JPH032334B2 - - Google Patents

Info

Publication number
JPH032334B2
JPH032334B2 JP20278382A JP20278382A JPH032334B2 JP H032334 B2 JPH032334 B2 JP H032334B2 JP 20278382 A JP20278382 A JP 20278382A JP 20278382 A JP20278382 A JP 20278382A JP H032334 B2 JPH032334 B2 JP H032334B2
Authority
JP
Japan
Prior art keywords
etching
aluminum
aluminum foil
surface area
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20278382A
Other languages
Japanese (ja)
Other versions
JPS5992514A (en
Inventor
Katsuhiko Honjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20278382A priority Critical patent/JPS5992514A/en
Publication of JPS5992514A publication Critical patent/JPS5992514A/en
Publication of JPH032334B2 publication Critical patent/JPH032334B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は電解コンデンサ用アルミニウム電極箔
の製造方法に関するものである。 従来例の構成とその問題点 一般に、電解コンデンサ用アルミニウム電極箔
は、圧延加工した硬質アルミニウム箔や焼鈍処理
した軟質アルミニウム箔を塩化ナトリウムや塩酸
などの塩素イオンを含む水溶液中で、化学的また
は電気化学的なエツチングを行い、アルミニウム
箔の表面積拡大をはかつた後化成処理を施こし、
表面に誘電体酸化皮膜を形成して製造される。 電解コンデンサ用アルミニウム電極箔の静電容
量は、ほぼアルミニウム箔の表面積に比例してい
るので、この表面積拡大率が大きい程望ましい。
このエツチングによるアルミニウム箔の表面積拡
大率はエツチング量に比例して増大するが、ある
限度を越えると増加が鈍化し、やがて逆に減少の
傾向を示す。また、このエツチング量とともにア
ルミニウム箔の機械的強度が低下するので、アル
ミニウム箔を過度にエツチングした場合にはエツ
チング、化成、組立などの電解コンデンサ製造工
程で切断などの事態が起る危険性がある。このよ
うなことから、アルミニウム箔が電解コンデンサ
製造工程で切断などの事態の起らない程度の機械
的強度を持ち、できるだけ大きな表面積拡大率を
持つように最適エツチング量が決められている。 一方、アルミニウム電解コンデンサに対して、
より小型化、大容量化が望まれており、充分な機
械的強度を持つ一定のエツチング量で現在よりさ
らに大きな表面積拡大率を有するアルミニウム電
極箔が切望され、多くの研究が行なわれている。 発明の目的 本発明はこのような状況に鑑みて成されたもの
で、従来より高い表面積大率を有する電解コンデ
ンサ用アルミニウム箔の製造方法を提供しようと
するものである。 発明の構成 本発明の電解コンデンサ用アルミニウム箔の製
造方法は、エツチング前のアルミニウム箔に酸素
イオンを1013〜1017ケ/cm2イオン注入した後、
200〜500℃の温度範囲で熱処理し、その後、塩素
イオンを含む水溶液中で化学的あるいは電気化学
的にエツチングするものである。すなわち、上記
のエツチングを施こした後、さらに化成処理によ
つて誘電体化成皮膜を形成することにより、充分
な機械的強度を有し、単位面積当りの静電容量が
従来より大きな電解コンデンサ用アルミニウム電
極箔を製造することができる。 上述したように電解コンデンサ陽極用のアルミ
ニウム箔は、塩素イオンを含む水溶液中で化学的
あるいは電気化学的にエツチングすることによつ
て表面積拡大をはかり、化成して使用に供される
が、この表面積拡大率はアルミニウム箔の圧延加
工、焼鈍、アルミニウム箔中の不純物量、エツチ
ング液組成、電解条件など多くの要因によつて左
右される。 アルミニウムの塩素イオンを含む水溶液中での
エツチングは、塩素イオンが表面吸着したエツチ
ピツト核に始まり、エツチングの進行とともにア
ルミニウム箔の腐食は内部へ孔食の形で行なわ
れ、次第に表面積が拡大していく。この塩素イオ
ンは、不純物あるいは圧延加工などによつて生じ
た転位による表面酸化皮膜の弱点部分に優先的に
吸着し、エツチピツト核となり、さらにエツチン
グは転位にそつて進行し、表面積の拡大が行われ
る。したがつて、大きな表面積拡大はこの転位が
より多く、均一に分散していることが必要であ
る。 アルミニウム箔に酸素原子をイオン注入するこ
とは、結晶格子にひずみを与え、転位の増大と均
一化をはかるとともにアルミニウムの酸化皮膜を
表面均一に形成する効果を有する。一般に、電解
コンデンサ用アルミニウム箔は、アルミニウムに
少量の数種の不純物を混入し、溶解鋳造、圧延、
焼鈍などの工程によつて製造される。含有された
不純物は主に表面近傍に析出してくるが、偏析が
起り易く、均一な分散は得られにくい。このため
転位も不均一な分散となつている。このことはエ
ツチングによるエツチピツトの過密過疎部分の存
在で判る。 本発明のイオン注入によつて、アルミニウム箔
中の転位がより多く、均一に分散し、しかも、注
入した酸素イオンによりアルミニウム表面酸化皮
膜層が均一に形成されることにより、エツチピツ
トをより均一に発生させ、表面積の拡大が計れ
る。イオン注入量はエツチングによる表面積拡大
の効果の認められる最小量がその下限であり、上
限はエツチピツトの集中化による表面積拡大効果
への悪影響により限定される最大量である。この
イオン注入量は1012〜1018ケ/cm2で表面積拡大の
効果を示すが、より好ましくは1013〜1017ケ/cm2
の範囲である。 イオン注入後は200〜500℃の温度で熱処理す
る。これは、イオン注入量が1013ケ/cm2以上にな
ると注入層の非晶質化が起こり、表面が均一にエ
ツチングされる傾向になり、特に5×1014ケ/cm2
を越えるとエツチングによる表面積拡大率が減少
するため、熱処理によつて結晶化させる必要があ
るためである。この熱処理の温度は下限未満では
効果がなく、また上限を越えるとAl箔自体の再
結晶が起り、表面積拡大率が大巾に下る。 その後のエツチングは従来と同様、塩素イオン
を含む水溶液中で行なわれ、通常は塩酸、食塩な
どの水溶液中で0.1〜1A/cm2の電流密度で、50〜
90℃の温度で所定量エツチングされる。また、化
成処理も従来と同様な方法で行なわれる。 本発明によつて得られた電解コンデンサ用アル
ミニウム電極箔は、機械的強度、tanδは従来のも
のに比べそん色なく、単位面積当りの静電容量は
大きく、もれ電流は小さいものであり、アルミニ
ウム電解コンデンサの小型、大容量化が可能にな
る。なお、熱処理とその後のエツチングの間に箔
の種類、状態に応じて圧延、引張等の機械的加工
処理を行うことがある。 実施例の説明 以下本発明を実施例にもとづき説明する。 純度99.99%、厚さ100μの高純度アルミニウム
箔試料の両端に酸素を1010〜1019ケ/cm2イオン注
入した。次にこの試料を常温〜550℃の温度範囲
で30分間熱処理した後、3重量%の塩酸水溶液中
で温度80℃、電流密度0.15A/cm2で8分間エツチ
ングし(エツチング1cm×1cm)、さらに硼酸100
g/の水溶液中で温度80℃、静電容量、tanδ、
もれ電流を測定した。 次表にエツチング時のエツチング量、化成後の
静電容量、tanδおよびもれ電流を示した。なお、
エツチング量は表面積拡大率、機械的強度と密接
な相関があるので、一定のエツチング量での比較
をするための参考データとして示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing aluminum electrode foil for electrolytic capacitors. Structure of conventional examples and their problems In general, aluminum electrode foils for electrolytic capacitors are manufactured by subjecting rolled hard aluminum foil or annealed soft aluminum foil to chemical or electrical After chemically etching and expanding the surface area of the aluminum foil, a chemical conversion treatment is applied.
Manufactured by forming a dielectric oxide film on the surface. Since the capacitance of an aluminum electrode foil for an electrolytic capacitor is approximately proportional to the surface area of the aluminum foil, the larger the surface area expansion rate, the more desirable.
The surface area expansion rate of the aluminum foil due to this etching increases in proportion to the amount of etching, but beyond a certain limit, the increase slows down and eventually shows a tendency to decrease. In addition, the mechanical strength of the aluminum foil decreases with the amount of etching, so if the aluminum foil is excessively etched, there is a risk that it will break during electrolytic capacitor manufacturing processes such as etching, chemical formation, and assembly. . For these reasons, the optimum amount of etching is determined so that the aluminum foil has enough mechanical strength to prevent breakage during the manufacturing process of electrolytic capacitors and has as large a surface area expansion ratio as possible. On the other hand, for aluminum electrolytic capacitors,
As smaller size and larger capacity are desired, an aluminum electrode foil with sufficient mechanical strength and a larger surface area expansion ratio than the current one with a certain amount of etching is being desired, and much research is being carried out. OBJECTS OF THE INVENTION The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing an aluminum foil for an electrolytic capacitor having a surface area ratio higher than that of the conventional method. Structure of the Invention The method of manufacturing aluminum foil for electrolytic capacitors of the present invention includes implanting oxygen ions at 10 13 to 10 17 ions/cm 2 into aluminum foil before etching, and then
It is heat treated at a temperature range of 200 to 500°C, and then chemically or electrochemically etched in an aqueous solution containing chlorine ions. In other words, after performing the above etching, a dielectric conversion film is further formed through a chemical conversion treatment to create an electrolytic capacitor with sufficient mechanical strength and a larger capacitance per unit area than conventional capacitors. Aluminum electrode foil can be manufactured. As mentioned above, aluminum foil for electrolytic capacitor anodes is chemically or electrochemically etched in an aqueous solution containing chlorine ions to increase its surface area and is chemically converted before use. The magnification rate depends on many factors such as the rolling process and annealing of the aluminum foil, the amount of impurities in the aluminum foil, the composition of the etching solution, and the electrolytic conditions. Etching of aluminum in an aqueous solution containing chlorine ions begins with the etch pit nucleus where chlorine ions are adsorbed on the surface, and as the etching progresses, corrosion of the aluminum foil occurs internally in the form of pitting corrosion, and the surface area gradually expands. . These chlorine ions preferentially adsorb to the weak points of the surface oxide film due to impurities or dislocations caused by rolling, etc., and become etch pit nuclei. Etching further proceeds along the dislocations, expanding the surface area. . Therefore, large surface area expansion requires that these dislocations be more numerous and uniformly distributed. Ion implantation of oxygen atoms into aluminum foil has the effect of straining the crystal lattice, increasing and uniformizing dislocations, and forming an aluminum oxide film uniformly on the surface. Generally, aluminum foil for electrolytic capacitors is made by mixing small amounts of several types of impurities into aluminum, and then melting, casting, rolling, and
Manufactured through processes such as annealing. The contained impurities mainly precipitate near the surface, but segregation is likely to occur and uniform dispersion is difficult to obtain. For this reason, dislocations are also non-uniformly distributed. This can be seen from the existence of overcrowded and depopulated areas in the etching pit due to etching. By the ion implantation of the present invention, dislocations in the aluminum foil are more uniformly dispersed, and an oxide film layer on the aluminum surface is uniformly formed by the implanted oxygen ions, so that etch pits are generated more uniformly. It is possible to measure the expansion of the surface area. The lower limit of the ion implantation amount is the minimum amount at which the effect of enlarging the surface area by etching is recognized, and the upper limit is the maximum amount limited by the adverse effect on the effect of enlarging the surface area due to concentration of etching pits. The ion implantation amount is 10 12 to 10 18 ions/cm 2 to exhibit the effect of expanding the surface area, but more preferably 10 13 to 10 17 ions/cm 2
is within the range of After ion implantation, heat treatment is performed at a temperature of 200 to 500°C. This is because when the ion implantation amount exceeds 10 13 ions/cm 2 , the implanted layer becomes amorphous and the surface tends to be etched uniformly, especially at 5×10 14 ions/cm 2
This is because if the value exceeds 100%, the rate of surface area expansion by etching decreases, and therefore it is necessary to crystallize it by heat treatment. If the temperature of this heat treatment is below the lower limit, it will not be effective, and if it exceeds the upper limit, recrystallization of the Al foil itself will occur, and the surface area expansion rate will drop significantly. The subsequent etching is carried out in an aqueous solution containing chloride ions, as in the past, and is usually carried out in an aqueous solution such as hydrochloric acid or common salt at a current density of 0.1 to 1 A/cm 2 at a current density of 50 to
A predetermined amount of etching is performed at a temperature of 90°C. Further, the chemical conversion treatment is also performed in the same manner as in the conventional method. The aluminum electrode foil for electrolytic capacitors obtained by the present invention has mechanical strength and tan δ comparable to those of conventional ones, has a large capacitance per unit area, and has a small leakage current. This makes it possible to make aluminum electrolytic capacitors smaller and larger in capacity. Note that, depending on the type and condition of the foil, mechanical processing such as rolling or stretching may be performed between the heat treatment and the subsequent etching. Description of Examples The present invention will be described below based on Examples. Oxygen ions were implanted at 10 10 to 10 19 ions/cm 2 into both ends of a high purity aluminum foil sample with a purity of 99.99% and a thickness of 100 μm. Next, this sample was heat-treated in a temperature range of room temperature to 550°C for 30 minutes, and then etched in a 3% by weight hydrochloric acid aqueous solution at a temperature of 80°C and a current density of 0.15A/ cm2 for 8 minutes (etching 1cm x 1cm). In addition, boric acid 100
g/in an aqueous solution at a temperature of 80°C, capacitance, tanδ,
Leakage current was measured. The following table shows the amount of etching during etching, the capacitance after formation, tan δ, and leakage current. In addition,
Since the amount of etching has a close correlation with the surface area expansion rate and mechanical strength, it is shown as reference data for comparison at a constant amount of etching.

【表】 上記表から明らかなように、アルミニウム箔に
所定量の酸素をイオン注入することによつて、エ
ツチング時の有効表面積拡大率が向上し、単位面
積当りの静電容量が大きく、もれ電流も小さく、
しかもアルミニウム箔の機械的強度も従来と同等
の電解コンデンサ用アルミニウム電極箔が得られ
る。 発明の効果 以上のように、本発明による電解コンデンサ用
アルミニウム電極箔の製造方法は、エツチング前
のアルミニウム箔に酸素をイオン注入し、その
後、塩素イオンを含む水溶液中で化学的あるいは
電気化学的にエツチングすることを特徴とするも
のであり、この方法によつて得た電解コンデンサ
用アルミニウム電極箔は、機械的強度は従来のも
のに比べそん色なく、単位面積当りの静電容量を
従来のものより大きく、しかも、もれ電流を従来
のものより小さくすることができるため、アルミ
ニウム電解コンデンサの小型大容量化が可能にな
り、実用上きわめて有効なものである。
[Table] As is clear from the above table, by ion-implanting a predetermined amount of oxygen into aluminum foil, the effective surface area expansion rate during etching is improved, the capacitance per unit area is increased, and leakage is reduced. The current is also small,
Furthermore, an aluminum electrode foil for electrolytic capacitors having the same mechanical strength as the conventional aluminum foil can be obtained. Effects of the Invention As described above, the method for manufacturing aluminum electrode foil for electrolytic capacitors according to the present invention involves implanting oxygen ions into aluminum foil before etching, and then chemically or electrochemically implanting the aluminum foil in an aqueous solution containing chlorine ions. The aluminum electrode foil for electrolytic capacitors obtained by this method has a mechanical strength comparable to that of conventional foils, and a capacitance per unit area that is lower than that of conventional foils. Since the capacitor is larger and the leakage current can be made smaller than that of the conventional capacitor, it is possible to make the aluminum electrolytic capacitor smaller and larger in capacity, which is extremely effective in practice.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム箔に酸素イオンを1013〜1017
ケ/cm2イオン注入した後、200〜500℃の温度範囲
で熱処理し、その後、塩素イオンを含む水溶液中
で化学的あるいは電気化学的にエツチングするこ
とを特徴とする電解コンデンサ用アルミニウム電
極箔の製造方法。
1 Oxygen ions on aluminum foil 10 13 ~ 10 17
An aluminum electrode foil for electrolytic capacitors, which is characterized by being implanted with ions/ cm2 , then heat-treated in a temperature range of 200 to 500°C, and then chemically or electrochemically etched in an aqueous solution containing chloride ions. Production method.
JP20278382A 1982-11-17 1982-11-17 Method of producing aluminum electrode foil for electrolyticcondenser Granted JPS5992514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20278382A JPS5992514A (en) 1982-11-17 1982-11-17 Method of producing aluminum electrode foil for electrolyticcondenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20278382A JPS5992514A (en) 1982-11-17 1982-11-17 Method of producing aluminum electrode foil for electrolyticcondenser

Publications (2)

Publication Number Publication Date
JPS5992514A JPS5992514A (en) 1984-05-28
JPH032334B2 true JPH032334B2 (en) 1991-01-14

Family

ID=16463112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20278382A Granted JPS5992514A (en) 1982-11-17 1982-11-17 Method of producing aluminum electrode foil for electrolyticcondenser

Country Status (1)

Country Link
JP (1) JPS5992514A (en)

Also Published As

Publication number Publication date
JPS5992514A (en) 1984-05-28

Similar Documents

Publication Publication Date Title
KR100350210B1 (en) Etching Method of Aluminum Foil for Electrolytic Capacitor Electrode
JPH032335B2 (en)
JPH032334B2 (en)
JPH02146718A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JPH0336289B2 (en)
JPH032333B2 (en)
JP2002173748A (en) Method for producing high purity aluminum foil
JPH0722094B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode
JPH057856B2 (en)
JPH0336288B2 (en)
JPH0489118A (en) Production of aluminum foil for electrolytic capacitor anode
JPH0361333B2 (en)
JPH1154382A (en) Aluminum foil for electrolytic capacitor having high electrostatic capacity and manufacture of aluminum foil for the electrolytic capacitor
JP2000228333A (en) Manufacture of aluminum foil for electrolytic capacitor electrode
JPH0372703B2 (en)
JP3298610B2 (en) Aluminum foil for electrode of electrolytic capacitor and method for producing the same
JPH0581164B2 (en)
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JPH0462819A (en) Aluminum foil for electrolytic capacitor electrode
JPH0133546B2 (en)
JPH05311360A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JP3297840B2 (en) Aluminum foil for electrode of electrolytic capacitor
JPH04143242A (en) Aluminum material for electrolytic capacitor
JPH07297089A (en) Aluminum foil for electrolytic capacitor electrode and its manufacturing method