの温度は成長期間中一
定の温度に保つようにしても、或いはエピタキシャル成
長を開始してから、成長速度を増加させるために成長期
間中に所定の温度勾配で冷却させるようにしても良い。
Furthermore, the temperature of the epitaxial growth melt may be maintained at a constant temperature during the growth period, or after the epitaxial growth has started, it may be cooled with a predetermined temperature gradient during the growth period in order to increase the growth rate. good.

また加熱炉の下部に開口部を設け、該開口部より例えば
冷却用の窒素ガス等が炉芯管に吹きつけられるようにし
1.エピタキシャル成長時にエピタキシャル成長用メル
トの下部側に位置するエピタキシャル成長用基板の温度
が、該メルトの上部側に位置する溶質供給用基板の温度
より低くなるようにしてエピタキシャル成長速度を高め
る方法を採っても良い。
Also, an opening is provided in the lower part of the heating furnace so that, for example, nitrogen gas for cooling can be blown onto the furnace core tube through the opening.1. During epitaxial growth, the epitaxial growth rate may be increased by making the temperature of the epitaxial growth substrate located below the epitaxial growth melt lower than the temperature of the solute supply substrate located above the melt.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、エピタ
キシャル成長に伴うエピタキシャル成長用基板近傍のメ
ルト中のCd濃度の低下が防止され、短時間にエピタキ
シャル成長方向で組成勾配の小さいエピタキシャル結晶
が得られ、基板とエピタキシャル層間に於けるヘテロ界
面近傍の組成勾配の原因となる基板との相互拡散も小さ
くでき、本発明の方法で形成したエピタキシャル結晶を
用いると特性の良好な赤外線センサを得る効果がある。
As is clear from the above description, according to the present invention, a decrease in the Cd concentration in the melt near the epitaxial growth substrate accompanying epitaxial growth is prevented, an epitaxial crystal with a small composition gradient in the epitaxial growth direction can be obtained in a short time, and the substrate Interdiffusion with the substrate, which causes a composition gradient near the hetero interface between the crystal and the epitaxial layer, can also be reduced, and the use of the epitaxial crystal formed by the method of the present invention has the effect of obtaining an infrared sensor with good characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の原理図、 第2−1図はHg−Cd−TeのTeを溶媒としたエピ
タキシャル成長用メルトの状態図、 第2−2図はHgt−x CdXTe結晶およびメルト
の水銀分圧と温度との関係図、 第2−3図はHgt−、Cdx Te結晶および固相値
の異なるメルトの水銀分圧と温度との関係図、第3図(
alより第3図!bl迄は本発明の方法の一実施例を示
す断面図、 第4図は従来のエピタキシャル成長装置の断面図、 第5図(a)より第5図(C)迄は従来の方法のエピタ
キシャル成長の工程図である。 図に於いて、 1はエピタキシャル成長用基板、3Aは上部の溝、3B
は下部の溝、4はエピタキシャル成長用メルト、6は固
定治具、7はアンプル(エピタキシャル成長容器)、1
1は溶質供給用基板、21 、22.23 、24はエ
ピタキシャル成長用メルトの等液相化温度線、31.3
2,33.34,35.36はエピタキシャル成長用メ
ルトより析出するエピタキシャル結晶の等固相値線、4
1.42はHgt−x Cdx Te結晶およびメルト
の水銀分圧と温度との関係曲線、43,44.45はメ
ルトの液相化温度が異なった場合の水銀分圧曲線、51
.52は水銀分圧が一致するメルトの水銀分圧曲線を示
す。 第 】 図 m−やcdそルンi度 t4y−cd−Te*Tet、JXtXxしrtr?タ
キつ−−LAil¥4Xルトsu’RflJ第 図 (C1 蒸米−f3王の工と・ハシ〒1しへ壜」τtfm第5図
Fig. 1 is a diagram of the principle of the method of the present invention, Fig. 2-1 is a state diagram of a melt for epitaxial growth of Hg-Cd-Te using Te as a solvent, and Fig. 2-2 is a diagram of the Hgt-x CdXTe crystal and melt. Figure 2-3 is a graph showing the relationship between mercury partial pressure and temperature for Hgt-, Cdx Te crystals and melts with different solid phase values.
Figure 3 from al! BL to BL are cross-sectional views showing one embodiment of the method of the present invention, FIG. 4 is a cross-sectional view of a conventional epitaxial growth apparatus, and FIG. It is a diagram. In the figure, 1 is the epitaxial growth substrate, 3A is the upper groove, and 3B is the epitaxial growth substrate.
is the bottom groove, 4 is the melt for epitaxial growth, 6 is the fixing jig, 7 is the ampoule (epitaxial growth container), 1
1 is a solute supply substrate, 21 , 22.23 , 24 isoliquid phase temperature lines of the epitaxial growth melt, 31.3
2, 33. 34, 35. 36 are iso-solidus values of epitaxial crystals precipitated from the melt for epitaxial growth, 4
1.42 is a relationship curve between mercury partial pressure and temperature of Hgt-x Cdx Te crystal and melt, 43, 44.45 is a mercury partial pressure curve when the melt liquidus temperature is different, 51
.. 52 shows mercury partial pressure curves of melts with matching mercury partial pressures. ] Figure m- and CD sorun i degree t4y-cd-Te*Tet, JXtXx and rtr? Takitsu--LAil ¥4

Claims (3)

【特許請求の範囲】[Claims] (1)エピタキシャル成長容器(7)内に収容された固
定治具(6)にエピタキシャル成長用基板(1)を保持
し、該基板(1)にエピタキシャル成長用メルト(4)
を接触させて該基板上にエピタキシャル結晶を成長する
方法に於いて、 前記基板(1)にエピタキシャル成長用メルト(4)を
接触する際、前記エピタキシャル成長用メルトの下部側
にエピタキシャル成長用基板が位置するように該基板を
配置するとともに、前記エピタキシャル成長用メルトの
上部側に溶質供給用基板(11)を配置し、該溶質供給
用基板より溶解した溶質と前記エピタキシャル成長用メ
ルトの溶媒との比重差と重力により、前記エピタキシャ
ル成長時に消費されるエピタキシャル成長用メルトの内
の溶質を補給するようにしたことを特徴とする液相エピ
タキシャル成長方法。
(1) An epitaxial growth substrate (1) is held in a fixture (6) housed in an epitaxial growth container (7), and an epitaxial growth melt (4) is placed on the substrate (1).
In the method of growing an epitaxial crystal on the substrate by contacting the substrate (1) with the epitaxial growth melt (4), the epitaxial growth substrate is positioned below the epitaxial growth melt (4). At the same time, a solute supplying substrate (11) is placed above the epitaxial growth melt, and due to the difference in specific gravity and gravity between the solute dissolved from the solute supplying substrate and the solvent of the epitaxial growth melt. . A liquid phase epitaxial growth method, characterized in that a solute in the epitaxial growth melt consumed during the epitaxial growth is replenished.
(2)前記溶質供給用基板(11)の構成元素が、前記
エピタキシャル成長用メルトの構成元素のうちで偏析係
数の大きい元素を含んで形成されていることを特徴とす
る請求項(1)記載の液相エピタキシャル成長方法。
(2) The solute supplying substrate (11) is formed to include an element having a large segregation coefficient among the constituent elements of the epitaxial growth melt. Liquid phase epitaxial growth method.
(3)前記エピタキシャル成長用基板(1)の温度を前
記溶質供給用基板(11)の温度より低温に保つように
したことを特徴とする請求項(1)記載の液相エピタキ
シャル成長方法。
(3) The liquid phase epitaxial growth method according to claim (1), characterized in that the temperature of the epitaxial growth substrate (1) is kept lower than the temperature of the solute supply substrate (11).
JP17680289A 1989-07-07 1989-07-07 Liquid phase epitaxial growth method Pending JPH0341740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17680289A JPH0341740A (en) 1989-07-07 1989-07-07 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17680289A JPH0341740A (en) 1989-07-07 1989-07-07 Liquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPH0341740A true JPH0341740A (en) 1991-02-22

Family

ID=16020098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17680289A Pending JPH0341740A (en) 1989-07-07 1989-07-07 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH0341740A (en)

Similar Documents

Publication Publication Date Title
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US4642142A (en) Process for making mercury cadmium telluride
JPH0341740A (en) Liquid phase epitaxial growth method
EP0311038A1 (en) Process for making single-crystal mercury cadmium telluride layers
JPS60176995A (en) Preparation of single crystal
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
US5130270A (en) Hetero-epitaxial liquid phase growth method
JPS6381918A (en) Manufacture of mixed crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JPS5918644A (en) Liquid phase epitaxial growth apparatus
JPH02308521A (en) Liquid-phase epitaxial crystal growth method
JPH08109094A (en) Production of compound semiconductor single crystal
JP2556159B2 (en) Method for manufacturing semiconductor crystal
JPH0348431A (en) Liquid epitaxial crystal deposition device
JPS5834925A (en) Liquid phase epitaxial growth device
JPH02123735A (en) Liquid-phase epitaxy method
JPH04320327A (en) Manufacture of compound semiconductor crystal
JPH03214634A (en) Manufacture of compound semiconductor crystal and manufacture of optical detection element
JPH08217590A (en) Method for growing single crystal
JPS6389498A (en) Production of silicon-added gallium arsenide single crystal
JPH039536A (en) Liquid epitaxial growth method
JPH0278233A (en) Liquid-phase epitaxial growth method and device therefor
JPH04130098A (en) Liquid phase epitaxial growth method
JPH1135389A (en) Crystal growth method