JPH0338777B2 - - Google Patents

Info

Publication number
JPH0338777B2
JPH0338777B2 JP57047577A JP4757782A JPH0338777B2 JP H0338777 B2 JPH0338777 B2 JP H0338777B2 JP 57047577 A JP57047577 A JP 57047577A JP 4757782 A JP4757782 A JP 4757782A JP H0338777 B2 JPH0338777 B2 JP H0338777B2
Authority
JP
Japan
Prior art keywords
circuit
frequency
output
phase
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57047577A
Other languages
Japanese (ja)
Other versions
JPS58164327A (en
Inventor
Etsuro Sakamoto
Masahiko Machida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57047577A priority Critical patent/JPS58164327A/en
Publication of JPS58164327A publication Critical patent/JPS58164327A/en
Publication of JPH0338777B2 publication Critical patent/JPH0338777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/183Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number
    • H03L7/185Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number using a mixer in the loop

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【発明の詳細な説明】 本発明は周波数逓倍回路に関し、特にフエーズ
ロツクドループ(PLL)を基本構成としたもの
において出力信号の周波数を細かい周波数ステツ
プで選定し得るようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency multiplier circuit, and particularly to a frequency multiplier circuit whose basic configuration is a phase-locked loop (PLL), in which the frequency of an output signal can be selected in fine frequency steps.

例えばビデオテープレコーダ(VTR)におい
ては、色信号を低い周波数帯域に低域変換して記
録する低域変換色信号記録方式が採用されている
が、記録信号を復調してビデオ信号を得る際に低
域変換色信号の混変調成分がビデオ信号の妨害波
にならないように、この妨害波の周波数が水平同
期周波数fHの1/2の奇数倍になるように低域変換
色信号の周波数fSを周波数逓倍回路において逓倍
して作り、かくしてビデオ信号に対する色信号の
クロストークをインターリーブ効果によつて防ぐ
ようになされている。
For example, video tape recorders (VTRs) use a low-frequency conversion color signal recording method that converts the color signal to a lower frequency band and records it, but when demodulating the recorded signal to obtain a video signal, In order to prevent the cross-modulation components of the low-pass conversion color signal from becoming interference waves for the video signal, the frequency f of the low-pass conversion color signal is set so that the frequency of this interference wave is an odd multiple of 1/2 of the horizontal synchronization frequency fH . S is multiplied by a frequency multiplier circuit, thereby preventing crosstalk of the color signal with respect to the video signal through an interleaving effect.

しかるにこのような条件を満足させるために従
来、逓倍出力信号の周波数f0として選定できる周
波数ステツプ幅Δfを、 Δf=1/NfH ……(1) で表わされる値にし得る第1図及び第2図の周波
数シンセサイザ方式の構成が用いられている。こ
こでNは整数値である。
However, in order to satisfy such conditions, conventionally, the frequency step width Δf that can be selected as the frequency f 0 of the multiplied output signal can be set to the value expressed by Δf = 1/Nf H (1). The frequency synthesizer type configuration shown in FIG. 2 is used. Here, N is an integer value.

第1図の周波数逓倍回路は基準周波数がfrの入
力信号S1(周波数がfHの水平同期信号に相当する)
が1/N分周回路1において分周されて位相比較
回路2に比較入力S2として与えられ、その比較
出力S3が電圧制御発振回路(VCO)3に対し
て制御電圧入力として与えられる。このVCO3
の出力S4は周波数逓倍出力信号として送出され
ると共に1/M分周回路4によつて分周されて位
相比較回路2にフイードバツクされ、かくして
PLLが形成される。従つてVCO3の出力端から
送出される周波数逓倍出力信号S4の周波数f0は f0=M/Nfr ……(2) となる。
The frequency multiplier circuit in Figure 1 uses an input signal S1 whose reference frequency is f r (corresponds to the horizontal synchronization signal whose frequency is f H ).
is frequency-divided by the 1/N frequency divider circuit 1 and applied to the phase comparison circuit 2 as a comparison input S2, and the comparison output S3 is applied to the voltage controlled oscillator circuit (VCO) 3 as a control voltage input. This VCO3
The output S4 is sent out as a frequency multiplied output signal, and is also frequency-divided by the 1/M frequency divider circuit 4 and fed back to the phase comparator circuit 2.
A PLL is formed. Therefore, the frequency f 0 of the frequency multiplied output signal S4 sent out from the output terminal of the VCO 3 is f 0 =M/ Nfr (2).

(2)式から明らかなように出力信号S4の周波数
f0の値を選定するに当つて1/Nfr(=Δf)を最小ス テツプとしてそのM倍(M=1、2、3…)の値
を選定することができる。従つて整数N及びMを
必要に応じて任意に選定すれば、基準周波数fr
対して最適な比の値をもつ周波数逓倍出力信号S
4を得ることができる。
As is clear from equation (2), the frequency of the output signal S4
In selecting the value of f 0 , the minimum step is 1/ Nfr (=Δf), and a value M times that value (M=1, 2, 3, . . . ) can be selected. Therefore, by arbitrarily selecting the integers N and M as necessary, the frequency-multiplied output signal S with the optimal ratio value to the reference frequency f r can be obtained.
You can get 4.

ところが第1図の従来の構成によれば、位相比
較回路2に対する比較入力S2は1/N分周回路
1において分周されて得られるので、その周波数
1/Nfrが低くなり、そのため位相比較回路2の差 出力S3のS/Nが劣化するのを避け得ない。ま
た比較入力S2の周波数が低いためこれに対応さ
せてPLLに設けられているループフイルタ(例
えばVCO3に内蔵されている)のカツトオフ周
波数を下げることになり、従つてPLLの応答特
性を向上させるにつき一定の限度がある。
However, according to the conventional configuration shown in FIG. 1, the comparison input S2 to the phase comparison circuit 2 is obtained by being frequency-divided in the 1/N frequency divider circuit 1, so the frequency 1/Nf r becomes low, and therefore the phase comparison circuit 2 It is unavoidable that the S/N of the differential output S3 of the circuit 2 deteriorates. In addition, since the frequency of the comparison input S2 is low, the cutoff frequency of the loop filter provided in the PLL (for example, built in VCO3) must be lowered in order to improve the response characteristics of the PLL. There are certain limits.

この問題点を軽減するため第2図に示すよう
に、基準信号としての入力信号S1を直接に位相
比較回路5に比較入力として与えると共に、
VCO3の出力S5を1/N分周回路1において
分周して周波数逓倍出力信号S4として送出する
構成が用いられている。
In order to alleviate this problem, as shown in FIG. 2, the input signal S1 as a reference signal is directly supplied to the phase comparison circuit 5 as a comparison input, and
A configuration is used in which the output S5 of the VCO 3 is frequency-divided in a 1/N frequency divider circuit 1 and sent out as a frequency-multiplied output signal S4.

第2図の構成によれば、PLLに与えられる入
力信号の周波数は基準信号frにまで高められるの
で、位相比較回路5におけるS/Nの劣化及び
PLLのループフイルタにおける応答特性の劣化
の問題は回避できるが、VCO3の出力S5の周
波数が高くなるため分周回路1及び4として動作
周波数が高い特別仕様のものを用いなければなら
ない問題がある。因みに1/M分周回路4及び
1/N分周回路1は実際上フリツプフロツプ回路
を多段に接続すると共に必要に応じてリセツトル
ープを設けた構成のものを用いるため、特別仕様
のフリツプフロツプ回路を多数必要となり望まし
くない。
According to the configuration shown in FIG. 2, the frequency of the input signal applied to the PLL is increased to the reference signal fr , so that the S/N ratio in the phase comparator circuit 5 is reduced.
Although the problem of deterioration of response characteristics in the loop filter of the PLL can be avoided, since the frequency of the output S5 of the VCO 3 becomes high, there is a problem that special specifications having a high operating frequency must be used as the frequency dividing circuits 1 and 4. Incidentally, since the 1/M frequency divider circuit 4 and the 1/N frequency divider circuit 1 actually have a configuration in which flip-flop circuits are connected in multiple stages and a reset loop is provided as necessary, a large number of specially designed flip-flop circuits are used. Necessary and undesirable.

本発明は以上の点を考慮して従来の構成の問題
を有効に解決できるようにしたもので、PLLの
ループに複数の位相シフタを設け、この位相シフ
タを所定の周期で順次切換えて行くようにするこ
とにより周波数ステツプ幅Δfを細かく選定でき
るようにしたものである。
The present invention takes the above points into account and effectively solves the problems of the conventional configuration.The present invention provides a plurality of phase shifters in the PLL loop, and sequentially switches the phase shifters at a predetermined period. By doing so, the frequency step width Δf can be precisely selected.

以下図面について本発明の一実施例を詳述しよ
う。第3図において、入力基準信号S11は位相
比較回路11に比較入力として与えられ、その比
較出力S12がVCO12に制御電圧入力として
与えられる。しかるにVCO12の発振出力S1
3は位相シフタ回路13を通じて移相されて1/
M分周回路14に与えられ、この1/M分周回路
14において分周された後位相比較回路11にフ
イードバツクされ、かくしてPLLが形成されて
いる。
An embodiment of the present invention will be described in detail below with reference to the drawings. In FIG. 3, the input reference signal S11 is applied to the phase comparison circuit 11 as a comparison input, and the comparison output S12 is applied to the VCO 12 as a control voltage input. However, the oscillation output S1 of VCO12
3 is phase shifted through the phase shifter circuit 13 to become 1/
The signal is applied to the M frequency divider circuit 14, frequency-divided by the 1/M frequency divider circuit 14, and then fed back to the phase comparator circuit 11, thus forming a PLL.

位相シフタ回路13はVCO12の出力信号S
13を受ける複数N個の位相シフタ13A……1
3J……13Nを有する。第1……第J……第N
番目の位相シフタ13A……13J……13Nは
基準信号S11の1周期Trに相当する位相2πを
N等分して得た位相2π/Nを単位にして、1倍…… J倍……N倍の位相2π/N……2π/NJ……2π/N
Nだけ VCO12の出力信号S13を位相シフトさせる。
各位相シフタ13A……13J……13Nの出力
は切換スイツチ回路15の対応する第1……第J
……第N番目の入力端子15A……15J……1
5Nに接続される。
The phase shifter circuit 13 receives the output signal S of the VCO 12.
A plurality of N phase shifters 13A receiving 13...1
3J...13N. 1st...Jth...Nth
The th phase shifter 13A...13J...13N divides the phase 2π corresponding to one period T r of the reference signal S11 into N equal parts and obtains the phase 2π/N as a unit, and multiplies it by 1... J times... N times phase 2π/N...2π/NJ...2π/N
The phase of the output signal S13 of the VCO 12 is shifted by N.
The output of each phase shifter 13A...13J...13N is the corresponding first...J phase shifter of the changeover switch circuit 15.
...Nth input terminal 15A...15J...1
Connected to 5N.

切換スイツチ回路15は基準信号S11によつ
て切換動作をし、基準信号S11の各周期ごとに
第1……第J……第N番目の入力端子15A……
15J……15Nの出力を順次選択して出力端子
15Mから1/M分周回路14へ送出する。この
切換歩進動作が一巡すると切換スイツチ回路15
は以後この一巡動作を繰返す。
The changeover switch circuit 15 performs a switching operation based on the reference signal S11, and switches between the first...Jth...Nth input terminals 15A... for each period of the reference signal S11.
The outputs of 15J...15N are sequentially selected and sent to the 1/M frequency dividing circuit 14 from the output terminal 15M. When this switching step operation completes one cycle, the changeover switch circuit 15
repeats this cycle from then on.

以上の構成において基準信号S11の各周期に
おいて位相シフタ回路13の切換スイツチ回路1
5は第1……第J……第N番目の位相シフタ13
A……13J……13Nの出力を順次出力して行
く。従つてVCO12は位相シフタ回路13の出
力が切換わるごとにその位相シフト量に相当する
分だけ補償動作をして位相比較回路11の差出力
S12を0にする。しかるに位相シフタ回路13
の出力S14が切換わるごとにこの出力S14に
生ずる位相シフト量の変化分ΔθPSは出力信号S1
3の周期に基づいて常に増加して ΔθPS=+2π/N ……(3) となり、位相比較回路11の比較入力S11の位
相θrと1/M分周回路14の出力S15の位相θV
との関係が θr−θV=0 ……(4) となつた状態では θr=fr・2π・Tr ……(5) θV=1/M(f0・2π・Tr+ΔθPS) ……(6) となつてPLLがロツク状態になる。従つて(5)、
(6)式を(4)式に代入すると、 fr・2π・Tr−1/M(f0・2π・Tr+ΔθPS)=0 ……(7) となり、従つて f0=Mfr−ΔθPS/2πTr ……(8) (3)式より f0=Mfr−1/Nfr=M・N−1/N・fr ……(9) ここで(9)式において、逓倍出力信号S13の周
波数f0は基準信号S11の周波数frに対して、1/N frを最小ステツプとして選定し得る周波数逓倍回
路を得ることができることを意味している。
In the above configuration, the changeover switch circuit 1 of the phase shifter circuit 13 is switched in each period of the reference signal S11.
5 is the first...Jth...Nth phase shifter 13
The outputs of A...13J...13N are sequentially output. Therefore, each time the output of the phase shifter circuit 13 is switched, the VCO 12 performs a compensation operation corresponding to the amount of phase shift, and makes the difference output S12 of the phase comparator circuit 11 zero. However, the phase shifter circuit 13
The amount of change Δθ PS in the amount of phase shift that occurs in this output S14 each time the output S14 is switched is the output signal S1
3, the phase θ r of the comparison input S11 of the phase comparison circuit 11 and the phase θ V of the output S15 of the 1/M frequency dividing circuit 14
In the state where the relationship between _ +Δθ PS ) ...(6) The PLL becomes locked. Therefore (5),
Substituting equation (6) into equation (4), f r・2π・Tr −1 /M(f 0・2π・T r +Δθ PS )=0 ...(7) Therefore, f 0 =Mf r −Δθ PS /2πT r ...(8) From equation (3), f 0 = Mf r -1/Nf r = M・N−1/N・f r ...(9) Here, in equation (9) , the frequency f 0 of the multiplied output signal S13 means that it is possible to obtain a frequency multiplier circuit in which 1/N fr can be selected as the minimum step with respect to the frequency fr of the reference signal S11.

また(9)式は、逓倍出力信号S13の周波数f0
位相シフタ回路13が存在しないと考えた場合に
1/M分周回路14の動作によつて得られる周波
数Mfrに対して、位相シフタ回路13による周波
数の変化分1/Nfrだけ低くなることを表わしてい る。
In addition, equation (9) shows that the frequency f 0 of the multiplied output signal S13 is in phase with respect to the frequency Mf r obtained by the operation of the 1/M frequency dividing circuit 14 when the phase shifter circuit 13 is considered not to exist. This indicates that the frequency is lowered by 1/Nf r by the frequency change caused by the shifter circuit 13.

因みに位相シフタ回路13が存在しないと考え
た場合には θr=fr・2π・Tr ……(10) θv=1/M(f0・2π・Tr) ……(11) であるから(4)式より θr−θv=fr・2π・Tr−1/M (f0・2π・Tr)=0 ……(12) となるから f0=Mfr ……(13) である。
Incidentally, if we consider that the phase shifter circuit 13 does not exist, θ r = f r・2π ・T r ...(10) θ v = 1/M(f 0・2π ・T r ) ...(11) Therefore, from equation (4), θ r −θ v = f r・2π・T r −1/M (f 0・2π・T r )=0 ... (12) Therefore, f 0 = Mf r ... (13).

なおPLLがロツク状態にある場合の位相シフ
タ回路13の出力S14の周波数f1は f1=f0−1/Nfr ……(14) この周波数f1と基準信号S11の周波数frとの
関係は fr=1/M・f1 ……(15) となる。
Note that the frequency f 1 of the output S14 of the phase shifter circuit 13 when the PLL is in a locked state is f 1 =f 0 -1/Nf r (14) The difference between this frequency f 1 and the frequency f r of the reference signal S11 is The relationship is f r =1/M·f 1 (15).

上述においては位相シフタ回路13の切換スイ
ツチ回路15を第1……第J……第N番目の位相
シフタ13A……13J……13Nの順序で繰返
し切換えるようにした場合について述べたが、こ
れとは逆に第N……第J……第1番目の位相シフ
タ13N……13J……13Aの順序で繰返し切
換えるようにした場合は、位相シフタ回路13の
出力S14に生ずる位相シフト量の変化分ΔθPS
常に減少して ΔθPS=−2π/N ……(16) となり、これにより(9)式に対応するf0の値は f0=Mfr+1/Nfr=M・N+1/N・fr ……(17) となり、従つて逓倍出力信号S13の周波数f0
基準信号S11の周波数frに対して、1/Nfrを最小 ステツプとして1/M分周回路14に基づいて得
られる周波数Mfrより位相シフタ回路13に基づ
いて得られる周波数1/Nfrだけ高くなることを表 わしている。
In the above description, a case has been described in which the changeover switch circuit 15 of the phase shifter circuit 13 is repeatedly switched in the order of the first...Jth...Nth phase shifters 13A...13J...13N. On the other hand, if the switching is repeated in the order of Nth...Jth...first phase shifter 13N...13J...13A, then the amount of change in phase shift amount that occurs in the output S14 of the phase shifter circuit 13 is Δθ PS always decreases and becomes Δθ PS = −2π/N (16), so the value of f 0 corresponding to equation (9) is f 0 = Mf r +1/Nf r = M・N+1/N・f r ... (17) Therefore, the frequency f 0 of the multiplied output signal S13 is based on the 1/M frequency divider circuit 14 with the minimum step of 1/Nfr with respect to the frequency f r of the reference signal S11. This indicates that the frequency obtained based on the phase shifter circuit 13 is higher than the obtained frequency Mfr by 1/ Nfr .

(9)式及び(17)式は切換スイツチ回路15が切
換動作するごとに、位相シフタ回路13の出力S
14の位相がΔθPS=±2π/Nだけ位相シフトするよ うにした場合について述べたが、一般に第3図に
おいて切換スイツチ回路15をI番目おきに切換
えるようにすれば、(9)式及び(7)式に対応する周波
数f0の式は f0=Mfr−I/Nfr=M・N−I/Nfr ……(18) f0=Mfr+I/Nfr=M・N+I/Nfr ……(19)となり、かくしてもI/Nfrを最小ステ ツプとして逓倍数を選定し得る周波数逓倍回路を
実現できることが分る。このようにするにつき第
2図の従来の構成と比較して1/N分周回路1を
用いる必要性をなくし得る。
Equations (9) and (17) indicate that each time the changeover switch circuit 15 switches, the output S of the phase shifter circuit 13 is
14 is shifted by Δθ PS = ±2π/N, but in general, if the changeover switch circuit 15 is switched every Ith order in FIG. 3, then equation (9) and ( The formula for the frequency f 0 corresponding to equation 7) is f 0 = Mf r −I/Nf r = M・N−I/Nf r ...(18) f 0 = Mf r +I/Nf r = M・N+I/ Nf r ...(19) Thus, it can be seen that it is possible to realize a frequency multiplier circuit in which the multiplier can be selected with I/Nf r as the minimum step. By doing so, it is possible to eliminate the need to use the 1/N frequency divider circuit 1 compared to the conventional configuration shown in FIG.

以上の原理の周波数逓倍回路を用いてVTRの
低域変換色信号を作る場合第4図の構成を適用し
得る。第4図の場合位相シフタ回路13はL段の
Dフリツプフロツプ回路F1,F2……FLを縦
続接続したシフトレジスタ回路で構成され、最終
段の第L番目のフリツプフロツプ回路FLの出
力が初段の第1番目のフリツプフロツプ回路F1
のD入力端にフイードバツクされ、全てのフリツ
プフロツプ回路F1〜FLのクロツク入力端Cに
VCO12の発振出力S13(第5図A)が与え
られ、かくしてフリツプフロツプ回路F1,F2
…FLがVCO12の出力S13によつて順次セツ
ト又はリセツトして行くようになされている。
When creating a low frequency conversion color signal for a VTR using a frequency multiplication circuit based on the above principle, the configuration shown in FIG. 4 can be applied. In the case of FIG. 4, the phase shifter circuit 13 is composed of a shift register circuit in which L-stage D flip-flop circuits F1, F2, . th flip-flop circuit F1
It is fed back to the D input terminal of
The oscillation output S13 (FIG. 5A) of the VCO 12 is given, thus flip-flop circuits F1 and F2
...FL is sequentially set or reset by the output S13 of the VCO 12.

第1、第2…第L番目のフリツプフロツプ回路
F1,F2……FLのD入力が切換スイツチ回路
15の第1、第2……第L番目の入力端子K1,
K2……KLに接続されると共に、第L,第1…
…第(L−1)番目のフリツプフロツプ回路FL,
F1……F(L−1)のQ出力が切換スイツチ回
路15の第(L+1)番目、第(L+2)番目…
…第2L番目の入力端子k(L+1)、k(L+2)
……k2Lに接続され、かくして切換スイツチ回
路15が基準信号S11によつてその各周期ごと
に切換動作して入力端子k1,k2,……KL,
k(L+1),k(L+2)……k2Lの出力を順
次1/M1分周回路17に与え、1/M1に分周した 後フイードバツク信号S15として比較回路11
にフイードバツクする。
The D inputs of the first, second...L-th flip-flop circuits F1, F2...FL are the first, second...L-th input terminals K1,
K2... is connected to KL, and the Lth, 1st...
...(L-1)th flip-flop circuit FL,
F1...The Q output of F(L-1) is the (L+1)th, (L+2)th...
...2nd L-th input terminal k(L+1), k(L+2)
. . . k2L, and thus the changeover switch circuit 15 switches each period according to the reference signal S11, and the input terminals k1, k2, . . . KL,
The outputs of k(L+1), k(L+2)...k2L are sequentially given to the 1/M 1 frequency divider circuit 17, and after being frequency-divided to 1/M 1 , the outputs are sent to the comparator circuit 11 as the feedback signal S15.
Feedback to.

第4図の構成において、VCO12の出力S1
3はその周期ごとに位相シフタ回路13をシフト
動作させる。すなわち第5図の時点t1において全
てのフリツプフロツプ回路F1〜FLがリセツト
状態にあるときVCO12の第1周期目の出力S
13(第5図A)がクロツク入力端Cに与えられ
ると、論理「H」レベルの最終段のフリツプフロ
ツプ回路FLの出力(第5図B1及びB(L+
1))が初段フリツプフロツプ回路F1のD入力
端に与えられることによりこの初段の回路F1が
セツトされ(第5図B2及びB(L+2))、続い
てVCO12の第2、第3……第L周期目の出力
S13がクロツク入力端Cに与えられるごとに順
次第2、第3……第L番目のフリツプフロツプ回
路F2……FLがセツトされて行く(第5図B3
及びB(L+3)……BL及びB2L)。かくして
第5図の時点t2において全てのフリツプフロツプ
回路F1〜FLがセツトされると、最終段の回路
FLの出力が論理「L」になるので以後第(L
+1)、第(L+2)……第2L周期目の出力S1
3がクロツク入力端Cに与えられるごとに第1、
第2……第L番目の回路F1,F2……FLがリ
セツトされて行く。かくして全てのフリツプフロ
ツプ回路F1〜FLがリセツトされると、最終段
の回路FLの出力が論理「H」に戻つて一巡動
作が終了し、以後この一巡動作を繰返す。
In the configuration shown in Fig. 4, the output S1 of VCO12
3 causes the phase shifter circuit 13 to perform a shift operation every cycle. That is, when all the flip-flop circuits F1 to FL are in the reset state at time t1 in FIG.
13 (FIG. 5A) is applied to the clock input terminal C, the output of the flip-flop circuit FL in the final stage at logic "H" level (FIG. 5B1 and B(L+
1)) is applied to the D input terminal of the first-stage flip-flop circuit F1, this first-stage circuit F1 is set (B2 and B(L+2) in FIG. 5), and then the second, third, and so on of the VCO 12 are set. Every time the periodic output S13 is applied to the clock input terminal C, the second, third, . . . L-th flip-flop circuits F2, .
and B(L+3)...BL and B2L). Thus, when all the flip-flop circuits F1 to FL are set at time t2 in FIG.
Since the output of FL becomes logic “L”, from then on the (L
+1), (L+2)...2nd L cycle output S1
3 is applied to the clock input C, the first,
The second...L-th circuits F1, F2...FL are reset. When all the flip-flop circuits F1 to FL are reset in this way, the output of the circuit FL at the final stage returns to logic "H" and the round operation is completed, and this round operation is repeated thereafter.

従つて第5図の時点t1において第1、第2……
第L番目の回路F1,F2……FLがVCO12か
ら得られるクロツクS13(第5図A)によつて
全てリセツトされたとき第5図B1に示す如く第
L番目の回路FLの出力でなる第1番目の入力
端子K1の信号FLが論理「H」に立上り(第
5図B1)、以後VCO12からクロツク信号S1
3が得られるごとに回路F1,F2……FLが順
次セツトされて行くことにより第2、第3……第
L番目の入力端子k2,k3……kLの信号F1
Q,F2Q……F(L−1)Qが論理「H」に立
上つて行く(第5図B2,B3……BL)。
Therefore, at time t 1 in FIG. 5, the first, second...
When the Lth circuits F1, F2...FL are all reset by the clock S13 (Fig. 5A) obtained from the VCO 12, the The signal FL at the first input terminal K1 rises to logic "H" (B1 in Fig. 5), and from then on, the clock signal S1 is output from the VCO 12.
3 is obtained, the circuits F1, F2...FL are sequentially set, and the signal F1 of the second, third...L-th input terminals k2, k3...kL is
Q, F2Q...F(L-1)Q rises to logic "H" (B2, B3...BL in FIG. 5).

やがて時点t2において第1〜第L番目の回路F
1〜FLが全てセツトされると、第L番目の回路
FLのQ出力でなる第(L+1)番目の入力端子
k(L+1)の信号FLQが論理「H」に立上り
(第5図B(L+1))、以後VCO12からクロツ
ク信号S13が得られるごとに回路F1,F2…
…FLが順次リセツトされて行くことにより第
(L+2)、第(L+3)……第2L番目の入力端
子k(L+2)、k(L+3)……k2Lの信号F
1,F2……F(L−1)が論理「H」に
立上つて行く(第5図B(L+2),B(L+3)
……B2L)。
Eventually, at time t2 , the first to Lth circuits F
When all 1 to FL are set, the Lth circuit
The signal FLQ at the (L+1)th input terminal k (L+1), which is the Q output of FL, rises to logic "H" (B (L+1) in FIG. 5), and thereafter, every time the clock signal S13 is obtained from the VCO 12, the circuit F1, F2...
...The signal F of the (L+2)th, (L+3)th...2Lth input terminal k(L+2), k(L+3)...k2L is reset by sequentially resetting FL.
1, F2...F(L-1) rises to logic "H" (Figure 5 B(L+2), B(L+3)
...B2L).

このようにして論理「H」レベルに立上つた各
信号は、全てのフリツプフロツプ回路F1〜FL
がセツト(又はリセツト)状態になるまで一巡し
た後に順次1つづつリセツト(又はセツト)され
て行くようになされていることにより、VCO1
2の出力S13の周期T1のL個分の時間が経過
した時順次「L」レベルに立下つて行く。かくし
て各入力端子k1,k2……k2Lの信号FL,
F1……F(L−1)はVCO12の出力S1
3を位相シフタ回路13のフリツプフロツプ回路
の段数Lの2倍に相当する分数比1/2Lで分周した 周期L・T1をもつと共に、順次VCO12の出力
S13の1周期T1に相当する位相量(2L分周さ
れた各信号の1周期の位相2πを2L等分した値2π/2L になる)だけ順次位相シフトされることになる。
Each signal rising to the logic "H" level in this way is applied to all flip-flop circuits F1 to FL.
The VCO1 is reset (or set) one by one after completing one cycle until it reaches the set (or reset) state.
When L times of the period T1 of the output S13 of No. 2 have elapsed, the output S13 sequentially falls to the "L" level. Thus, the signals FL of each input terminal k1, k2...k2L,
F1...F(L-1) is the output S1 of VCO12
3 divided by a fractional ratio 1/2L corresponding to twice the number of stages L of the flip-flop circuit of the phase shifter circuit 13 , and has a phase corresponding to one period T1 of the output S13 of the VCO 12 in sequence. The phase is sequentially shifted by an amount (2π/2L, which is the value obtained by equally dividing the phase 2π of one period of each signal divided by 2L into 2L).

従つて第4図の実施例の場合も第3図の原理構
成について上述したように(18)式及び(19)式
と同様の形式の一般式で表わし得る周波数f0を有
する逓倍周波数出力S20(第5図C)を得るこ
とができる。
Therefore, in the case of the embodiment shown in FIG. 4 as well, the multiplied frequency output S20 having a frequency f 0 that can be expressed by a general formula similar to the formulas (18) and (19) as described above with respect to the principle configuration of FIG. (Fig. 5C) can be obtained.

f0=M1・2L+I/2Lfr ……(20) ここで、第4図の場合位相シフタ回路13は
2π/2Lづつ順次位相シフトしかつ1/2Lに分周された 2L個のシフト信号FL〜F(L−1)Qを出力
するので、VCO12の出力S13の周波数f01
基準信号S11の周波数frに対してM1・2L倍の
周波数 f01=(M1・2L+I)fr ……(21) をもつが、この出力f01は位相シフタ回路13に
おいて1/2Lに分周される。
f 0 =M 1・2L+I/2Lf r ...(20) Here, in the case of FIG. 4, the phase shifter circuit 13 is
Since 2L shift signals FL to F(L-1)Q, which are sequentially phase-shifted by 2π/2L and frequency-divided by 1/2L, are output, the frequency f 01 of the output S13 of the VCO 12 is the frequency of the reference signal S11. It has a frequency f 01 = ( M 1 2L + I) f r (21) which is M 1.2L times as large as f r, but this output f 01 is divided into 1/2L in the phase shifter circuit 13 . .

第4図の構成の周波数逓倍回路をVTRに適用
する場合、2周波法のときは(20)式において、 M1=44、2L=8、I=+1又は−1に選定すれ
ば良く、この場合の周波数逓倍出力S20の周波
数f0は f0=(44±1/8)・fH ……(22) になる。またPI法のときは(20)式において、
M1=44、2L=4、I=1に選定し、又はM1
44、2L=8、I=2に選定すれば良く、この場
合の周波数逓倍出力S20の周波数f0は f0=(44−1/4)fH (23) になる。
When applying the frequency multiplier circuit with the configuration shown in Figure 4 to a VTR, in the two-frequency method, M 1 = 44, 2L = 8, I = +1 or -1 should be selected in equation (20); In this case, the frequency f 0 of the frequency multiplied output S20 is f 0 =(44±1/8)·f H (22). Also, in the case of the PI method, in equation (20),
M 1 = 44, 2L = 4, I = 1, or M 1 =
44, 2L=8, and I=2, and the frequency f 0 of the frequency multiplied output S20 in this case becomes f 0 =(44-1/4)f H (23).

第4図のように構成すれば、I/2Lfrを最小ステ ツプとして逓倍数を細かいステツプで選定し得る
周波数逓倍回路を実現できる。そしてこの実施例
のように位相シフタ回路13として複数のフリツ
プフロツプ回路を単純に縦続接続して2xの分周を
すれば良いような構成(途中にリセツトをするた
めのフイードバツクループをもたない)を採用で
きるので、フリツプフロツプ回路F1〜FLとし
て低速動作のものを用いることができる。因みに
高速のフリツプフロツプ回路を用いなければなら
ない場合は、回路内に存在する浮遊容量を無視で
きなくなるためその充電のために大電流の駆動電
源を用意しなければならないがこの実施例のよう
に構成すればそのような必要はない。また第4図
のように構成すれば1/M1分周回路17の入力
はVCO12の出力を1/2Lに分周しているので、こ の分周回路17も低速フリツプフロツプ回路で構
成できる。
With the configuration shown in FIG. 4, it is possible to realize a frequency multiplier circuit in which the multiplier can be selected in fine steps with I/2Lf r as the minimum step. As in this embodiment, the phase shifter circuit 13 can be constructed by simply cascading a plurality of flip-flop circuits and dividing the frequency by 2x (with a feedback loop for resetting the circuit midway). Therefore, flip-flop circuits F1 to FL that operate at low speed can be used. Incidentally, if a high-speed flip-flop circuit must be used, the stray capacitance existing in the circuit cannot be ignored, so a large current drive power supply must be prepared to charge it. There's no need to be like that. Furthermore, if configured as shown in FIG. 4, the input of the 1/ M1 frequency divider circuit 17 divides the output of the VCO 12 by 1/2L, so this frequency divider circuit 17 can also be configured with a low-speed flip-flop circuit.

なお第4図の場合は位相シフタ回路13として
位相シフト出力の周波数を入力信号に対して分周
するようなものを用いたが、要は位相シフトがで
きるものであれば良い。
In the case of FIG. 4, a circuit that divides the frequency of the phase shift output with respect to the input signal is used as the phase shifter circuit 13, but any circuit that can shift the phase may be used.

また上述においては切換スイツチ回路15を基
準信号S11によつて切換動作させた場合につい
て述べたが、これに限らず要は所定の周期で切換
えるようにすれば良い。
Further, in the above description, a case has been described in which the changeover switch circuit 15 is switched by the reference signal S11, but the present invention is not limited to this, and the point is that the switch circuit 15 may be switched at a predetermined cycle.

以上のように本発明に依れば、高い周波数で比
較回路を動作させることができるのでPLLの応
答性の高い周波数逓倍回路を得ることができ、か
くするにつきPLLと直列に分周回路を介挿しな
いでも必要に応じて細かい周波数ステツプ幅を選
定できるようにし得る。
As described above, according to the present invention, since the comparator circuit can be operated at a high frequency, it is possible to obtain a frequency multiplier circuit with high responsiveness for the PLL. It is possible to select a fine frequency step width as necessary without having to insert the frequency step.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の周波数逓倍回路を示
すブロツク図、第3図は本発明に依る周波数逓倍
回路の原理構成を示すブロツク図、第4図はその
具体的実施例を示すブロツク図、第5図はその動
作の説明に供する信号波形図である。 1…1/N分周回路、2,5…位相比較回路3
…電圧制御発振回路(VCO)、4…1/M分周回
路、11…位相比較回路、12…VCO、13…
位相シフタ回路、13A〜13N…位相シフタ、
14…1/M分周回路、15…切換スイツチ回
路、17…1/M1分周回路。
1 and 2 are block diagrams showing a conventional frequency multiplier circuit, FIG. 3 is a block diagram showing the principle configuration of a frequency multiplier circuit according to the present invention, and FIG. 4 is a block diagram showing a specific embodiment thereof. , FIG. 5 is a signal waveform diagram for explaining the operation. 1...1/N frequency divider circuit, 2, 5...phase comparison circuit 3
...voltage controlled oscillator circuit (VCO), 4...1/M frequency divider circuit, 11...phase comparison circuit, 12...VCO, 13...
Phase shifter circuit, 13A to 13N...phase shifter,
14...1/M frequency divider circuit, 15...changeover switch circuit, 17...1/M 1 frequency divider circuit.

Claims (1)

【特許請求の範囲】 1 入力信号とフイードバツク信号との位相を比
較する位相比較回路と、この位相比較回路の差出
力に対応する周波数の出力を発生する電圧制御発
振回路と、この電圧制御発振回路の出力を所定の
分周比で分周して上記フイードバツク信号として
上記位相比較回路にフイードバツクする分周回路
とを有する周波数逓倍回路において、上記電圧制
御発振回路から上記位相比較回路へのフイードバ
ツクループに予定の周期で順次位相シフト量が変
化する位相シフタ回路を設けたことを特徴とする
周波数逓倍回路。 2 上記位相シフタ回路は上記入力信号の周期で
位相シフト量を変化する特許請求の範囲第1項に
記載の周波数逓倍回路。
[Claims] 1. A phase comparison circuit that compares the phases of an input signal and a feedback signal, a voltage controlled oscillation circuit that generates an output at a frequency corresponding to the difference output of this phase comparison circuit, and this voltage controlled oscillation circuit. and a frequency dividing circuit that divides the output of the voltage controlled oscillator at a predetermined frequency division ratio and feeds it back to the phase comparison circuit as the feedback signal, wherein A frequency multiplier circuit characterized in that a phase shifter circuit in which a phase shift amount sequentially changes at a predetermined cycle is provided in a loop. 2. The frequency multiplier circuit according to claim 1, wherein the phase shifter circuit changes the amount of phase shift with the cycle of the input signal.
JP57047577A 1982-03-25 1982-03-25 Frequency multiplying circuit Granted JPS58164327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047577A JPS58164327A (en) 1982-03-25 1982-03-25 Frequency multiplying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047577A JPS58164327A (en) 1982-03-25 1982-03-25 Frequency multiplying circuit

Publications (2)

Publication Number Publication Date
JPS58164327A JPS58164327A (en) 1983-09-29
JPH0338777B2 true JPH0338777B2 (en) 1991-06-11

Family

ID=12779095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047577A Granted JPS58164327A (en) 1982-03-25 1982-03-25 Frequency multiplying circuit

Country Status (1)

Country Link
JP (1) JPS58164327A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210927A (en) * 1985-07-08 1987-01-19 Yaesu Musen Co Ltd Pll oscillation circuit
JP2817676B2 (en) * 1995-07-31 1998-10-30 日本電気株式会社 PLL frequency synthesizer
JP6094730B2 (en) * 2012-11-07 2017-03-15 セイコーエプソン株式会社 Frequency conversion circuit, atomic oscillator, electronic device, and control method of frequency conversion circuit

Also Published As

Publication number Publication date
JPS58164327A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
JP2993200B2 (en) Phase locked loop
JP3747480B2 (en) Frequency synthesizer
US5748043A (en) Digital PLL frequency synthesizer
US6005420A (en) Frequency multiplying circuit having a greater multiplying ratio
WO2002071614A1 (en) Sigma delta fractional-n frequency divider with improved noise and spur performance
JP2806239B2 (en) Frequency synthesizer
US5084681A (en) Digital synthesizer with phase memory
EP0810736B1 (en) PLL frequency synthesizer
JPS61157022A (en) Frequency multiplier
US8149030B2 (en) Clock generator to reduce long term jitter
JPH0946226A (en) Pll frequency synthesizer
JPH0338777B2 (en)
US4871981A (en) Fast hopping microwave frequency synthesizer
JP3305587B2 (en) Digital delay control clock generator and delay locked loop using this clock generator
JPH1032486A (en) Fraction frequency divider and pll circuit
JP3361687B2 (en) Decimal point frequency synthesizer
JPS6312404B2 (en)
JP3797791B2 (en) PLL synthesizer oscillator
JPS6333739B2 (en)
JP2619663B2 (en) Phase locked loop
JP3037773B2 (en) Pulse forming circuit and PLL frequency synthesizer
JPH01133420A (en) Phase locked loop
JP2839949B2 (en) PLL circuit
JPH11308099A (en) Pll circuit
JPH1188156A (en) Pll circuit for generating clock signal