JPH02222181A - Rare earth element added light-coupled waveguide - Google Patents

Rare earth element added light-coupled waveguide

Info

Publication number
JPH02222181A
JPH02222181A JP4250889A JP4250889A JPH02222181A JP H02222181 A JPH02222181 A JP H02222181A JP 4250889 A JP4250889 A JP 4250889A JP 4250889 A JP4250889 A JP 4250889A JP H02222181 A JPH02222181 A JP H02222181A
Authority
JP
Japan
Prior art keywords
waveguide
optical
core
waveguides
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4250889A
Other languages
Japanese (ja)
Other versions
JP2730954B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Yasuro Kimura
康郎 木村
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP1042508A priority Critical patent/JP2730954B2/en
Publication of JPH02222181A publication Critical patent/JPH02222181A/en
Application granted granted Critical
Publication of JP2730954B2 publication Critical patent/JP2730954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Gyroscopes (AREA)
  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To realize laser oscillation and amplification action having excellent efficiency by adding a rare earth element to a core wavegudie and a clad. CONSTITUTION:A buffer layer 2 having a refractive index of nb is formed onto a substrate 1 composed of a semiconductor, glass, a ferrodielectric, a magnetic substance, etc., core waveguides 3-1 and 3-2 having a refractive index of nc (nc>nb) and an approximately rectangular cross section are shaped onto the layer 2, and the whole upper section of the core waveguides is covered with a clad 4 having a refractive index of ncl (ncl<nc). A rare earth element is added to the core waveguides 3-1, 3-2 and the clad 4. The waveguides 3-1 and 3-2 have adjacently arranged coupling sections 5, and an optical signal 6 mutually interferes and is propagated while shifting between the waveguides 3-1, 3-2, is transferred from one to the other in the wvaveguides in response to coupling length (l), and it divided into both waveguides.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類を添加した光結合導波路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical coupling waveguide doped with rare earth elements.

[従来の技術] 近年、光ファイバのコアに希土類元素を添加した光フア
イバレーザーの研究が活発化し、各種レーザー光源用、
光増幅媒質用として注目されるようになってきた。
[Prior art] In recent years, research on optical fiber lasers in which rare earth elements are added to the core of the optical fiber has become active, and optical fiber lasers for various laser light sources,
It has started to attract attention as an optical amplification medium.

第6図は従来の光フアイバレーザーの構成例を示したも
のである(木材、中沢:光ファイバレサーの発振特性と
その光通信への応用、レーザ学会研究会、PTM−87
−16,PP、31〜37.1988年1月)。これは
光ファイバのコアに希土類元素を添加した光ファイバの
両端面をレーザーミラーに直に接触させるか、光ファイ
バの両端面に誘電体多層膜を蒸着させて光共振器を構成
したものである。励起光源にはArイオンレーザ−(波
長514.5n川)、色素レーサー(波長650nm)
、半導体レーサー(波長830 nm)等を用いて端面
励起か行われる。また光増幅器の例として第7図に示す
構成か上記両氏により提案されている。すなわち、希土
類を添加した光フアイバ内に信号光を伝搬させ、励起光
は光フアイバカップラを用いて合成させ、また光フアイ
バカップラで分離さぜる47.j成である。
Figure 6 shows an example of the configuration of a conventional optical fiber laser.
-16, PP, 31-37. January 1988). This is an optical resonator constructed by having both end faces of an optical fiber doped with a rare earth element added to the core of the optical fiber directly contact a laser mirror, or by depositing a dielectric multilayer film on both end faces of the optical fiber. . The excitation light source is an Ar ion laser (wavelength 514.5n) and a dye laser (wavelength 650nm).
, end face excitation is performed using a semiconductor laser (wavelength: 830 nm). Further, as an example of an optical amplifier, the configuration shown in FIG. 7 has been proposed by the above-mentioned authors. That is, the signal light is propagated in an optical fiber doped with rare earth elements, the excitation light is combined using an optical fiber coupler, and is separated using an optical fiber coupler.47. It is made up of j.

[発明か解決しようとする課題] 前述した光フアイバレーサーおよび光フアイバ増幅器は
、 ■ 光ファイバのコア径が細径であるため励起パワー密
度が大きくなり、励起効率を」−げられること ■ 相互作用長を長くとれること ■ 特に石英系ファイバの場合、低損失であること ■ 可撓性があること 等の特徴がある。しかしながら、他の光部品、例えば光
源、受光器、光変調器、光カプラ、光合分波器、光フィ
ルタ、光スィッチなとと糾合せていわゆる多機能光集積
回路を実現しようとすると、実装が複雑になり、低コス
ト化か難しく、また小形化、高性能化も容易でないとい
った問題点かあった。
[Problem to be solved by the invention] The above-mentioned optical fiber laser and optical fiber amplifier have the following characteristics: ■ Because the core diameter of the optical fiber is small, the pumping power density becomes large and the pumping efficiency can be increased.■ Interaction Characteristics include being able to have a long length ■ Low loss, especially in the case of silica fiber ■ Flexibility. However, when trying to realize a so-called multifunctional optical integrated circuit by combining other optical components such as a light source, optical receiver, optical modulator, optical coupler, optical multiplexer/demultiplexer, optical filter, and optical switch, the implementation becomes difficult. There were problems in that it was complicated, it was difficult to reduce costs, and it was not easy to make it smaller and improve its performance.

本発明の目的は、前記した従来技術の問題点を解決する
ことにあり、多機能光集積回路の実現か容易な光結合導
波路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above, and to provide an optical coupling waveguide that can be easily realized as a multifunctional optical integrated circuit.

[課題を解決するための手段] すなわち、本発明は、低屈折率(屈折率n c1)のク
ラッドを介して少なくとも2つのコア導波路(屈折率n
c 、  nc >nc1)を並列に配置させた光結合
導波路において、該コアおよびクラッドに希」二類元素
を添加した光結合導波路を用いることにより、上記「1
的を達成させるようにしたものである。
[Means for Solving the Problem] That is, the present invention provides at least two core waveguides (refractive index n c1) via a cladding with a low refractive index (refractive index n c1).
By using an optical coupling waveguide in which the core and cladding are doped with rare class 2 elements, the above "1" can be achieved.
It was designed to achieve the target.

「作用] 」〕記光結合等波路においては光信号は2つのコア導波
路間を移り変わりなから干渉し合って伝搬し、ある結合
長の時には一方のコア導波路から他方のコア導波路へ完
全に光が移り、また別の長さの結合長の時にはお互いに
光信号を分は合って伝搬する。それゆえにコア導波路は
かりでなく、クラッド部にも希土類元素を添加しておけ
は、コア導波路間のクラッド部もレーザー機能および増
幅機能に大きく寄与させることかでき、より効率的なレ
ーザーおよび増幅器を実現さぜることかてきる。さらに
、上記光結合導波路にミラー、反射膜などの形成や、半
導体レーザー、受光素子などの能動光素子を実装すれば
、多機能光集積回路を実現することか可能である。
``Operation''] In the optically coupled waveguide, optical signals propagate between the two core waveguides without changing or interfering with each other, and at a certain coupling length, the optical signal propagates completely from one core waveguide to the other core waveguide. When the coupling length is different, the optical signals propagate in sync with each other. Therefore, if rare earth elements are doped not only in the core waveguide but also in the cladding, the cladding between the core waveguides can also greatly contribute to the laser function and amplification function, resulting in more efficient lasers and amplifiers. It is possible to realize this. Furthermore, by forming a mirror, a reflective film, etc. on the optical coupling waveguide, and mounting an active optical element such as a semiconductor laser or a light receiving element, it is possible to realize a multifunctional optical integrated circuit.

[実施例] 第1図に本発明の光結合導波路の実施例を示す。[Example] FIG. 1 shows an embodiment of the optical coupling waveguide of the present invention.

同図(a)は平面図、(b)はその側面図を示したもの
である。半導体、ガラス、強誘電体、磁性体なとよりな
る基板1」二に屈折率かnbのバッファ層2を設け、そ
の上に屈折率かnc(nc>nb)で略断面矩形状のコ
ア導波路3−1および3−2を形成させ、そしてその上
全体を屈折率かncl (ncl< nc )のクラッ
ド4で覆った構造である。希土類元素はコア導波路3−
1.3−2およびクラッド4に添加されている。2つの
コア導波路3−1および3−2は近接して配置された結
合部5を有しており、その結合長Ωを完全結合長L(コ
ア導波路3−1へ入射した光信号6がコア導波路3−2
へ完全に移り変わるのに要する長さ)に対して、 n Ω −(n=1. 3. 5・・・)  ・・・ (1
)のように選ぶと3d13のカプラとして動作する。ま
たコア導波路3−1へ入射した波長λ1.λ2の光信号
を7−1へ波長λ1を7−2へ波長λ2をそれぞれ分波
させるには、波長λ1およびλ2に対する完全結合長を
それぞれL(λ1)およびL(λ2)とすると、 のように選べばよい。
3(a) is a plan view, and FIG. 2(b) is a side view thereof. A buffer layer 2 with a refractive index of nb is provided on a substrate 1 made of semiconductor, glass, ferroelectric material, or magnetic material, and a core conductor having a substantially rectangular cross section with a refractive index of nb (nc>nb) is provided thereon. It has a structure in which wave paths 3-1 and 3-2 are formed, and the entire top thereof is covered with a cladding 4 having a refractive index of ncl (ncl<nc). Rare earth elements are core waveguide 3-
1.3-2 and cladding 4. The two core waveguides 3-1 and 3-2 have coupling portions 5 arranged close to each other, and the coupling length Ω is defined as the complete coupling length L (the optical signal 6 incident on the core waveguide 3-1). is the core waveguide 3-2
n Ω − (n=1. 3. 5...) ... (1
), it operates as a 3d13 coupler. Moreover, the wavelength λ1. which is incident on the core waveguide 3-1. In order to demultiplex the optical signal of λ2 to 7-1, the wavelength λ1 to 7-2, and the wavelength λ2 to 7-2, the complete coupling lengths for the wavelengths λ1 and λ2 are respectively L(λ1) and L(λ2), as follows. All you have to do is choose.

ここで、クラッド4内に希土類元素か添加されていない
と、結合部5のクラッド4内を伝搬する光信号のレーサ
ー発振、あるいは増幅作用が促進されない。これに対し
て、クラッド4に希土類元索か添加してあれば、」二記
作用が促進され、非常に効率の良いレーザー発振、ある
いは増幅作用を実現させることができる。すなイっち、
活性導波路長を等価的に長くさせる効果がある。
Here, unless a rare earth element is added to the cladding 4, the laser oscillation or amplification effect of the optical signal propagating within the cladding 4 of the coupling portion 5 will not be promoted. On the other hand, if a rare earth element is added to the cladding 4, the two effects are promoted and extremely efficient laser oscillation or amplification effect can be realized. Sunaichi,
This has the effect of equivalently increasing the active waveguide length.

第2図から第6図までは本発明の種々の光結合導波路の
結合部の断面図を示したものである。
2 to 6 show cross-sectional views of coupling portions of various optical coupling waveguides of the present invention.

第2図は3つのコア導波路3−1.3−2 33を並設
させた場合である。例えば、コア導波路3−1へ入射し
た光信号をコア導波路3−23−3へ分岐、あるいは分
波させるような場合に用いることかできる。
FIG. 2 shows a case where three core waveguides 3-1, 3-2, and 33 are arranged in parallel. For example, it can be used to branch or demultiplex an optical signal incident on the core waveguide 3-1 to the core waveguide 3-23-3.

第3図も3つのコア導波路3−1.3−4.35を並設
させた実施例である。これはコア導波路3−コに対して
3−4.3−5の構造寸法、屈折率なとを異ならせるこ
とによって、光分岐器、光合分波器、光共振器などを構
成するのに好適な構成である。
FIG. 3 also shows an embodiment in which three core waveguides 3-1.3-4.35 are arranged in parallel. This can be used to configure optical splitters, optical multiplexers/demultiplexers, optical resonators, etc. by varying the structural dimensions and refractive index of 3-4, 3-5 for the 3 core waveguides. This is a suitable configuration.

第4図も同様にしてコア導波路3−1に対して、コア導
波路3−4の構造寸法、屈折率なとを異ならせることに
よって、光フィルタ、光共振器、光合分波器なとを実現
さぜることかできる。
Similarly, in FIG. 4, optical filters, optical resonators, and optical multiplexers and demultiplexers can be created by making the structural dimensions and refractive index of the core waveguide 3-4 different from the core waveguide 3-1. It is possible to realize this.

第5図は、今迄述べた埋込み型光結合導波路とは異なり
、リッジ型光結合導波路の例を示したものである。ずな
わち、クラッド8は今までのクラッド4に比し、薄い膜
で構成されている。
FIG. 5 shows an example of a ridge-type optical coupling waveguide, which is different from the buried optical coupling waveguide described so far. That is, the cladding 8 is composed of a thinner film than the conventional cladding 4.

第6図はバッファ層2かない場合の実施例である。この
場合には基板1がバッファ層2の役目をし、その屈折率
はnsに選ばれる。
FIG. 6 shows an embodiment in which the buffer layer 2 is not provided. In this case, the substrate 1 serves as a buffer layer 2, the refractive index of which is chosen to be ns.

」二記第1図から第6図の実施例において、例えば基板
1にはSiまたは5102か用いられ、バッファ層2に
は5iOzの屈折率と等しくなるようにS i02 P
20!1−B20〕系のガラスが用いられる。コア導波
路3には、5i02T i 02系ガラスに、Er、N
d、Ceなどの希土類元素が少なくとも1つ添加された
ものを用いる。クラッドには5i02−P、20582
03系のガラスにEr、Nd、Ceなどの希土類元素か
添加されたものを用いる。また、導波路寸法としては、
コア内を伝搬させる信号光およびレーザ発振した場合の
発振信号光が単〜モート伝送するように選ぶ。例えば、
信号光およびレーザー発振信号光が1.5μm帯の場合
、先導波路の人。
2. In the embodiments shown in FIGS. 1 to 6, for example, Si or 5102 is used for the substrate 1, and Si02P is used for the buffer layer 2 so that the refractive index is equal to 5iOz.
20!1-B20] type glass is used. The core waveguide 3 is made of 5i02T i02 glass, Er, N
A material to which at least one rare earth element such as d, Ce, etc. is added is used. 5i02-P, 20582 for cladding
03 series glass to which rare earth elements such as Er, Nd, and Ce are added is used. In addition, the waveguide dimensions are:
The signal light propagated within the core and the oscillation signal light when laser oscillated are selected to be transmitted in single to mote mode. for example,
When the signal light and laser oscillation signal light are in the 1.5 μm band, the person in the leading wave path.

出力端に接続する単一モート光ファイバとの整合性を考
えて、コア導波路の幅および厚みは約10μm1コア導
波路とクラッドとの屈折率差は約0.4%、バッファ層
の厚みは約10μm1クラツドの厚みは約30μmとな
る。
Considering the compatibility with the single mote optical fiber connected to the output end, the width and thickness of the core waveguide is approximately 10 μm.1 The refractive index difference between the core waveguide and the cladding is approximately 0.4%, and the thickness of the buffer layer is The thickness of one cladding of approximately 10 μm is approximately 30 μm.

第7図は本発明のリング型共振器の実施例を示したもの
である。本実施例では、矢印12−1の方向からコア導
波路9−1に入射した励起光源(波長λp)に対して、
入射側には反射率9926のミラー13を設け、出射側
には反射率98%のミラー14を設けることによって、
波長λ01からλOnにわたって連続発振光を生じさせ
るようにしている。ここで、リング状の導波路10は結
合部11−1および11−2により、コア導波路91お
よび9−2と結合されている。そして、このリング状の
導波路は上記波長λ0からλnの中から所望の波長(例
えばλ(13)の光信号に結合を生じさせ、矢印12−
3のように光信号をとりたすようにしたものである。尚
、本実施例の別の利用方法としては、矢印12−1方向
より入射した波長λslからλsnの信号光および波長
λpの励起光に対して、コア導波路9−1内を伝搬する
ことによって」二記信号光を増幅させ、その信号光のう
ちある波長(例えばλs2)をリング状導波路10に結
合させ、矢印12−3方向へその波長λS2の信号光を
とり…ずようにする、いイつゆる光分波器としての使い
方も可能である。
FIG. 7 shows an embodiment of the ring-shaped resonator of the present invention. In this embodiment, for the excitation light source (wavelength λp) that entered the core waveguide 9-1 from the direction of the arrow 12-1,
By providing a mirror 13 with a reflectance of 9926 on the input side and a mirror 14 with a reflectance of 98% on the output side,
Continuous wave light is generated over wavelengths λ01 to λOn. Here, the ring-shaped waveguide 10 is coupled to core waveguides 91 and 9-2 through coupling portions 11-1 and 11-2. Then, this ring-shaped waveguide causes coupling to an optical signal of a desired wavelength (for example, λ(13)) from the wavelengths λ0 to λn, and connects the optical signal with the arrow 12-
3, it is designed to receive optical signals. In addition, as another method of using this embodiment, by propagating within the core waveguide 9-1 for the signal light with wavelengths λsl to λsn and the pumping light with wavelength λp incident from the direction of arrow 12-1, ``2 amplifying the signal light, coupling a certain wavelength (for example, λs2) of the signal light to the ring-shaped waveguide 10, and taking out the signal light with the wavelength λS2 in the direction of arrow 12-3, It is also possible to use it as a so-called optical demultiplexer.

第8図は本発明の光結合導波路を用いて多機能光集積回
路とした実施例を示したもので、ここでは励起光源とし
て用いる半導体レーザ15の波長安定化をはかるように
した例を示している。。すなわち、半導体レーザ15の
光信号をミラー13を通してコア導波路9−1内へ入射
させ、発振した波長の光信号をミラー14を通して矢印
122に出射させる際に、半導体レーザ15の光信号の
一部をリング状導波路10を通してコア導波路9−2内
へ導びき、矢印12−3方向へ伝搬させて受光素子16
で受光させ、電気受信回路18を通して電気駆動回路1
7ヘフイードバツクさせることにより、半導体レーサー
15の波長を安定化させる。そして結果的に矢印12−
2方向へ出射させる発振光の波長安定化を行なわせるこ
とか可能となる。
FIG. 8 shows an embodiment of a multifunctional optical integrated circuit using the optical coupling waveguide of the present invention. Here, an example is shown in which the wavelength of the semiconductor laser 15 used as the excitation light source is stabilized. ing. . That is, when the optical signal of the semiconductor laser 15 is made to enter the core waveguide 9-1 through the mirror 13 and the optical signal of the oscillated wavelength is emitted in the direction of the arrow 122 through the mirror 14, a part of the optical signal of the semiconductor laser 15 is is guided into the core waveguide 9-2 through the ring-shaped waveguide 10 and propagated in the direction of the arrow 12-3 to the light receiving element 16.
The light is received by the electric drive circuit 1 through the electric reception circuit 18.
7 to stabilize the wavelength of the semiconductor laser 15. And as a result, arrow 12-
It becomes possible to stabilize the wavelength of the oscillated light emitted in two directions.

尚、本発明は上記実施例に限定されない。まず、コア導
波路、クラッドのガラス組成は5IO2にB、P、Ti
、Ge、Fなどの添加物を少なくとも一つ含んだものに
希土類元素を添加したもの、あるいはSiO2にアルカ
リ金属、アルカリ土類金属などの添加物やB、P、Ti
、Ge、Fなどの添加物を少なくとも一つ含んだものに
希土類元素を添加したものを用いることかできる。また
、バッファ層には5i02あるいは5i02にB。
Note that the present invention is not limited to the above embodiments. First, the glass composition of the core waveguide and cladding is 5IO2, B, P, and Ti.
, Ge, F, etc., and a rare earth element added to it, or SiO2 with an alkali metal, alkaline earth metal, etc. additive, B, P, or Ti.
It is also possible to use a material containing at least one additive such as , Ge, or F to which a rare earth element is added. In addition, 5i02 or B is added to 5i02 in the buffer layer.

P、Ti、Ge、F、アルカリ金属、アルカリ土類金属
などの添加物の少なくとも一つ含んたものを用いること
ができる。
A material containing at least one of additives such as P, Ti, Ge, F, alkali metals, and alkaline earth metals can be used.

[発明の効果コ 以上述べたように、本発明はプレーす構造の光結合導波
路のコア導波路およびクラッドに希土類元素を添加する
ことにより、結合部におけるクラッド内を伝搬する光信
号のレーザー発振、あるいは増幅作用を促進させること
ができ、非常に効率の良いレーザー発振、あるいは増幅
作用を実現させることができる。しかも光能動素子やミ
ラ反射膜なとを容易に実装できるので、小形で多機能な
光集積回路を実現することか可能となる。
[Effects of the Invention] As described above, the present invention improves the laser oscillation of the optical signal propagating in the cladding at the coupling part by adding a rare earth element to the core waveguide and the cladding of the optical coupling waveguide having a planar structure. Alternatively, the amplification effect can be promoted, and extremely efficient laser oscillation or amplification effect can be realized. Furthermore, since optical active elements and mirror reflective films can be easily mounted, it becomes possible to realize compact and multifunctional optical integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第7図は本発明の光結合導波路の実施例を
示したもので、第2図から第6図は本発明の光結合導波
路の種々の実施例の断面図を示したものである。第8図
は本発明の光結合導波路を用いて多機能光集積回路とし
た実施例を示したものである。第9図は従来の光フアイ
バレーザーの構成例を、第10図は従来の光フアイバ増
幅器の構成例をそれぞれ示したものである。 1、基板、 2、バッファ層、 3−1.3−2.3−3. 3−4゜ 9−1.!J−2:コア導波路、 8・クラッド、 :結合部、 0:リング状導波路、 3.14:ミラ 5:半導体レーザ、 6:受光素子。 第 閉 (b) 7C 潴 肥 第 圀 第 図 一電ニ了・− フ、7ド 4 第 閏 笥
1 and 7 show examples of the optical coupling waveguide of the present invention, and FIGS. 2 to 6 show cross-sectional views of various embodiments of the optical coupling waveguide of the present invention. It is something. FIG. 8 shows an embodiment of a multifunctional optical integrated circuit using the optical coupling waveguide of the present invention. FIG. 9 shows an example of the configuration of a conventional optical fiber laser, and FIG. 10 shows an example of the configuration of a conventional optical fiber amplifier. 1. Substrate, 2. Buffer layer, 3-1.3-2.3-3. 3-4°9-1. ! J-2: core waveguide, 8. cladding, : coupling part, 0: ring-shaped waveguide, 3.14: mirror 5: semiconductor laser, 6: light receiving element. Closed (b) 7C Panfei Day 1 Figure 1 Denryo - F, 7 Do 4th Interchange

Claims (1)

【特許請求の範囲】 1、低屈折率(屈折率nc1)のクラッドを介して少な
くとも2つのコア導波路(屈折率nc、nc>nc1)
を並列に配置させた光結合導波路において、該コア導波
路およびクラッドに希土類元素を添加したことを特徴と
する光結合導波路。 2、第1項記載の光結合導波路において、導波路構造と
して、埋込み型、あるいはリッジ型を用いたことを特徴
とする光結合導波路。 3、第1項記載の光結合導波路において、光結合導波路
として、方向性結合器、あるいはリング共振器を用いた
ことを特徴とする光結合導波路。 4、第1〜第3項記載の光結合導波路において、その入
出力端もしくは導波路の途中にミラー、反射膜や、半導
体レーザ、受光素子などの能動光素子、電子回路を実装
した光結合導波路。
[Claims] 1. At least two core waveguides (refractive index nc, nc>nc1) via a cladding with a low refractive index (refractive index nc1)
1. An optical coupling waveguide in which the core waveguide and the cladding are doped with a rare earth element. 2. An optical coupling waveguide according to item 1, characterized in that a buried type or a ridge type is used as the waveguide structure. 3. An optical coupling waveguide according to item 1, characterized in that a directional coupler or a ring resonator is used as the optical coupling waveguide. 4. In the optical coupling waveguide described in items 1 to 3, an optical coupling in which a mirror, a reflective film, an active optical element such as a semiconductor laser, a light receiving element, or an electronic circuit is mounted at the input/output end or in the middle of the waveguide. waveguide.
JP1042508A 1989-02-22 1989-02-22 Rare earth element doped optical coupling waveguide Expired - Fee Related JP2730954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042508A JP2730954B2 (en) 1989-02-22 1989-02-22 Rare earth element doped optical coupling waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1042508A JP2730954B2 (en) 1989-02-22 1989-02-22 Rare earth element doped optical coupling waveguide

Publications (2)

Publication Number Publication Date
JPH02222181A true JPH02222181A (en) 1990-09-04
JP2730954B2 JP2730954B2 (en) 1998-03-25

Family

ID=12638006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042508A Expired - Fee Related JP2730954B2 (en) 1989-02-22 1989-02-22 Rare earth element doped optical coupling waveguide

Country Status (1)

Country Link
JP (1) JP2730954B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075667A (en) * 2001-08-28 2003-03-12 Agilent Technol Inc Columnar integrated circuit and manufacturing method for columnar integrated circuit
US6693736B1 (en) 1992-09-10 2004-02-17 Fujitsu Limited Optical circuit system and components of same
WO2010024263A1 (en) * 2008-09-01 2010-03-04 セントラル硝子株式会社 Interference type optical fiber gyro

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329986A (en) * 1986-07-23 1988-02-08 Hoya Corp Light-waveguide type laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329986A (en) * 1986-07-23 1988-02-08 Hoya Corp Light-waveguide type laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693736B1 (en) 1992-09-10 2004-02-17 Fujitsu Limited Optical circuit system and components of same
JP2003075667A (en) * 2001-08-28 2003-03-12 Agilent Technol Inc Columnar integrated circuit and manufacturing method for columnar integrated circuit
WO2010024263A1 (en) * 2008-09-01 2010-03-04 セントラル硝子株式会社 Interference type optical fiber gyro

Also Published As

Publication number Publication date
JP2730954B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JPH11237517A (en) Optical waveguide element
JPH08304664A (en) Wavelength demultiplexing element
JPH10160954A (en) Optical waveguide having nonlinear thin film
JP3407046B1 (en) Interferometer type optical isolator and optical circulator
JPH02222181A (en) Rare earth element added light-coupled waveguide
JPH0371115A (en) Optical circuit for light amplification
JP2721537B2 (en) Glass waveguide
JP2788652B2 (en) Method for manufacturing rare earth element-doped glass waveguide
JP2842959B2 (en) Optically pumped waveguide loop laser
JP2730955B2 (en) Rare earth element-doped long glass waveguide and method of manufacturing the same
JP3125902B2 (en) Star type optical wiring circuit
JP2656971B2 (en) Glass waveguide laser array
JP3420501B2 (en) Optical branch coupler
JP2667264B2 (en) Active optical multiplexer / demultiplexer
Chandran et al. High Performance Silicon Nitride Passive Optical Components on Monolithic Silicon Photonics Platform
JP2635188B2 (en) Optical active module
JPH11174268A (en) Optical functional element
JP3209300B2 (en) Optical circuit for dispersion compensation
JP2788538B2 (en) Optical amplifier
JPH0576614B2 (en)
JPS63221692A (en) Semiconductor light amplifier
JP3103417B2 (en) Waveguide type optical demultiplexing circuit
JPH05283770A (en) Optical signal amplifier
JP2849220B2 (en) Optical circuit with semiconductor module
JP3197605B2 (en) Semiconductor optical amplifier

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees