JPH0335203A - Glass waveguide added with rare earth element and production thereof and glass waveguide laser and device using this waveguide - Google Patents

Glass waveguide added with rare earth element and production thereof and glass waveguide laser and device using this waveguide

Info

Publication number
JPH0335203A
JPH0335203A JP17084189A JP17084189A JPH0335203A JP H0335203 A JPH0335203 A JP H0335203A JP 17084189 A JP17084189 A JP 17084189A JP 17084189 A JP17084189 A JP 17084189A JP H0335203 A JPH0335203 A JP H0335203A
Authority
JP
Japan
Prior art keywords
rare earth
waveguide
earth element
fine particles
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17084189A
Other languages
Japanese (ja)
Other versions
JP2788652B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Yasuro Kimura
康郎 木村
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP1170841A priority Critical patent/JP2788652B2/en
Publication of JPH0335203A publication Critical patent/JPH0335203A/en
Application granted granted Critical
Publication of JP2788652B2 publication Critical patent/JP2788652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength

Abstract

PURPOSE:To attain a smaller size, smaller loss and multipler functions by constituting a core waveguide of a hybrid film composed of fine particles of SiO2 and fine particles contg. rare earth elements. CONSTITUTION:A low-refractive index glass film 2 is formed on a substrate 1 consisting of LiNbO3, etc., and the core waveguide 3 is formed of the hybrid film consisting of the fine particles of the SiO2 contg. at least one kind of additives for refractive index control, such as B and F, and the fine particles contg. at least one kind of the rare earth elements, such as Er and Nd. The amt. of the rare earth elements to be added can be extremely increased to a range from several thousands ppm to several % and the controllability thereof is good. The smaller size, the smaller loss and the multiplier functions are attained in this way.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は希土類元素を添加したガラス導波路およびその
製造方法並びにそれを用いたガラス導波路レーザーおよ
びデバイスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass waveguide doped with a rare earth element, a method for manufacturing the same, and a glass waveguide laser and device using the same.

【従来の技術] 光ファイバのコアに希土類元素を添加した光フアイバ増
幅器およびレーザーの研究が活発に行われるようになり
、光波通信用増幅器およびレーザーとして注目されるよ
うになってきた。
[Prior Art] Research into optical fiber amplifiers and lasers in which rare earth elements are added to the core of an optical fiber has been actively conducted, and these have attracted attention as amplifiers and lasers for light wave communications.

従来、光フアイバ増幅器として、第8図に示すように、
希土類元素を添加した光フアイバ内に信号光を伝搬させ
、この信号光の伝搬方向に対して励起光ファイバ内に信
号光を伝搬させ、この信号光の伝搬方向に対して励起光
を光フアイバカブラを用いて合成し、反転分布状態を形
成させることにより信号、光を増幅させ、出力側より光
フアイバカプラで励起光を分離させる方法が検討させて
いる(木材、中沢:光ファイバレーザーの発振特性とそ
の光通信への応用、レーザー学会研究会、RTM−87
−16,PP、 31〜37.1988年1月)。
Conventionally, as an optical fiber amplifier, as shown in Fig. 8,
A signal light is propagated in an optical fiber doped with a rare earth element, a signal light is propagated in a pumping optical fiber in the propagation direction of the signal light, and an optical fiber coupler is used to convert the pumping light in the propagation direction of the signal light. A method of amplifying the signal and light by forming a population inversion state and separating the pumping light from the output side with an optical fiber coupler is being considered (Kiku, Nakazawa: Oscillation characteristics of optical fiber lasers and Its application to optical communication, Laser Society Research Group, RTM-87
-16, PP, 31-37. January 1988).

[発明が解決しようとする課題] かかる光フアイバ増幅器およびレーザーは、■コア径が
10μm程度と細径であるため励起パワー密度が大きく
なり励起効率が上がること、■相互作用長を長くとれる
ことミ■石英系ファイバの場合、非常に低損失であるこ
と、等の特徴がある。
[Problems to be Solved by the Invention] Such optical fiber amplifiers and lasers have the following characteristics: (1) The core diameter is as small as about 10 μm, which increases the pumping power density and increases the pumping efficiency; and (2) The ability to increase the interaction length. ■In the case of quartz fiber, it has features such as extremely low loss.

しかしながら、半導体レーザー、受光素子、光変調回路
、光分岐、結合回路、光スイツチ回路、光合分波回路等
と共に実装したシステムを構成しようとする場合に、夫
々が個別部品であるので小形化、低損失化が難しいとい
った問題点があった。
However, when trying to configure a system that includes semiconductor lasers, photodetectors, optical modulation circuits, optical branching, coupling circuits, optical switch circuits, optical multiplexing/demultiplexing circuits, etc., each component is an individual component, making it more compact and less expensive. There was a problem in that it was difficult to convert the losses into losses.

又個別部品を個々に光軸調整して配置させなければなら
ないので、調整時間が膨大にかかりコスト高になる、信
頼性に問題がある、等の課題もあった。
In addition, since the optical axes of individual components must be adjusted and arranged individually, there are problems such as an enormous amount of adjustment time, high costs, and problems with reliability.

本発明は、前記した従来技術の問題点を解消すべくなさ
れたものであって、小形化、低損失化、多機能化を実現
するとかできるガラス導波路およびその製造方法並びに
それを用いたガラス導波路レーザーおよびデバイスを提
供することを目的とする。
The present invention has been made to solve the problems of the prior art described above, and includes a glass waveguide that can realize miniaturization, low loss, and multifunctionality, a method for manufacturing the same, and a glass waveguide using the same. The purpose is to provide waveguide lasers and devices.

[課題を解決するための手段および作用]本発明は上記
課題を解決するために、従来の光フアイバ構造に代えて
、ブレーナ構造の導波路構造を用いたことを前提とし、
その導波路構造として、希土類元素を添加した略断面矩
形状のコア導波路を基板上に形成し、これらを該コア導
波路の屈折率よりも低屈折率の材料で被覆してなるガラ
ス導波路において、コア導波路を少なくともS iO2
微粒子と希土類元素含有微粒子とよりなる混成膜で構成
することによりコア導波路への希土類元素の添加量を飛
躍的に高め、もって小形化、低損失化、多機能化を実現
させるようにしたものである。
[Means and effects for solving the problems] In order to solve the above problems, the present invention is based on the premise that a Brener structure waveguide structure is used in place of the conventional optical fiber structure.
The waveguide structure is a glass waveguide in which a core waveguide doped with a rare earth element and having a substantially rectangular cross section is formed on a substrate, and these are coated with a material having a refractive index lower than that of the core waveguide. , the core waveguide is made of at least SiO2
By constructing a hybrid film consisting of fine particles and rare earth element-containing fine particles, the amount of rare earth elements added to the core waveguide is dramatically increased, thereby realizing miniaturization, low loss, and multifunctionality. It is.

又、かかるガラス導波路の製造方法として、基板上に少
なくともSiO2微粒子と希土類元素含有微粒子とより
なる混成膜を形成し、その膜上にメタル膜およびホトレ
ジスト膜を形成してホトリソゲラフイーを行いパターン
化した後混成膜をドライエツチングして略断面矩形状に
加工してコア導波路となし、前記メタル膜およびホトレ
ジスト膜を除去し、前記コア導波路および基板の表面を
コア導波路の屈折率より低屈折率の材料で被覆するもの
である。
In addition, as a method for manufacturing such a glass waveguide, a composite film consisting of at least SiO2 fine particles and rare earth element-containing fine particles is formed on a substrate, a metal film and a photoresist film are formed on the film, and photolithography is performed. After patterning, the hybrid film is dry-etched and processed into a substantially rectangular cross-section to form a core waveguide.The metal film and photoresist film are removed, and the surfaces of the core waveguide and substrate are shaped to have the refractive index of the core waveguide. It is coated with a material with a lower refractive index.

この場合の混成膜の形成において、少なくとも2つの蒸
発源を有する電子ビーム蒸着装置を用い、一方の蒸発源
よりS io 2微粒子を他方の蒸発源より希土類元素
微粒子を略同時に蒸発させて埜板上に堆積させることに
より、コア導波路中の希土類元素の含有量を任意に調整
しつつ製造することができる。
In forming the hybrid film in this case, an electron beam evaporation device having at least two evaporation sources is used, and S io 2 fine particles are evaporated from one evaporation source and rare earth element fine particles are evaporated from the other evaporation source almost simultaneously. By depositing the rare earth element in the core waveguide, it is possible to manufacture the core waveguide while arbitrarily adjusting the content of the rare earth element.

尚、コア導波路は、高温熱処理によりS I O2微粒
子と希土類元素含有微粒子とを融合させ、コア導波路中
に希土類元素を略均一に拡散させたものでもよい。
Note that the core waveguide may be one in which S I O 2 fine particles and rare earth element-containing fine particles are fused by high-temperature heat treatment, and the rare earth element is diffused substantially uniformly into the core waveguide.

コア導波路を構成するS iO2微粒子には屈折率制御
用添加物を少なくとも1種含有させることができる。こ
の屈折率制御用添加物としては、Ti、  Ge、  
P、  Sn、  Zn、  B、  F、  Ajl
The SiO2 fine particles constituting the core waveguide can contain at least one type of additive for controlling the refractive index. The additives for controlling the refractive index include Ti, Ge,
P, Sn, Zn, B, F, Ajl
.

Na、に等のうち少なくとも一種を用いることができる
At least one of Na, Na, etc. can be used.

又、希土類元素含有微粒子は例えば希土類元素の酸化物
の微粒子若しくは希土類元素の弗化物の微粒子であって
、希土類元素としては、Er。
The rare earth element-containing fine particles are, for example, rare earth element oxide fine particles or rare earth element fluoride fine particles, and the rare earth element is Er.

Nd、Yb、Ce、Ho、Tm等のうち少なくとも1種
を用いることができる。
At least one of Nd, Yb, Ce, Ho, Tm, etc. can be used.

尚、コア導波路の寸法としては、単一モード導波路の場
合、厚みおよび幅が数μmから10数μm、多モード導
波路の場合には厚みおよび幅は10数μmから10μm
程度とすることができる。
In addition, the dimensions of the core waveguide are: in the case of a single mode waveguide, the thickness and width are from several μm to 10-odd μm, and in the case of a multi-mode waveguide, the thickness and width are from 10-odd μm to 10 μm.
It can be done to a certain extent.

本発明のガラス導波路の少なくともコア導波路の両端面
にレーザーミラーを設け、一方のミラーより励起光を入
射させ他方のミラーより出力光を取り出すようにしてガ
ラス導波路レーザーを構成することもできる。又本発明
のガラス導波路を用いて光合分波器、光スターカプラ、
光スィッチ、光フィルタ、光変調器、光偏向器、等の光
受動回路素子を少なくとも一種構成させ、入力側より信
号光に励起光を重畳させるようにした光デバイス、更に
は半導体レーザー、発光ダイオード、受光素子、光増幅
器用半導体素子、光変調用半導体素子、双安定光素子、
光ゲート等を少なくとも一種を本発明のガラス導波路の
入力端又は出力側に結合させた光デバイス等への応力も
可能である。
It is also possible to configure a glass waveguide laser by providing laser mirrors on both end faces of at least the core waveguide of the glass waveguide of the present invention, and allowing excitation light to enter from one mirror and output light from the other mirror. . Moreover, optical multiplexer/demultiplexer, optical star coupler,
Optical devices comprising at least one kind of optical passive circuit elements such as optical switches, optical filters, optical modulators, optical deflectors, etc., and in which excitation light is superimposed on signal light from the input side, as well as semiconductor lasers and light emitting diodes. , photodetector, semiconductor device for optical amplifier, semiconductor device for optical modulation, bistable optical device,
It is also possible to apply stress to an optical device or the like in which at least one type of optical gate or the like is coupled to the input or output side of the glass waveguide of the present invention.

[実 施 例] 以下本発明の実施例につき図面を参照しつつ詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に本発明の希土類元素添加ガラス導波路の一実施
例の概略図を示す。S i、S I O2ガラス、多成
分ガラス、L I N b Os等よりなる基板1上に
は低屈折率ガラス膜2(屈折率nb)が形成されている
。この膜2は例えば純粋S iO2ガラスや、B、P、
Ti等の屈折率制御用添加物を含んだS iO2ガラス
、或いは希土類元素を含んだ上記S i O2ガラス等
を用いる。本実施例においてはコア導波路3(屈折率n
v、nv >nb)はB、F、Ti、P、Ge、Ajl
、Sn等の屈折率制御用添加物を少なくとも1種含んだ
SiO2微粒子と、Er、Nd、Yb、Ce、Ho、T
m等の希土類元素を少なくとも1種含んだ微粒子とより
なる混成膜からなっている。このコア導波路3は、単位
モード導波路の場合、幅および厚みは数μm−10数μ
m1屈折率差  v 選ばれる。多モード導波路の場合、幅および厚みは10
数μm〜100μm1屈折率差は0.数%〜2%に選ば
れる。
FIG. 1 shows a schematic diagram of an embodiment of the rare earth element-doped glass waveguide of the present invention. A low refractive index glass film 2 (refractive index nb) is formed on a substrate 1 made of S i , S I O 2 glass, multicomponent glass, L I N b Os, or the like. This film 2 is made of, for example, pure SiO2 glass, B, P,
The SiO2 glass containing a refractive index controlling additive such as Ti or the above SiO2 glass containing a rare earth element is used. In this example, the core waveguide 3 (refractive index n
v, nv > nb) is B, F, Ti, P, Ge, Ajl
, SiO2 fine particles containing at least one kind of refractive index controlling additive such as Sn, Er, Nd, Yb, Ce, Ho, T
It consists of a hybrid film made of fine particles containing at least one kind of rare earth element such as m. In the case of a unit mode waveguide, this core waveguide 3 has a width and thickness of several μm to several tens of μm.
m1 refractive index difference v is selected. For multimode waveguides, the width and thickness are 10
A few μm to 100 μm 1 refractive index difference is 0. Selected as a few percent to 2 percent.

希土類元素の添加量は数千PPmから数%の範囲から選
ばれる。
The amount of rare earth element added is selected from a range of several thousand ppm to several percent.

クラツド膜4(屈折率nc)は低屈折率ガラス膜2と同
様の材質のものを用いる。但し、屈折率ncはnbと必
ずしも等しくなくてもよい。
The cladding film 4 (refractive index nc) is made of the same material as the low refractive index glass film 2. However, the refractive index nc does not necessarily have to be equal to nb.

発明者らは、希土類元素ガラス導波路においてコア導波
路3を主成分がS iO2で希土類元素を含まない微粒
子と希土類元素を含む微粒子の2種類の微粒子よりなる
混成膜で構成したところ、希土類元素の添加量を非常に
多くとることができ、かつその制御性も良いことを見出
した。従って、このガラス導波路を用いることによって
、短い長さgで効率良くレーザー発振させることもでき
、又高利得ゲインをもった増幅機能付きの各種光デバイ
スを実現することができる。
The inventors constructed the core waveguide 3 in a rare earth element glass waveguide with a composite film composed of two types of fine particles, the main component of which is SiO2, which does not contain a rare earth element and the fine particles which contain a rare earth element. It has been found that it is possible to add a very large amount of , and that the controllability is also good. Therefore, by using this glass waveguide, it is possible to efficiently oscillate a laser with a short length g, and it is also possible to realize various optical devices with an amplification function and a high gain.

第2図は本発明の希土類元素添加ガラス導波路の他の実
施例を示したものであり、これは第1図の埋込み型のガ
ラス導波路に比し、クラツド膜4の膜厚を薄くしである
FIG. 2 shows another embodiment of the rare earth element-doped glass waveguide of the present invention, which has a thinner cladding film 4 than the buried type glass waveguide shown in FIG. It is.

第3図は本発明の希土類元素添加ガラス導波路を用いて
構成したガラス導波路レーザーの実施例を示したもので
、同図(a)は左側面図、(b)は(a)のA−A’断
面図を示しである。2つの微粒子の混成膜で構成したコ
ア導波路3の両端面にレーザーミラー5および6を設け
ることによって光共振器を構成させた。そして入力ミラ
ー側より励起光7を入射させ、出力ミラー6より連続発
振した出力光8を取り出すようにしたものである。励起
光にはA「イオンレーザ−光(波長514.5nm)。
FIG. 3 shows an example of a glass waveguide laser constructed using the rare earth element-doped glass waveguide of the present invention, in which (a) is a left side view, and (b) is an A in (a). -A' cross-sectional view is shown. An optical resonator was constructed by providing laser mirrors 5 and 6 on both end faces of a core waveguide 3 constructed of a composite film of two fine particles. Excitation light 7 is made to enter from the input mirror side, and continuously oscillated output light 8 is taken out from the output mirror 6. The excitation light is A'ion laser light (wavelength 514.5 nm).

色素レーザー光(波長650nm)、半導体レーザー光
(波長830nm、1.48μm)等を用いる。例えば
、コア導波路3にNdを添加した場合、励起光Arイオ
ンレーザ−光を用い、人力ミラー5の反射率99%、出
力ミラー6の反射率98%のものを用いると、約1.0
6μmから1.1μmの波長にわたって連続発振させる
ことが可能である。
Dye laser light (wavelength: 650 nm), semiconductor laser light (wavelength: 830 nm, 1.48 μm), etc. are used. For example, when the core waveguide 3 is doped with Nd, using an excitation light Ar ion laser beam, and using a manual mirror 5 with a reflectance of 99% and an output mirror 6 with a reflectance of 98%, approximately 1.0
Continuous oscillation is possible over a wavelength of 6 μm to 1.1 μm.

第4図は本発明の希土類元素ガラス導波路を用いて構成
した光増幅機能付きスターカプラの実施例を示しもので
ある。これはY分岐導波路11−1〜11−4を用いて
構成されており、入力導波路12−1より入射した信号
光9はもう一つの入力導波路12−2より入射した励起
光7によって増幅されながら伝搬し、出力導波路13−
1〜13−4に夫々増幅された信号光の出力光1〇−1
〜10−4が出力される。本実施例の4分岐以外の8分
岐、166分岐322分岐の多ポート化も可能になる。
FIG. 4 shows an embodiment of a star coupler with optical amplification function constructed using the rare earth element glass waveguide of the present invention. This is constructed using Y branch waveguides 11-1 to 11-4, and the signal light 9 incident from the input waveguide 12-1 is connected to the excitation light 7 incident from the other input waveguide 12-2. Propagates while being amplified and passes through the output waveguide 13-
Output light 10-1 of signal light amplified to 1 to 13-4 respectively
~10-4 is output. In addition to the four branches of this embodiment, it is also possible to have multiple ports such as eight branches, 166 branches, and 322 branches.

第5図は本発明のガラス導波路を用いて構成した光増幅
器機能付きの分波器の実施例を示したものである。即ち
、入力導波路12−1へ入射した波長λ1.λ2.λ3
・・・、λnの光信号はコア導波路3内を伝搬していく
につれ、励起光7によって増幅される。そして波長λ1
の光信号はリング共振615−1により共振し、出力導
波路16−1より取り出される。同様にして波長λ2お
よびλ3の光信号はリング共振器15−2および15−
3により共振して出力導波路16−2および16−3よ
り夫々取り出される。共振を起こさなかった波長λ4.
λ5.・・・、λnの光信号は出力導波路16−4から
出射される。この構成の光分波器はコア導波路3による
光増幅機能付きであるので、リング共振器15−1.1
5−2.15−3での吸収損失、散乱損失、分波損失等
を補うことが可能となる。
FIG. 5 shows an embodiment of a duplexer with an optical amplifier function constructed using the glass waveguide of the present invention. That is, the wavelength λ1. which is incident on the input waveguide 12-1. λ2. λ3
..., λn is amplified by the excitation light 7 as it propagates within the core waveguide 3. and the wavelength λ1
The optical signal resonates by the ring resonance 615-1 and is extracted from the output waveguide 16-1. Similarly, optical signals of wavelengths λ2 and λ3 are transmitted to ring resonators 15-2 and 15-
3, and are extracted from output waveguides 16-2 and 16-3, respectively. Wavelength λ4 that did not cause resonance.
λ5. ..., λn are emitted from the output waveguide 16-4. Since the optical demultiplexer with this configuration has an optical amplification function using the core waveguide 3, the ring resonator 15-1.1
It becomes possible to compensate for absorption loss, scattering loss, demultiplexing loss, etc. in 5-2.15-3.

次に、本発明の希土類元素添加ガラス導波路の製造方法
について説明する。
Next, a method for manufacturing the rare earth element-doped glass waveguide of the present invention will be explained.

第6図は第1図にみた本発明のガラス導波路の製造方法
の工程図を示したものである。まず概要を説明すると、
(a)において、基板1上に低屈折率ガラス膜2を形威
し、ついでその上に少なくともS iO2微粒子と希土
類元素含有微粒子とよりなる混成膜30を形成させる。
FIG. 6 shows a process diagram of the method for manufacturing the glass waveguide of the present invention as shown in FIG. First, to give an overview,
In (a), a low refractive index glass film 2 is formed on a substrate 1, and then a hybrid film 30 consisting of at least SiO2 fine particles and rare earth element-containing fine particles is formed thereon.

この混成1130は第7図に示す電子ビーム蒸着装置2
0を用いて形成される。即ち、真空排気系22により真
空排気された蒸着装置20内にドーム状の基板ホルダ2
1を設け、このホルダ21に基板1を取付けておく。次
に蒸着装置20内に酸素ガス23を導入し、夫々の蒸発
源24および25を加熱することにより、夫々所望の材
料を蒸発させて膜形成を行う。蒸発源24には純粋Si
O□又は屈折率制御用添加物を少なくとも1種含んだS
 iO2タブレツトが挿入されている。又蒸発源25に
は希土類元素を少なくとも1種含んだタブレットが挿入
されている。そして夫々の蒸発源に流す電流を制御しつ
つ、2つの蒸発源より5IO2を主成分とする微粒子と
希土類元素を含む微粒子とを夫々蒸発させ基板上に同時
蒸着を行う。尚、26は蒸発源24と25を遮蔽するた
めの遮蔽板である。基板lは低温(例えば、約350℃
)に加熱させた状態で膜形成が行なわれる。次に第6図
(b)に示すように、混成膜30の上にメタル膜17が
例えばスパッタリング装置等を用いて形成される。この
際、メタル膜17の形成前に基板を高温(例えば120
0℃)の酸素気中で予め加熱して膜2および30を緻密
化しておいてもよい。次に(C)に示すように、メタル
膜17の上にホトレジスト膜18を形成させ、ホトリソ
グラフィにより上記ホトレジスト膜18をパターン化さ
せる。このホトレジスト膜をマスクにしてメタル膜17
をパターン化させ、ついで、上記ホトレジスト膜とメタ
ル膜をマスクにして混成膜30をドライエツチングして
略断面矩形状にパターン化させる(d)。その後、上記
ホトレジスト膜およびメタル膜を除去し、その上に多孔
質ガラス膜19を形成させる。(e)。
This hybrid 1130 is the electron beam evaporator 2 shown in FIG.
It is formed using 0. That is, the dome-shaped substrate holder 2 is placed inside the vapor deposition apparatus 20 which is evacuated by the vacuum evacuation system 22.
1 is provided, and the substrate 1 is attached to this holder 21. Next, by introducing oxygen gas 23 into the vapor deposition apparatus 20 and heating the respective evaporation sources 24 and 25, desired materials are evaporated to form a film. Pure Si is used as the evaporation source 24.
O□ or S containing at least one kind of additive for controlling the refractive index
An iO2 tablet is inserted. Further, a tablet containing at least one kind of rare earth element is inserted into the evaporation source 25. Then, while controlling the current flowing through each evaporation source, fine particles mainly containing 5IO2 and fine particles containing rare earth elements are evaporated from the two evaporation sources and simultaneously deposited on the substrate. Note that 26 is a shield plate for shielding the evaporation sources 24 and 25. The substrate l is kept at a low temperature (for example, about 350°C
) Film formation is performed under heating conditions. Next, as shown in FIG. 6(b), a metal film 17 is formed on the composite film 30 using, for example, a sputtering device. At this time, the substrate is heated to a high temperature (for example, 120℃) before the metal film 17 is formed.
The films 2 and 30 may be densified by heating in advance in an oxygen atmosphere at a temperature of 0°C. Next, as shown in (C), a photoresist film 18 is formed on the metal film 17, and the photoresist film 18 is patterned by photolithography. Using this photoresist film as a mask, the metal film 17 is
Then, using the photoresist film and metal film as a mask, the composite film 30 is dry-etched to pattern it into a substantially rectangular cross-section (d). Thereafter, the photoresist film and metal film are removed, and a porous glass film 19 is formed thereon. (e).

ついでこの膜19の形成された基板を1000℃以上の
高温で焼結させることにより、(5)で示すように、透
明なりラッド膜4に変えさせる。
Next, the substrate on which the film 19 is formed is sintered at a high temperature of 1000° C. or higher, thereby converting it into a transparent rad film 4, as shown in (5).

続いて第6図の場合の具体例について説明する。Next, a specific example of the case shown in FIG. 6 will be explained.

基板1に直径3インチ、厚み1關の石英基板を用い、そ
の上にPとBを添加したS iO2よりなる低屈折率ガ
ラス膜を5μmの厚さだけ形成した。
A quartz substrate with a diameter of 3 inches and a thickness of 1 inch was used as the substrate 1, and a low refractive index glass film made of SiO2 doped with P and B was formed thereon to a thickness of 5 μm.

この膜の屈折率はS i O2のそれと等しくなるよう
にPとBの添加量を制御した。次に上記膜の上に、第7
図に示すような電子ビーム蒸着装置を用いて混成830
を厚さ約8μm形成された。この混成膜30は次のよう
にして形成させた。即ち、蒸発源24にはSiO2とT
 io 2を粉末状態で混合しプレスで固形化した後焼
結して棒状のタブレットとしたものを入れ、蒸発源2に
はE「203をタブレットとしたものを入れ、2つの蒸
発源を同時に加熱し微粒子として蒸発させて混成膜30
を形成させた。その後、約1000 ’Cで基板加熱し
た後、上記混成膜3oの上にWSi膜17を約1μm形
成させた。次にホトレジストを塗布して膜を形成し、そ
の上にホトマスクを置いてホトリソグラフィを行い、所
望のパターンを形成させた。次にホトレジスト膜のパタ
ーンをマスクにしてWSi膜をドライエツチングにより
エツチングしてWSi膜をパターン化させた。つぃで上
記ホトレジスト膜およびWSi膜のパターンをマスクに
して混成膜30をドライエツチングによりパターン化さ
せた。その後、ホトレジスト膜およびWSi膜を除去し
た後、BとPを含んだS h O2の多孔質ガラス膜1
9をVt覆影形成せ、高温で焼結して透明なりラッド膜
4を得た。
The amounts of P and B added were controlled so that the refractive index of this film was equal to that of SiO2. Next, a seventh layer is placed on top of the above film.
Hybrid 830 using an electron beam evaporator as shown in the figure.
A thickness of approximately 8 μm was formed. This composite film 30 was formed as follows. That is, the evaporation source 24 contains SiO2 and T.
Mix io2 in a powder state, press it to solidify it, then sinter it into a rod-shaped tablet. Put E203 in the form of a tablet into evaporation source 2, and heat the two evaporation sources at the same time. and evaporate it as fine particles to form a composite film 30.
formed. Thereafter, after heating the substrate at about 1000'C, a WSi film 17 with a thickness of about 1 μm was formed on the composite film 3o. Next, a photoresist was applied to form a film, a photomask was placed on top of the film, and photolithography was performed to form a desired pattern. Next, the WSi film was etched by dry etching using the pattern of the photoresist film as a mask to pattern the WSi film. Next, the composite film 30 was patterned by dry etching using the patterns of the photoresist film and WSi film as masks. After that, after removing the photoresist film and the WSi film, a porous glass film 1 of S H O2 containing B and P was removed.
9 was coated with Vt and sintered at high temperature to obtain a transparent LAD film 4.

このようにして結果的にコア導波路3中のE「の添加量
を数千PPmから数10%の範囲で制御することが確認
できた。尚、E「の添加量が多くなるとコア導波路3の
屈折率nwが高くなり単一モード導波路を構成しにくく
なる。その場合には、蒸発源24にSiO□屈折率を低
下させる添加物としてB、或いはFを含んだS iO2
のタブレットを用いるか、或いは蒸発源25にE r 
F s 。
In this way, it was confirmed that the amount of E'' added in the core waveguide 3 could be controlled within the range of several thousand ppm to several tens of percent. The refractive index nw of 3 becomes high, making it difficult to construct a single mode waveguide.In that case, the evaporation source 24 is SiO2 containing B or F as an additive to lower the refractive index.
or use E r in the evaporation source 25.
Fs.

NdF3等のFを含んだ希土類元素のタブレットを用い
、B又はFの添加でコア導波路の屈折率上昇を抑止して
やるとよい。但し、コア導波路にのみ上記添加物を含有
させると、そこの熱膨張係数が大きくなり、また軟化温
度が低下してクラツド膜との間の構造的不整合が生じ温
度特性が悪化する恐れがある。そこでクラッドにも一定
の添加物例えばSiO2の屈折率を増加させる添加物を
加えることにより熱膨張係数、軟化温度の整合を図るこ
とか望ましい。
It is preferable to use a tablet of a rare earth element containing F, such as NdF3, and to suppress an increase in the refractive index of the core waveguide by adding B or F. However, if the above-mentioned additive is contained only in the core waveguide, the coefficient of thermal expansion there will increase, and the softening temperature will decrease, causing structural mismatch with the cladding film, which may deteriorate the temperature characteristics. be. Therefore, it is desirable to match the thermal expansion coefficient and softening temperature by adding a certain additive to the cladding, for example, an additive that increases the refractive index of SiO2.

尚、コア導波路は少なくともS I O2微粒子と希土
類元素含有微粒子とよりなる混成膜で構成されているが
、第6図(e)から(f)に至る高温焼結プロセスにお
いて、長時間にわたって加熱処理することによってこれ
らの微粒子を融合させることができる。その結果、コア
導波路中に略均一に希土類元素を拡散させることができ
る。この拡散の度合は焼結時の温度と時間に依存してい
る。
The core waveguide is composed of a composite film consisting of at least SIO2 fine particles and rare earth element-containing fine particles, but in the high temperature sintering process shown in FIGS. These microparticles can be fused by treatment. As a result, the rare earth element can be diffused substantially uniformly into the core waveguide. The degree of this diffusion depends on the temperature and time during sintering.

本発明は上記実施例に限定されない。例えば、第3図と
第4図を接続、或いは一体化することにより、発振光を
4分配した構成のガラス導波路レーザーを実現すること
ができる。又第4図の各出力導波路13−1.13−2
.13−3.13−4に第5図の回路を夫々焼結するこ
とにより、第4図の人力導波路12−1に入射した波長
多重信号光(波長λ1.λ2.・・・、λn)を4分配
した後、第5図の分波器により夫々の波長の光信号を分
波して取り出すことができる。これ以外の光デバイスと
して、光スィッチ、光フィルタ、光変調器、光偏向器等
も容易に実現することができるし、又半導体レーザー、
受光素子、光増幅用半導体素子、光変調用半導体素子、
光ゲート素子等をガラス導波路の入力端或いは出力側に
実装することもできる。
The invention is not limited to the above embodiments. For example, by connecting or integrating FIG. 3 and FIG. 4, it is possible to realize a glass waveguide laser having a configuration in which the oscillation light is divided into four parts. Also, each output waveguide 13-1, 13-2 in FIG.
.. By sintering the circuits shown in FIG. 5 in 13-3 and 13-4, the wavelength-multiplexed signal light (wavelengths λ1, λ2, ..., λn) incident on the human-powered waveguide 12-1 shown in FIG. After dividing the signal into four parts, the optical signal of each wavelength can be separated and extracted using the demultiplexer shown in FIG. Other optical devices such as optical switches, optical filters, optical modulators, and optical deflectors can also be easily realized, and semiconductor lasers,
Light receiving elements, semiconductor elements for optical amplification, semiconductor elements for optical modulation,
It is also possible to mount an optical gate element or the like on the input end or output side of the glass waveguide.

[発明の効果] 以上の如く、本発明の希土類元素添加ガラス導波路は、
光フアイバ構造に代えてプレーナ構造の導波路構造を用
い、且つその導波路構造として、少なくともS 102
微粒子と希土類元素含有微粒子とよりなる混成膜より構
成されたコア導波路を採用することにより、コア導波゛
路中の希土類元素の添加量を制御性良く高め、もって小
形化、低損失化、多機能化を実現することができる。
[Effects of the Invention] As described above, the rare earth element-doped glass waveguide of the present invention has the following effects:
A planar waveguide structure is used instead of the optical fiber structure, and the waveguide structure is at least S102.
By adopting a core waveguide composed of a hybrid film made of fine particles and rare earth element-containing fine particles, the amount of rare earth elements added in the core waveguide can be increased with good control, resulting in smaller size, lower loss, and Multifunctionality can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の希土類元素添加ガラス導
波路の一実施例を示す概略図、第3図は本発明のガラス
導波路レーザーの実施例を示す図であって(a)は左側
面図、(b)は(a)のA−A’断面図、第4図は本発
明の光増幅機能付きのスターカプラの実施例を示す図で
あって(a)は左側面図、(b)は(a)のA−A’断
面図、第5図は本発明の光増幅機能付きの分波器の実施
例を示す断面図、第6図は本発明の希土類元素添加ガラ
ス導波路の製造方法の工程図、第7図は本発明の混成膜
を形成させる電子ビーム蒸着装置の実施例を示す概略図
、第8図は従来の光フアイバ増幅器の概略図を夫々示し
たものである。 1:基板、 2:低屈折率ガラス膜、 3:コア導波路、 4:クラツド膜、 5.6=レーザーミラー 11−1〜11−2:Y分岐導波路、 15−1〜15−3 :リング共振器、17:メタル膜
、 24゜ :ホトレジスト膜、 :電子ビーム蒸着装置、 :蒸発源、 :混成膜。 \ヘーーー// ゝ頓4− ↑ ↑ 第 6 目 第 目
FIGS. 1 and 2 are schematic diagrams showing an embodiment of the rare earth element-doped glass waveguide of the present invention, and FIG. 3 is a diagram showing an embodiment of the glass waveguide laser of the present invention. FIG. 4 is a left side view, (b) is a sectional view taken along line AA' in (a), and FIG. (b) is a cross-sectional view taken along the line AA' in (a), FIG. 5 is a cross-sectional view showing an embodiment of the duplexer with optical amplification function of the present invention, and FIG. 6 is a rare-earth element-doped glass guide of the present invention. FIG. 7 is a schematic diagram showing an embodiment of an electron beam evaporation apparatus for forming a hybrid film of the present invention, and FIG. 8 is a schematic diagram of a conventional optical fiber amplifier. be. 1: Substrate, 2: Low refractive index glass film, 3: Core waveguide, 4: Clad film, 5.6 = Laser mirror 11-1 to 11-2: Y branch waveguide, 15-1 to 15-3: Ring resonator, 17: Metal film, 24°: Photoresist film, : Electron beam evaporator, : Evaporation source, : Hybrid film. \Heeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeulyssssssssssssssssssssssof ofwofofofofsssssssof of of the 6th st.

Claims (1)

【特許請求の範囲】 1、希土類元素を添加した略断面矩形状のコア導波路を
基板上に形成し、これらを該コア導波路の屈折率よりも
低屈折率の材料で被覆してなるガラス導波路において、
少なくとも SiO_2微粒子と希土類元素含有微粒子とよりなる混
成膜で前記コア導波路を構成したことを特徴とする希土
類元素添加ガラス導波路。 2、前記コア導波路を構成するSiO_2微粒子が、屈
折率制御用添加物を少なくとも1種含有していることを
特徴とする請求項第1記載の希土類元素添加ガラス導波
路。 3、前記屈折率制御用添加物がSiO_2の屈折率を低
下させる添加物であることを特徴とする請求項2記載の
希土類元素添加ガラス導波路。 4、前記コア導波路を構成する希土類元素含有微粒子が
、希土類元素の酸化物の微粒子若しくは希土類元素の弗
化物の微粒子であることを特徴とする請求項1ないし3
記載の希土類元素添加ガラス導波路。 5、前記コア導波路を高温熱処理することにより、少な
くともSiO_2微粒子と希土類元素含有微粒子とを融
合させコア導波路中に希土類元素を略均一に拡散させた
ことを特徴とする請求項1ないし4記載の希土類元素添
加ガラス導波路。 6、基板上に少なくともSiO_2微粒子と希土類元素
含有微粒子とよりなる混成膜を形成し、前記混成膜上に
メタル膜およびホトレジスト膜を形成してホトリソクド
ラフィーを行いパターン化した後混成膜をドライエッチ
ングして略断面矩形状に加工してコア導波路となし、前
記メタル膜およびホトレジスト膜を除去し、前記コア導
波路および基板の表面をコア導波路の屈折率より低屈折
率の材料で被覆することを特徴とする希土類元素ガラス
導波路の製造方法。 7、基板上に少なくともSiO_2微粒子と希土類元素
含有微粒子とよりなる混成膜を形成するに際し、少なく
とも2つの蒸発源を有する電子ビーム蒸着装置を用い、
一方の蒸発源よりSiO_2微粒子を他方の蒸発源より
希土類元素含有微粒子を略同時に蒸発させて基板上に堆
積させることを特徴とする請求項6記載の希土類元素添
加ガラス導波路の製造方法。 8、請求項1ないし5記載のガラス導波路の少なくとも
コア導波路の両端面にレーザミラーを設け、一方のミラ
ーより励起光を入射させ、他方のミラーより出力光を取
り出すようにしたことを特徴とするガラス導波路レーザ
ー。 9、請求項1ないし5記載のガラス導波路を用いて光受
動回路素子を少なくとも1種構成させ、入力側より信号
光に励起光を重畳させるようにしたことを特徴とするガ
ラス導波路デバイス。
[Scope of Claims] 1. Glass formed by forming a core waveguide doped with a rare earth element and having a substantially rectangular cross section on a substrate, and covering the core waveguide with a material having a refractive index lower than that of the core waveguide. In the waveguide,
A rare earth element-doped glass waveguide, characterized in that the core waveguide is constituted by a composite film consisting of at least SiO_2 fine particles and rare earth element-containing fine particles. 2. The rare earth element-doped glass waveguide according to claim 1, wherein the SiO_2 fine particles constituting the core waveguide contain at least one type of additive for controlling the refractive index. 3. The rare earth element-doped glass waveguide according to claim 2, wherein the refractive index controlling additive is an additive that lowers the refractive index of SiO_2. 4. Claims 1 to 3, wherein the rare earth element-containing fine particles constituting the core waveguide are fine particles of a rare earth element oxide or rare earth element fluoride particles.
The rare earth element-doped glass waveguide described above. 5. Claims 1 to 4, characterized in that the core waveguide is subjected to high-temperature heat treatment to fuse at least the SiO_2 fine particles and the rare earth element-containing fine particles, thereby substantially uniformly diffusing the rare earth element into the core waveguide. Rare earth element doped glass waveguide. 6. Form a hybrid film made of at least SiO_2 fine particles and rare earth element-containing fine particles on the substrate, form a metal film and a photoresist film on the hybrid film, perform photolithography to pattern it, and then dry-etch the hybrid film. The core waveguide is processed into a substantially rectangular cross-section, the metal film and the photoresist film are removed, and the surfaces of the core waveguide and the substrate are coated with a material having a refractive index lower than that of the core waveguide. A method for manufacturing a rare earth element glass waveguide, characterized by: 7. When forming a hybrid film consisting of at least SiO_2 fine particles and rare earth element-containing fine particles on the substrate, using an electron beam evaporation device having at least two evaporation sources,
7. The method of manufacturing a rare earth element-doped glass waveguide according to claim 6, wherein the SiO_2 fine particles are evaporated from one evaporation source and the rare earth element-containing fine particles are evaporated from the other evaporation source substantially simultaneously and deposited on the substrate. 8. Laser mirrors are provided on both end faces of at least the core waveguide of the glass waveguide according to claims 1 to 5, and excitation light is made to enter from one mirror and output light is taken out from the other mirror. glass waveguide laser. 9. A glass waveguide device comprising at least one type of optical passive circuit element using the glass waveguide according to any one of claims 1 to 5, wherein excitation light is superimposed on signal light from the input side.
JP1170841A 1989-06-30 1989-06-30 Method for manufacturing rare earth element-doped glass waveguide Expired - Fee Related JP2788652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170841A JP2788652B2 (en) 1989-06-30 1989-06-30 Method for manufacturing rare earth element-doped glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170841A JP2788652B2 (en) 1989-06-30 1989-06-30 Method for manufacturing rare earth element-doped glass waveguide

Publications (2)

Publication Number Publication Date
JPH0335203A true JPH0335203A (en) 1991-02-15
JP2788652B2 JP2788652B2 (en) 1998-08-20

Family

ID=15912321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170841A Expired - Fee Related JP2788652B2 (en) 1989-06-30 1989-06-30 Method for manufacturing rare earth element-doped glass waveguide

Country Status (1)

Country Link
JP (1) JP2788652B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598395A1 (en) * 1992-11-16 1994-05-25 Matsushita Electric Industrial Co., Ltd. An optical waveguide device and a method for fabricating the same
US6120917A (en) * 1993-12-06 2000-09-19 Matsushita Electric Industrial Co., Ltd. Hybrid magnetic substrate and method for producing the same
WO2003077383A1 (en) * 2002-03-13 2003-09-18 Nikon Corporation Light amplifying device and method of manufacturing the device, light source device using the light amplifying device, light treatment device using the light source device, and exposure device using the light source device
JP2009150363A (en) * 2007-12-21 2009-07-09 Mitsubishi Heavy Ind Ltd Variable capacity type exhaust gas turbocharger with variable nozzle mechanism
JP2010109366A (en) * 2008-10-28 2010-05-13 Sharp Corp Optical waveguide using high quantum efficiency silicon nanocrystal embedded silicon oxide, and optical amplifying method
JP2013113862A (en) * 2011-11-25 2013-06-10 Fujitsu Ltd Waveguide optical device and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540452A (en) * 1978-09-14 1980-03-21 Matsushita Electric Ind Co Ltd Production of optical sheet
JPS6059063A (en) * 1983-09-12 1985-04-05 Clarion Co Ltd Manufacture of porous thin film
JPS60502272A (en) * 1983-09-26 1985-12-26 プレツシ− オ−バ−シ−ズ リミテツド Improvements in or relating to modulators
JPS62246005A (en) * 1986-04-18 1987-10-27 Matsushita Electric Ind Co Ltd Production of optical waveguide
JPS63157107A (en) * 1986-12-22 1988-06-30 Nippon Telegr & Teleph Corp <Ntt> Single mode glass light guide having high birefringence property
JPH01153553A (en) * 1987-12-11 1989-06-15 Nippon Telegr & Teleph Corp <Ntt> Production of glass thin film
JPH01219804A (en) * 1988-02-29 1989-09-01 Nippon Telegr & Teleph Corp <Ntt> Production of thin glass film having functionability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540452A (en) * 1978-09-14 1980-03-21 Matsushita Electric Ind Co Ltd Production of optical sheet
JPS6059063A (en) * 1983-09-12 1985-04-05 Clarion Co Ltd Manufacture of porous thin film
JPS60502272A (en) * 1983-09-26 1985-12-26 プレツシ− オ−バ−シ−ズ リミテツド Improvements in or relating to modulators
JPS62246005A (en) * 1986-04-18 1987-10-27 Matsushita Electric Ind Co Ltd Production of optical waveguide
JPS63157107A (en) * 1986-12-22 1988-06-30 Nippon Telegr & Teleph Corp <Ntt> Single mode glass light guide having high birefringence property
JPH01153553A (en) * 1987-12-11 1989-06-15 Nippon Telegr & Teleph Corp <Ntt> Production of glass thin film
JPH01219804A (en) * 1988-02-29 1989-09-01 Nippon Telegr & Teleph Corp <Ntt> Production of thin glass film having functionability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598395A1 (en) * 1992-11-16 1994-05-25 Matsushita Electric Industrial Co., Ltd. An optical waveguide device and a method for fabricating the same
US5485540A (en) * 1992-11-16 1996-01-16 Matsushita Electric Industrial Co., Ltd. Optical waveguide device bonded through direct bonding and a method for fabricating the same
US5785874A (en) * 1992-11-16 1998-07-28 Matsushita Electric Industrial Co., Ltd. Optical waveguide device bonded through direct bonding and a method for fabricating the same
US6120917A (en) * 1993-12-06 2000-09-19 Matsushita Electric Industrial Co., Ltd. Hybrid magnetic substrate and method for producing the same
WO2003077383A1 (en) * 2002-03-13 2003-09-18 Nikon Corporation Light amplifying device and method of manufacturing the device, light source device using the light amplifying device, light treatment device using the light source device, and exposure device using the light source device
JP2009150363A (en) * 2007-12-21 2009-07-09 Mitsubishi Heavy Ind Ltd Variable capacity type exhaust gas turbocharger with variable nozzle mechanism
JP2010109366A (en) * 2008-10-28 2010-05-13 Sharp Corp Optical waveguide using high quantum efficiency silicon nanocrystal embedded silicon oxide, and optical amplifying method
JP2013113862A (en) * 2011-11-25 2013-06-10 Fujitsu Ltd Waveguide optical device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2788652B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JP2755471B2 (en) Rare earth element doped optical waveguide and method of manufacturing the same
KR910006730B1 (en) Device including a substrate - supported optical waveguide
US5570448A (en) Rare earth element-doped multiple-core optical fiber, method for fabricating the same, and optical amplifier using the same
JP3203178B2 (en) Optical waveguide, optical module and optical system
CN108693602B (en) Silicon nitride three-dimensional integrated multi-microcavity resonant filter device and preparation method thereof
CN111129920B (en) Preparation method of distributed Bragg reflection laser based on erbium-doped lithium niobate thin film
US20030056546A1 (en) Photonic crystal materials and devices
JPH0335203A (en) Glass waveguide added with rare earth element and production thereof and glass waveguide laser and device using this waveguide
JP2656972B2 (en) Multi-wavelength glass waveguide laser array
JPH05323138A (en) Laminated optical waveguide circuit
JP2842954B2 (en) Rare earth element doped optical waveguide and method of manufacturing the same
US7336684B2 (en) Planar multiwavelength optical power supply on a silicon platform
JP2730955B2 (en) Rare earth element-doped long glass waveguide and method of manufacturing the same
JPH0353202A (en) Production of waveguide added with rare earth element
JP3106201B2 (en) Optical circuit manufacturing method
JP2859763B2 (en) Functional glass waveguide for single mode transmission
JP2831407B2 (en) Manufacturing method of rare earth element doped waveguide
JP3055235B2 (en) Optical circuit manufacturing method
JP3317301B2 (en) Optical waveguide
JP2747359B2 (en) Manufacturing method of rare earth element doped waveguide
KR100328132B1 (en) Planar optical amplifier and its fabrication method
JPH02222181A (en) Rare earth element added light-coupled waveguide
JPH0365929A (en) Optical demultiplexer
Stamatiadis et al. Fabrication and Experimental Demonstration of a Four-Channel $\,\times\, $40 Gb/s TriPleX All-Optical Wavelength Conversion Platform
Wosinski Silica-on-silicon technology for photonic integrated devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees