JPH0336289B2 - - Google Patents

Info

Publication number
JPH0336289B2
JPH0336289B2 JP20297482A JP20297482A JPH0336289B2 JP H0336289 B2 JPH0336289 B2 JP H0336289B2 JP 20297482 A JP20297482 A JP 20297482A JP 20297482 A JP20297482 A JP 20297482A JP H0336289 B2 JPH0336289 B2 JP H0336289B2
Authority
JP
Japan
Prior art keywords
etching
aluminum
foil
surface area
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20297482A
Other languages
Japanese (ja)
Other versions
JPS5992517A (en
Inventor
Katsuhiko Honjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20297482A priority Critical patent/JPS5992517A/en
Publication of JPS5992517A publication Critical patent/JPS5992517A/en
Publication of JPH0336289B2 publication Critical patent/JPH0336289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は電解コンデンサ用アルミニウム電極箔
の製造方法に関するものである。 従来例の構成とその問題点 一般に、電解コンデンサ用アルミニウム電極箔
は、圧延加工した硬質アルミニウム箔や焼鈍処理
した軟質アルミニウム箔を塩化ナトリウムや塩酸
などの塩素イオンを含む水溶液中で、化学的また
は電気化学的なエツチングを行い、アルミニウム
箔の表面積拡大をはかつた後化成処理を施こし、
表面に誘電体酸化皮膜を形成し製造される。 電解コンデンサ用アルミニウム電極箔の静電容
量は、ほぼアルミニウム箔の表面積に比例してい
るので、この表面積拡大率が大きい程望ましい。
このエツチングによるアルミニウム箔の表面積拡
大率はエツチング量に比例して増大するが、ある
限度を越えると増加が鈍化し、やがて逆に減少の
傾向を示す。また、このエツチング量とともにア
ルミニウム箔の機械的強度が低下するので、アル
ミニウム箔を過度にエツチングした場合にはエツ
チング、化成、組立などの電解コンデンサ製造工
程で切断などの事態が起る危険性がある。このよ
うなことから、アルミニウム箔が電解コンデンサ
製造工程で切断などの事態の起らない程度の機械
的強度を持ち、できるだけ大きな表面積拡大率を
持つように最適エツチング量が決められている。 一方、アルミニウム電解コンデンサに対して、
より小型化、大容量化が望まれており、充分な機
械的強度を持つ一定のエツチング量で現在よりさ
らに大きな表面積拡大率を有するアルミニウム電
極箔が切望され、多くの研究が行なわれている。 発明の目的 本発明はこのような状況に鑑みて成されたもの
で、従来より高い表面積拡大率を有する電解コン
デンサ用アルミニウム箔の製造方法を提供しよう
とするものである。 発明の構成 本発明の電解コンデンサ用アルミニウム箔の製
造方法は、エツチング前のアルミニウム箔に酸素
イオンを5×1011〜5×1013ケ/cm2イオン注入し
た後、常温以上200℃以下の温度範囲に一定時間
放置し、その後、塩素イオンを含む水溶液中で化
学的あるいは電気化学的にエツチングするもので
ある。すなわち、上記のエツチングを施こした
後、さらに化成処理によつて誘電体化成皮膜を形
成することにより、充分な機械的強度を有し、単
位面積当りの静電容量が従来より大きな電解コン
デンサ用アルミニウム電極箔を製造することがで
きる。 上述したように電解コンデンサ陽極用のアルミ
ニウム箔は、塩素イオンを含む水溶液中で化学的
あるいは電気化学的にエツチングすることによつ
て表面積拡大をはかり、化成して使用に供される
が、この表面積拡大率はアルミニウム箔の圧延加
工、焼鈍、アルミニウム箔中の不純物量、エツチ
ング液組成、電解条件など多くの要因によつて左
右される。 アルミニウムの塩素イオンを含む水溶液中での
エツチングは塩素イオンが表面吸着したエツチピ
ツト核に始まり、エツチングの進行とともにアル
ミニウム箔の腐蝕は内部へ孔食の形で行なわれ、
次第に表面積が拡大していく。この塩素イオン
は、不純物あるいは圧延加工などによつて生じた
転位による表面酸化皮膜の弱点部分に優先的に吸
着し、エツチピツト核となり、さらにエツチング
は転位にそつて進行し、表面積の拡大が行われ
る。したがつて、より大きな表面積拡大にはこの
転位がより多く、均一に分散していることが必要
である。 アルミニウム箔に金属原子をイオン注入するこ
とは、結晶格子にひずみを与え、転位の増大と均
一化をはかるとともにアルミニウムの酸化皮膜を
表面均一に形成する効果を有する。一般に、電解
コンデンサ用アルミニウム箔は、アルミニウムに
少量の数種の不純物を混入し、溶解鋳造、圧延、
焼鈍などの工程によつて製造される。含有された
不純物は主に表面近傍に析出してくるが、偏析が
起り易く、均一な分散は得られにくい。このため
転位も不均一な分散となつている。このことはエ
ツチングによるエツチピツトの過密過疎部分の存
在で判る。 本発明のイオン注入によつて、アルミニウム箔
中の転位がより多く、均一に分散し、しかも、注
入した酸素イオンによりアルミニウム表面に酸化
皮膜層が均一に形成されることにより、エツチピ
ツトをより均一に発生させ、表面積の拡大が計れ
る。イオン注入量はエツチングによる表面積拡大
の効果の認められる最小量がその下限であり、上
限はエツチピツトの集中化による表面積拡大効果
への悪影響により限定される最大量である。すな
わち、本発明はイオン注入量が5×1011〜5×
1013ケ/cm2の範囲で表面積拡大の効果を示すもの
で、イオン注入量が下限未満の場合にはエツチン
グに対する影響が認められず、上限を越えた場合
には表面積拡大率は減少する。 イオン注入後、常温以上200℃以下の温度に一
定時間放置するが、この放置温度が200℃を越え
ると表面積拡大率は低下し好ましくない。 その後のエツチングは従来と同様、塩素イオン
を含む水溶液中で行なわれ、通常は塩酸、食塩な
どの水溶液中で0.1〜1A/cm2の電流密度50〜90℃
の温度で所定量エツチングされる。また、化成処
理も従来と同様な方法で行なわれる。なお、上記
のイオン注入後の放置処理とその後のエツチング
の間に箔の種類、箔の状態に応じて、圧延、引張
り等の機械的加工処理を行なうことがある。 本発明によつて得られた電解コンデンサ用アル
ミニウム電極箔は、機械的強度、tanδは従来のも
のに比べそん色なく、単位面積当りの静電容量は
大きく、もれ電流は小さいものであり、アルミニ
ウム電解コンデンサの小型、大容量化が可能にな
る。 実施例の説明 以下本発明を実施例にもとづき説明する。 純度99.99%、厚さ100μの高純度アルミニウム
箔試料の両面に酸素を1010〜1016ケ/cm2イオン注
入した。次にこの試料を常温〜550℃の温度範囲
で60分間放置した後、20重量%の食塩水溶液中で
温度90℃、電流密度0.35A/cm2で4分間エツチン
グし(エツチング部分1cm×1cm)、さらに硼酸
1重量%の水溶液中で温度80℃、化成電圧23Vの
条件で化成した。得られた化成箔について、静電
容量、tanδ、もれ電流を測定した。 次表にエツチング時のエツチング量、化成後の
静電容量およびtanδ、もれ電流を示した。なお、
測定は5wt%の硼酸アンモニウム水溶液中でSn箔
を陰極とし、30℃の温度で交流ブリツジにより
120Hzで行なつた。また、エツチング量は表面積
拡大率、機械的強度と密接な相関があるので、一
定のエツチング量での比較をするための参考デー
タとして示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing aluminum electrode foil for electrolytic capacitors. Conventional Structures and Problems Generally, aluminum electrode foils for electrolytic capacitors are produced by applying a chemical or electrical process to rolled hard aluminum foil or annealed soft aluminum foil in an aqueous solution containing chlorine ions such as sodium chloride or hydrochloric acid. After chemically etching and expanding the surface area of the aluminum foil, a chemical conversion treatment is applied.
Manufactured by forming a dielectric oxide film on the surface. Since the capacitance of an aluminum electrode foil for an electrolytic capacitor is approximately proportional to the surface area of the aluminum foil, the larger the surface area expansion rate, the more desirable.
The surface area expansion rate of the aluminum foil due to this etching increases in proportion to the amount of etching, but beyond a certain limit, the increase slows down and eventually shows a tendency to decrease. In addition, the mechanical strength of the aluminum foil decreases with the amount of etching, so if the aluminum foil is excessively etched, there is a risk that it will break during electrolytic capacitor manufacturing processes such as etching, chemical formation, and assembly. . For these reasons, the optimum amount of etching is determined so that the aluminum foil has enough mechanical strength to prevent breakage during the manufacturing process of electrolytic capacitors and has as large a surface area expansion ratio as possible. On the other hand, for aluminum electrolytic capacitors,
As smaller size and larger capacity are desired, an aluminum electrode foil with sufficient mechanical strength and a larger surface area expansion ratio than the current one with a certain amount of etching is being desired, and much research is being carried out. OBJECTS OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing aluminum foil for electrolytic capacitors having a higher surface area expansion rate than conventional methods. Structure of the Invention The method of manufacturing aluminum foil for electrolytic capacitors of the present invention includes implanting oxygen ions at 5×10 11 to 5×10 13 /cm 2 into aluminum foil before etching, and then at a temperature of room temperature or higher and 200°C or lower. It is left in the area for a certain period of time and then chemically or electrochemically etched in an aqueous solution containing chlorine ions. In other words, after performing the above etching, a dielectric conversion film is further formed through a chemical conversion treatment to create an electrolytic capacitor with sufficient mechanical strength and a larger capacitance per unit area than conventional capacitors. Aluminum electrode foil can be manufactured. As mentioned above, aluminum foil for electrolytic capacitor anodes is chemically or electrochemically etched in an aqueous solution containing chlorine ions to increase its surface area and is chemically converted before use. The magnification rate depends on many factors such as the rolling process and annealing of the aluminum foil, the amount of impurities in the aluminum foil, the composition of the etching solution, and the electrolytic conditions. Etching of aluminum in an aqueous solution containing chlorine ions begins with the etch pit core where chlorine ions are adsorbed on the surface, and as the etching progresses, corrosion of the aluminum foil takes place in the form of pitting corrosion.
The surface area gradually expands. These chlorine ions preferentially adsorb to the weak points of the surface oxide film due to impurities or dislocations caused by rolling, etc., and become etch pit nuclei. Etching further proceeds along the dislocations, expanding the surface area. . Therefore, larger surface area expansion requires more and more uniformly distributed dislocations. Ion implantation of metal atoms into aluminum foil has the effect of straining the crystal lattice, increasing and uniformizing dislocations, and forming an aluminum oxide film uniformly on the surface. Generally, aluminum foil for electrolytic capacitors is made by mixing small amounts of several types of impurities into aluminum, and then melting, casting, rolling, and
Manufactured through processes such as annealing. The contained impurities mainly precipitate near the surface, but segregation is likely to occur and uniform dispersion is difficult to obtain. For this reason, dislocations are also non-uniformly distributed. This can be seen from the existence of overcrowded and depopulated areas in the etching pit due to etching. By the ion implantation of the present invention, dislocations in the aluminum foil are more uniformly dispersed, and an oxide film layer is evenly formed on the aluminum surface by the implanted oxygen ions, making the etch pit more uniform. can be generated and the surface area can be expanded. The lower limit of the ion implantation amount is the minimum amount at which the effect of enlarging the surface area by etching is recognized, and the upper limit is the maximum amount limited by the adverse effect on the effect of enlarging the surface area due to the concentration of etching pits. That is, in the present invention, the ion implantation amount is 5×10 11 to 5×
It shows the effect of increasing the surface area in the range of 10 13 ions/cm 2 , and when the ion implantation amount is less than the lower limit, no effect on etching is observed, and when it exceeds the upper limit, the surface area expansion rate decreases. After ion implantation, it is left at a temperature above room temperature and below 200° C. for a certain period of time, but if this standing temperature exceeds 200° C., the surface area expansion rate decreases, which is not preferable. The subsequent etching is carried out in an aqueous solution containing chloride ions, as in the past, and is usually carried out at a current density of 50 to 90°C at a current density of 0.1 to 1 A/cm 2 in an aqueous solution such as hydrochloric acid or common salt.
It is etched by a predetermined amount at a temperature of . Further, the chemical conversion treatment is also performed in the same manner as in the conventional method. Note that, depending on the type of foil and the condition of the foil, mechanical processing such as rolling or stretching may be performed between the above-mentioned leaving treatment after ion implantation and subsequent etching. The aluminum electrode foil for electrolytic capacitors obtained by the present invention has mechanical strength and tan δ comparable to those of conventional ones, has a large capacitance per unit area, and has a small leakage current. This makes it possible to make aluminum electrolytic capacitors smaller and larger in capacity. Description of Examples The present invention will be described below based on Examples. Oxygen ions were implanted at 10 10 to 10 16 ions/cm 2 into both sides of a high purity aluminum foil sample with a purity of 99.99% and a thickness of 100 μm. Next, this sample was left for 60 minutes at a temperature ranging from room temperature to 550℃, and then etched in a 20% by weight saline solution at a temperature of 90℃ and a current density of 0.35A/ cm2 for 4 minutes (etched area 1cm x 1cm). Further, it was chemically formed in an aqueous solution containing 1% by weight of boric acid at a temperature of 80°C and a formation voltage of 23V. The capacitance, tan δ, and leakage current of the obtained chemically formed foil were measured. The following table shows the amount of etching during etching, the capacitance and tan δ after chemical formation, and the leakage current. In addition,
Measurements were performed using an AC bridge at a temperature of 30°C using a Sn foil as a cathode in a 5wt% ammonium borate aqueous solution.
This was done at 120Hz. Furthermore, since the amount of etching has a close correlation with the surface area expansion rate and mechanical strength, it is shown as reference data for comparison at a constant amount of etching.

【表】 上記表から明らかなように、アルミニウム箔に
酸素イオン注入することによつて、エツチング時
の有効表面積拡大率が向上し、単位面積当りの静
電容量が大きく、もれ電流も小さく、しかもアル
ミニウム箔等の機械的強度も従来と同等の電解コ
ンデンサ用アルミニウム電極箔が得られる。 発明の効果 以上のように、本発明による電解コンデンサ用
アルミニウム電極箔の製造方法は、エツチング前
のアルミニウム箔に酸素をイオン注入し、その
後、塩素イオンを含む水溶液中で化学的あるいは
電気化学的にエツチングすることを特徴とするも
のであり、この方法によつて得た電解コンデンサ
用アルミニウム電極箔は、機械的強度は従来のも
のに比べそん色なく、単位面積当りの静電容量を
従来のものより大きく、しかも、もれ電流を小さ
くすることができるため、アルミニウム電解コン
デンサの小型大容量化が可能になり、実用上きわ
めて有効なものである。
[Table] As is clear from the above table, by implanting oxygen ions into aluminum foil, the effective surface area expansion rate during etching is improved, the capacitance per unit area is large, the leakage current is small, and Furthermore, an aluminum electrode foil for electrolytic capacitors having the same mechanical strength as conventional aluminum foils can be obtained. Effects of the Invention As described above, the method of manufacturing aluminum electrode foil for electrolytic capacitors according to the present invention involves implanting oxygen ions into aluminum foil before etching, and then chemically or electrochemically implanting the aluminum foil in an aqueous solution containing chlorine ions. The aluminum electrode foil for electrolytic capacitors obtained by this method has a mechanical strength comparable to that of conventional foils, and a capacitance per unit area that is lower than that of conventional foils. Since the aluminum electrolytic capacitor is larger and the leakage current can be reduced, it is possible to make the aluminum electrolytic capacitor smaller and larger in capacity, which is extremely effective in practice.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム箔に酸素イオンを5×1011〜5
×1013ケ/cm2イオン注入した後、常温以上200℃
以下の温度範囲に一定時間放置し、その後、塩素
イオンを含む水溶液中で化学的あるいは電気化学
的にエツチングすることを特徴とする電解コンデ
ンサ用アルミニウム電極箔の製造方法。
1 Oxygen ions are added to aluminum foil at 5×10 11 ~5
×10 13 pcs/ cm2 After ion implantation, temperature above room temperature 200℃
1. A method for manufacturing an aluminum electrode foil for an electrolytic capacitor, which comprises leaving it in the following temperature range for a certain period of time, and then chemically or electrochemically etching it in an aqueous solution containing chlorine ions.
JP20297482A 1982-11-18 1982-11-18 Method of producing aluminum electrode foil for electrolyticcondenser Granted JPS5992517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20297482A JPS5992517A (en) 1982-11-18 1982-11-18 Method of producing aluminum electrode foil for electrolyticcondenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20297482A JPS5992517A (en) 1982-11-18 1982-11-18 Method of producing aluminum electrode foil for electrolyticcondenser

Publications (2)

Publication Number Publication Date
JPS5992517A JPS5992517A (en) 1984-05-28
JPH0336289B2 true JPH0336289B2 (en) 1991-05-31

Family

ID=16466235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20297482A Granted JPS5992517A (en) 1982-11-18 1982-11-18 Method of producing aluminum electrode foil for electrolyticcondenser

Country Status (1)

Country Link
JP (1) JPS5992517A (en)

Also Published As

Publication number Publication date
JPS5992517A (en) 1984-05-28

Similar Documents

Publication Publication Date Title
JPH07235457A (en) Aluminum foil for forming electrode of electrolytic capacitor and etching method therefor
JPH0336289B2 (en)
JPH032335B2 (en)
JPH032334B2 (en)
JPH1032146A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPH032333B2 (en)
JPH0336288B2 (en)
JP3537127B2 (en) Aluminum foil for electrolytic capacitor electrodes
JPH057856B2 (en)
JPH0462823A (en) Aluminum foil for electrolytic capacitor electrode
JP2000228333A (en) Manufacture of aluminum foil for electrolytic capacitor electrode
JPH1154382A (en) Aluminum foil for electrolytic capacitor having high electrostatic capacity and manufacture of aluminum foil for the electrolytic capacitor
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil
JP3473683B2 (en) Aluminum foil for electrolytic capacitors
JPH0372703B2 (en)
JPH0462819A (en) Aluminum foil for electrolytic capacitor electrode
JPH0581164B2 (en)
JPH04143242A (en) Aluminum material for electrolytic capacitor
JPS58219728A (en) Method of producing aluminum electrode foil for electrolytic condenser
JPS58219727A (en) Method of producing aluminum electrode foil for electrolytic condenser
JPH07297089A (en) Aluminum foil for electrolytic capacitor electrode and its manufacturing method
JPH09246108A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPS6053453B2 (en) Aluminum chemical conversion method
JP3722466B2 (en) Aluminum foil for electrolytic capacitors
JPH11354387A (en) Manufacture of electrode foil for aluminum electrolytic capacitor