JP2656972B2 - Multi-wavelength glass waveguide laser array - Google Patents

Multi-wavelength glass waveguide laser array

Info

Publication number
JP2656972B2
JP2656972B2 JP4251089A JP4251089A JP2656972B2 JP 2656972 B2 JP2656972 B2 JP 2656972B2 JP 4251089 A JP4251089 A JP 4251089A JP 4251089 A JP4251089 A JP 4251089A JP 2656972 B2 JP2656972 B2 JP 2656972B2
Authority
JP
Japan
Prior art keywords
waveguide
glass
core
wavelength
laser array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4251089A
Other languages
Japanese (ja)
Other versions
JPH02222187A (en
Inventor
正隆 中沢
康郎 木村
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP4251089A priority Critical patent/JP2656972B2/en
Publication of JPH02222187A publication Critical patent/JPH02222187A/en
Application granted granted Critical
Publication of JP2656972B2 publication Critical patent/JP2656972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0637Integrated lateral waveguide, e.g. the active waveguide is integrated on a substrate made by Si on insulator technology (Si/SiO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は波長の異なった複数のガラス導波路レーザー
をアレイ状に配置させた多波長ガラス導波路レーザーア
レイに関するものである。
The present invention relates to a multi-wavelength glass waveguide laser array in which a plurality of glass waveguide lasers having different wavelengths are arranged in an array.

[従来の技術] 近年、光ファイバのコアに希土類元素を添加した光フ
ァイバレーザーの研究が活発化し、各種レーザー光源
用、光増幅媒質用として注目されるようになってきた。
[Related Art] In recent years, research on optical fiber lasers in which a rare earth element is added to the core of an optical fiber has become active, and has been attracting attention for various laser light sources and optical amplification media.

第5図は従来の光ファイバレーザーの構成例を示した
ものである(木村、中沢:光ファイバレーザーの発振特
性とその光通信への応用、レーザー学会研究会、RTM−8
7−16,PP.31〜37,1988年1月)。これは光ファイバのコ
アに希土類元素を添加した光ファイバの両端面をレーザ
ーミラーに直に接触させるか、光ファイバの両端面に誘
電体多層膜を蒸着させて光共振器を構成したものであ
る。励起光源にはArイオンレーザー(波長514.5nm)、
色素レーザー(波長650nm)、半導体レーザー(波長830
nm)等を用いて端面励起が行われる。又上記光ファイバ
レーザーにおいて、レーザー発振波長を制御する手段と
して、光ファイバ中に添加しているP2O5のNdに対する濃
度比を変える方法が上記両氏等によって提案されてい
る。例えば、P2O5の添加により発振波長を1.09μmから
1.064μmまで移動した結果が得られている。
Fig. 5 shows a configuration example of a conventional optical fiber laser (Kimura, Nakazawa: Oscillation characteristics of optical fiber lasers and their application to optical communication, Laser Society of Japan, RTM-8
7-16, PP. 31-37, January 1988). This is an optical resonator in which both ends of an optical fiber with a rare earth element added to the core of the optical fiber are brought into direct contact with a laser mirror, or a dielectric multilayer film is deposited on both ends of the optical fiber to form an optical resonator. . The excitation light source is Ar ion laser (wavelength 514.5nm),
Dye laser (wavelength 650 nm), semiconductor laser (wavelength 830
nm) is used to excite the end face. In the above-mentioned optical fiber laser, as a means for controlling the laser oscillation wavelength, a method of changing the concentration ratio of P 2 O 5 added to the optical fiber to Nd has been proposed by the above-mentioned two parties. For example, the addition of P 2 O 5 increases the oscillation wavelength from 1.09 μm.
The result of moving to 1.064 μm is obtained.

[発明が解決しようとする課題] 前述した光ファイバレーザーは、 (1) 光ファイバのコア径が細径であるため励起パワ
ー密度が大きくなり、励起効率を上げられること、 (2) 相互作用長を長くとれること、 (3) 特に石英系ファイバの場合、低損失であるこ
と、 (4) 可撓性があること、 等の特徴がある。しかしながら波長の異なる複数個のレ
ーザーをアレイ状に構成しようとすると、実装が複雑で
あり、又小形化することも難しい。又P2O5の添加量の異
なる光ファイバを一本一本作らなければならず、作成時
間、費用がかかりすぎるという問題もある。
[Problems to be Solved by the Invention] The above-mentioned optical fiber laser has the following features. (1) Since the core diameter of the optical fiber is small, the pump power density is increased, and the pump efficiency is increased. (2) Interaction length (3) low loss, especially in the case of a silica-based fiber, and (4) flexibility. However, when a plurality of lasers having different wavelengths are arranged in an array, the mounting is complicated and it is difficult to reduce the size. In addition, optical fibers having different amounts of P 2 O 5 must be produced one by one, and there is a problem that the production time and cost are too high.

本発明の目的は、前記した従来技術の問題点を解決す
ることにある。即ち、希土類元素を添加したガラス導波
路レーザーにより構成した多波長ガラス導波路レーザー
アレイを提供することにある。
An object of the present invention is to solve the above-mentioned problems of the conventional technology. That is, an object of the present invention is to provide a multi-wavelength glass waveguide laser array constituted by a glass waveguide laser to which a rare earth element is added.

[課題を解決するための手段] 本発明は、希土類元素を含んだSiO2系ガラスにP2O5
或いはAl2O3を添加した直線状のコア導波路を基板上に
並列にN個並べ、上記夫々のコア導波路にCO2レーザー
光を照射して、夫々のコア導波路内のP2O5、或いはAl2O
3の添加量を異ならせ、該コア導波路の入、出力端面に
所望の反射率ミラーを形成してガラス導波路型共振器ア
レイを構成し、該共振器アレイの入力側に入力がM(M
≧1)で出力がN(N≧2)のM対N型光スターカプラ
を接続し、該光スターカプラの入力より励起光を入力さ
せるようにした構成である。上記構成により、ガラス導
波路型共振器アレイの出力端から、夫々波長の異なった
レーザー発振した光信号を出射させるようにしたもので
ある。
[Means for Solving the Problems] The present invention provides a SiO 2 -based glass containing a rare-earth element with P 2 O 5 ,
Alternatively, N pieces of linear core waveguides to which Al 2 O 3 is added are arranged in parallel on the substrate, and each of the core waveguides is irradiated with CO 2 laser light, and P 2 O in each of the core waveguides is irradiated. 5 or Al 2 O
3 , the desired reflection mirrors are formed at the input and output end faces of the core waveguide to form a glass waveguide type resonator array, and the input is M ( M
This is a configuration in which an M-to-N type optical star coupler whose output is N (N ≧ 2) and whose output is N (N ≧ 2) is connected, and excitation light is input from the input of the optical star coupler. With the above configuration, optical signals oscillated by laser beams having different wavelengths are emitted from the output end of the glass waveguide type resonator array.

[作用] 並列にN個並べた直線状のコア導波路への炭酸ガスレ
ーザー光のエネルギー照射量を順次変えてやれば、直線
状のコア導波路内のP2O5、或いはAl2O3の蒸発量を異な
らしめることができ、結果的に上記添加物の添加量の異
なった直線状のコア導波路を得ることができる。
[Operation] By sequentially changing the energy irradiation amount of the carbon dioxide laser beam to the linear core waveguides N arranged in parallel, P 2 O 5 or Al 2 O 3 in the linear core waveguides can be obtained. Can be varied, and consequently linear core waveguides having different amounts of the above additives can be obtained.

夫々の直線状コア導波路内でのレーザー発振波長は、
P2O5或いはAl2O3の添加量に依存して異なるから、コン
パクトな構成の多波長ガラス導波路レーザーアレイを容
易に得ることができるものである。
The laser oscillation wavelength in each linear core waveguide is
Since it differs depending on the added amount of P 2 O 5 or Al 2 O 3 , a multi-wavelength glass waveguide laser array having a compact configuration can be easily obtained.

[実 施 例] 第1図に本発明の多波長ガラス導波路レーザーアレイ
の実施例を示す。同図(a)は側面図、(b)は(a)
のA−A′断面図を夫々示したものである。これはレー
ザー発振波長の異なる4つのガラス導波路レーザーをア
レイにした場合の実施例を示したものである。5はコア
3へ入力し励起光(矢印7で示す。)を4等分(矢印7
−1から7−4に分配)するための1対4型光スターカ
プラである。6はSiO2系ガラスに希土類元素を添加した
4つの直線状のコア導波路10〜13の両端にミラー8−1,
8−2を設けたガラス導波路型共振器アレイである。上
記コア導波路10〜13には、この実施例ではSiO2−P2O5
ガラスにNdを添加したガラスが用いられている。そして
コア導波路10〜13のP2O5の添加量が夫々異なっている。
このP2O5の添加量を異ならせたコア導波路10〜13を並列
に設けることによって、ミラー8を通して出射されるレ
ーザー発振光(矢印14〜17で示す。)の波長を少しずつ
異ならしめたものである。以下に第1図の詳細を述べ
る。
FIG. 1 shows an embodiment of a multi-wavelength glass waveguide laser array according to the present invention. (A) is a side view, and (b) is (a).
AA ′ cross-sectional views of FIG. This shows an embodiment in which four glass waveguide lasers having different laser oscillation wavelengths are arranged in an array. Reference numeral 5 denotes the excitation light (indicated by arrow 7) input to the core 3 and divided into four equal parts (arrow 7).
(A distribution from -1 to 7-4). Reference numeral 6 denotes mirrors 8-1 and 8 at both ends of four linear core waveguides 10 to 13 obtained by adding a rare earth element to SiO 2 glass.
8-2 is a glass waveguide type resonator array provided with 8-2. In the present embodiment, glass obtained by adding Nd to SiO 2 —P 2 O 5 glass is used for the core waveguides 10 to 13. The amount of P 2 O 5 in the core waveguide 10 to 13 are different respectively.
By providing the core waveguides 10 to 13 having different addition amounts of P 2 O 5 in parallel, the wavelength of the laser oscillation light (indicated by arrows 14 to 17) emitted through the mirror 8 is made slightly different. It is a thing. The details of FIG. 1 will be described below.

1対4型光スターカプラ5、ガラス導波路型共振器ア
レイ6は基板1(例えば、Si,ガラス,LiN6O3等)上に低
屈折率層2(屈折率ns、例えばSiO2、或いはSiO2にP,B,
Ti,Ge,Al,F等の添加物を少なくとも1種含んだガラス、
等)形成させ、その上に屈折率nc(nc>ns)のコア導波
路3を略断面矩形状にパターン化させる。その後で屈折
率nc1(nc1>nc)のクラッド4(例えば、SiO2,或いはS
iO2にP,B,Ti,Ge,Al,F等の添加物を少なくとも1種含ん
だガラス、等)全面に被覆した構成である。コア3とク
ラッド4(或いは低屈折率層2)の比屈折率差0.数%程
度に選ばれ、単一モード伝送用導波路構造に設定されて
いる。1対4型光スターカプラ5は、Y分岐器9−1,9
−2,9−3を縦続接続することによって構成されてい
る。ミラー8−1は反射率99%のものを、又ミラー8−
2には反射率98%のものが用いられる。ミラー8−1は
光スターカプラ5とガラス導波路型共振器アレイ6との
間に溝を形成させてその溝に挿入するようにするか、蒸
着によりコア導波路端面に誘電体多層膜を形成させるよ
うにして設ける。又ミラー8−2もコア導波路端面に直
に接触させるか、蒸着により端面に誘電体多層膜を形成
させるようにしてもよい。1対4型光スターカプラ5の
入力側コア3へ入射した励起光7はY分岐器9−1,9−
2,9−3によって等分配に分けられ、矢印7−1〜7−
4の方向でミラー8−1に入射する。上記各々の光信号
7−1〜7−4はガラス導波路型共振器アレイ6のコア
導波路10〜13内に入り、ミラー8−1と8−2間で共振
器を構成し、連続発振光をミラー8−2を通して矢印14
〜17のように出力させることが可能である。この構成に
おいて、P2O5の添加量を異ならせたコア導波路10〜13を
実現させる方法について説明する。
A one-to-four type optical star coupler 5 and a glass waveguide type resonator array 6 are provided on a substrate 1 (for example, Si, glass, LiN 6 O 3, etc.) on a low refractive index layer 2 (refractive index n s , for example, SiO 2 , or P to SiO 2, B,
Glass containing at least one additive such as Ti, Ge, Al, F,
Etc.), and the core waveguide 3 having a refractive index of n c (n c > n s ) is patterned on the core waveguide 3 into a substantially rectangular shape. Thereafter, the cladding 4 (for example, SiO 2 or S 2 ) having a refractive index of n c1 (n c1 > n c )
a glass containing at least one additive such as P, B, Ti, Ge, Al, F, etc. on iO 2 , etc.). The relative refractive index difference between the core 3 and the cladding 4 (or the low-refractive-index layer 2) is selected to be about 0.1%, and is set to a single-mode transmission waveguide structure. The one-to-four type optical star coupler 5 includes a Y-branch 9-1, 9
-2, 9-3 are connected in cascade. The mirror 8-1 has a reflectivity of 99%.
For 2, the one having a reflectance of 98% is used. The mirror 8-1 has a groove formed between the optical star coupler 5 and the glass waveguide resonator array 6 and is inserted into the groove, or a dielectric multilayer film is formed on the end face of the core waveguide by vapor deposition. It is provided so that Also, the mirror 8-2 may be brought into direct contact with the end face of the core waveguide, or a dielectric multilayer film may be formed on the end face by vapor deposition. The pumping light 7 incident on the input side core 3 of the one-to-four type optical star coupler 5 is Y-branched 9-1, 9-
Divided into equal distribution by 2,9-3, and arrows 7-1 to 7-
The light enters the mirror 8-1 in the direction of 4. Each of the above optical signals 7-1 to 7-4 enters the core waveguides 10 to 13 of the glass waveguide type resonator array 6, forms a resonator between the mirrors 8-1 and 8-2, and continuously oscillates. Arrow 14 through the mirror 8-2
~ 17 can be output. A method of realizing the core waveguides 10 to 13 having different amounts of P 2 O 5 added in this configuration will be described.

第2図はP2O5の添加量を異ならせたコア導波路を実現
させる方法の概略図を示したものである。同図(b)は
上面図、(a)は側面図を示したものである。これは基
板1上に低屈曲率層2を形成させ、その層2の上にコア
となるガラス膜(SiO2にP2O5とNdを添加したガラス膜)
を形成後、ホトリソグラフィ、ドライエッチングプロセ
スにより、略断面矩形状のコア導波路10〜13をパターン
化させる。この段階では上記コア導波路10〜13のP2O5,N
dの添加量は略同一である。次に第2図(b)に示すよ
うに、コア導波路10〜13の上部より炭酸ガスレーザーの
ビーム19−1,19−2,19−3を照射し、それらのビームを
矢印18−1,18−2,18−3の方向に移動させてコア導波路
10〜13を夫々加熱し、P2O5を蒸着させる。ここで、上記
ビーム19−1,19−2,19−3の矢印18−1,18−2,18−3方
向への移動速度を夫々異ならせることによって、夫々の
コア導波路10〜13中のP2O5の蒸着量を制御する。これに
よってP2O5の添加量の異なったコア導波路を実現させる
ことができる。
FIG. 2 is a schematic view showing a method for realizing a core waveguide in which the amount of P 2 O 5 added is different. FIG. 1B shows a top view, and FIG. 1A shows a side view. In this method, a low-flexibility layer 2 is formed on a substrate 1 and a glass film serving as a core is formed on the layer 2 (a glass film obtained by adding P 2 O 5 and Nd to SiO 2 ).
After the formation, the core waveguides 10 to 13 having a substantially rectangular cross section are patterned by photolithography and dry etching processes. At this stage, the P 2 O 5 , N
The addition amount of d is substantially the same. Next, as shown in FIG. 2 (b), carbon dioxide laser beams 19-1, 19-2, and 19-3 are irradiated from above the core waveguides 10 to 13, and these beams are irradiated with arrows 18-1. , 18-2, 18-3
10-13 and respectively heating, depositing a P 2 O 5. Here, by making the moving speeds of the beams 19-1, 19-2, 19-3 in the directions of arrows 18-1, 18-2, 18-3 different from each other, each of the core waveguides 10 to 13 is formed. Of P 2 O 5 is controlled. Thereby, core waveguides having different addition amounts of P 2 O 5 can be realized.

上記実施例では、コア導波路10中のP2O5の添加量が最
も多く、ついで11,12,13と順次P2O5の添加量が少なくな
るように作られる。即ち、矢印18−1,18−2,18−3で示
した炭酸ガスレーザーのビームの移動速度は18−1が一
番速く、ついで18−2,18−3となるように設定される。
こうして導波路10〜13中のP2O5の添加量を異ならせた後
コアより低屈折率層のクラッド4を全面に被服した構成
とすることができる。尚、予め第1図(b)にあるよう
に予めコア導波路10〜13上にクラッド4を覆った状態に
しておいてから、そのクラッド4の上部より、第2図と
同様に炭酸ガスレーザーのビーム19−1,19−2,19−3を
照射するようにしてコア導波路10〜13中のP2O5の蒸発量
を異ならせるようにしてもよい。その他にも、P2O5の添
加量を異ならせるべくイオン注入法によりP+をコア導波
路中に注入し、その後、熱処理を行う方法も可能であ
る。
In the above embodiment, it is made so that the addition amount of the additive amount of P 2 O 5 in the core waveguide 10 is largest, then 11, 12, 13 and sequentially P 2 O 5 is reduced. In other words, the moving speed of the carbon dioxide laser beam indicated by arrows 18-1, 18-2, 18-3 is set so that 18-1 is the fastest and then 18-2, 18-3.
The cladding 4 of the low refractive index layer from the core can be formed by the clothing over the entire surface after this manner with different addition amounts of P 2 O 5 in the waveguide 10 to 13. The cladding 4 is previously covered on the core waveguides 10 to 13 as shown in FIG. 1 (b), and then a carbon dioxide gas laser is applied from above the cladding 4 as in FIG. The beams 19-1, 19-2, and 19-3 may be irradiated to vary the evaporation amount of P 2 O 5 in the core waveguides 10 to 13. In addition, a method of implanting P + into the core waveguide by an ion implantation method so as to vary the amount of P 2 O 5 added, and then performing a heat treatment is also possible.

第3図は本発明の多波長ガラス導波路レーザーアレイ
の別の実施例を示したものである。これは第1図におけ
る1対4型光スターカプラの代わりに、2対4型光スタ
ーカプラ20を用いた場合であり、同図(a)は側面図、
(b)は(a)のA−A′断面図を示している。上記2
対4型光スターカプラ20は方向性結合器21−1〜21−3
を用いて構成されている。ガラス導波路型共振器アレイ
6でレーザー発振した光信号の約1%の光信号は、ミラ
ー8−1を透過し上記光スターカプラ20側へ漏洩し、方
向性結合器21−2,21−3を介して矢印23−1,23−2方向
へ伝搬する。従って、図示したように方向性結合器21−
2,21−3の一端に受光素子22−1,22−2を設けておけ
ば、これから夫々のレーザーの発振波長及びそれらの変
動の具合い等をモニターすることができる。
FIG. 3 shows another embodiment of the multi-wavelength glass waveguide laser array of the present invention. This is the case where a 2-to-4 optical star coupler 20 is used in place of the 4-to-1 optical star coupler in FIG. 1. FIG.
(B) shows an AA 'cross-sectional view of (a). 2 above
The pair 4 type optical star coupler 20 includes directional couplers 21-1 to 21-3.
It is configured using An optical signal of about 1% of the optical signal oscillated by the laser in the glass waveguide type resonator array 6 passes through the mirror 8-1 and leaks to the optical star coupler 20 side, so that the directional couplers 21-2, 21-. 3 and propagate in the directions of arrows 23-1 and 23-2. Therefore, as shown, the directional coupler 21-
If light receiving elements 22-1 and 22-2 are provided at one end of 2, 21-3, it is possible to monitor the oscillation wavelength of each laser and the degree of their fluctuation.

以上、実施例に基づき説明してきたが、本発明は上記
実施例に限定されない。まずアレイ状に配列させるレー
ザーアレイの数は2個以上、いくらでもよい。例えば、
ガラス導波路型共振器アレイ6のコア導波路10〜13の間
隔は百数十μm程度の間隔で形成させることができるの
で、コア導波路をアレイ状に10個並列に配設させても2m
m以下の幅である。従って、例えば、直径3インチの基
板に形成させたとすると、一度に数10個分のガラス導波
路型共振器を作ることができ、且つ上記基板を10枚以上
一度に製造プロセスに流せるので、非常に低コストに実
現できる。ミラー8−1,8−2はガラス導波路型共振器
アレイ6の両端面に全面に設ける以外に、各々のコア導
波路端面のみに設けてもよい。導波路構造は、本発明の
実施例で示した埋込み型以外に、リッジ型等を用いても
よい。又光スターカプラには1対N型、2対N型、N対
N型等を用いてもよい。更にコア導波路にはSiO2−Al2O
3系ガラスにErを添加したガラス等を用いてもよい。
As described above, the present invention has been described based on the embodiments, but the present invention is not limited to the above embodiments. First, the number of laser arrays arranged in an array may be two or more, and may be any number. For example,
Since the interval between the core waveguides 10 to 13 of the glass waveguide type resonator array 6 can be formed at intervals of about one hundred and several tens of μm, even if 10 core waveguides are arranged in parallel in an array, the distance is 2 m.
m or less. Therefore, for example, if the substrate is formed on a substrate having a diameter of 3 inches, several tens of glass waveguide resonators can be manufactured at a time, and at least ten substrates can be flowed through the manufacturing process at a time. At low cost. The mirrors 8-1 and 8-2 may be provided only on the end faces of the respective core waveguides, in addition to being provided on both end faces of the glass waveguide type resonator array 6. As the waveguide structure, other than the buried type shown in the embodiment of the present invention, a ridge type or the like may be used. Further, the optical star coupler may be of a 1: N type, a 2: N type, an N: N type, or the like. Furthermore, the core waveguide has SiO 2 -Al 2 O
3 based glass may be a glass or the like added with Er.

[発明の効果] 本発明によれば、発振波長の異なったガラス導波路レ
ーザーをアレイ状に、且つコンパクトに構成することが
できる。しかも容易に大量生産することができるので、
非常に低コストな多波長レーザー光源として提供するこ
とができる。
According to the present invention, glass waveguide lasers having different oscillation wavelengths can be formed in an array and compactly. And because it can be easily mass-produced,
It can be provided as a very low cost multi-wavelength laser light source.

【図面の簡単な説明】[Brief description of the drawings]

第1図、及び第3図は本発明の多波長ガラス導波路レー
ザーアレイの実施例を示す側面図及び断面図、第2図は
本発明のガラス導波路型共振器アレイを実現させる方法
の実施例を示す側面図及び断面図、第4図は従来の光フ
ァイバレーザーの構成例を示す説明図である。 1:基板、 2:低屈折率層、 3:コア、 4:クラッド、 5,20:スターカプラ、 6:ガラス導波路型共振器アレイ、 8−1〜8−2:ミラー、 9:Y分岐器、 10〜13:コア導波路、 21−1,12−2,12−3:方向性結合器、 22−1,22−2:受光素子。
1 and 3 are side and sectional views showing an embodiment of a multi-wavelength glass waveguide laser array according to the present invention, and FIG. 2 is an embodiment of a method for realizing a glass waveguide type resonator array according to the present invention. FIG. 4 is an explanatory view showing an example of the configuration of a conventional optical fiber laser. 1: substrate, 2: low refractive index layer, 3: core, 4: clad, 5,20: star coupler, 6: glass waveguide resonator array, 8-1 to 8-2: mirror, 9: Y-branch 10-13: core waveguide, 21-1, 12-2, 12-3: directional coupler, 22-1, 22-2: light receiving element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井本 克之 茨城県日立市日高町5丁目1番1号 日 立電線株式会社電線研究所内 (56)参考文献 特開 昭62−293684(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Katsuyuki Imoto 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Pref. )

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類元素を含んだSiO2系ガラスにP2O5
或いはAl2O3の添加量が異なる直線状のコア導波路を基
板上に並列にN個並べ、該コア導波路の入、出力端面に
所望の反射率ミラーを形成してガラス導波路型共振器ア
レイを構成し、該共振器アレイの入力側に入力がM(M
≧1)で出力がN(N≧2)のM対N型光スターカプラ
を接続し、該光スターカプラの入力より励起光を入力さ
せるようにしたことを特徴とする多波長ガラス導波路レ
ーザーアレイ。
1. An SiO 2 -based glass containing a rare earth element contains P 2 O 5 ,
Alternatively, N linear waveguides having different addition amounts of Al 2 O 3 are arranged in parallel on a substrate, and desired reflectance mirrors are formed on the input and output end faces of the core waveguide to form a glass waveguide type resonance. A resonator array is formed, and an input is M (M
A multi-wavelength glass waveguide laser characterized by connecting an M-to-N type optical star coupler whose output is N (N ≧ 2) and whose input is an excitation light from the input of the optical star coupler. array.
【請求項2】光スターカプラ及びガラス導波路型共振器
アレイはプレーナ型の導波路構造からなり、基板上に形
成された低屈折率のガラス層の中に高屈折率の略断面矩
形状のコア導波路を有する構造で構成したことを特徴と
する請求項1記載の多波長ガラス導波路レーザーアレ
イ。
2. An optical star coupler and a glass waveguide type resonator array having a planar type waveguide structure, wherein a high refractive index substantially rectangular cross section is formed in a low refractive index glass layer formed on a substrate. 2. The multi-wavelength glass waveguide laser array according to claim 1, wherein the multi-wavelength glass waveguide laser array has a structure having a core waveguide.
【請求項3】コア導波路としてNdとP2O5を含んだSiO2
ガラスを用いたことを特徴とする請求項1又は2記載の
多波長ガラス導波路レーザーアレイ。
3. The multi-wavelength glass waveguide laser array according to claim 1, wherein an SiO 2 glass containing Nd and P 2 O 5 is used as the core waveguide.
【請求項4】コア導波路としてErとAl2O3を含んだSiO2
系ガラスを用いたことを特徴とする請求項1又は2記載
の多波長ガラス導波路レーザーアレイ。
4. A SiO 2 containing Er and Al 2 O 3 as a core waveguide.
3. The multi-wavelength glass waveguide laser array according to claim 1, wherein a system glass is used.
【請求項5】導波路構造は埋込み型、或いはリッジ型か
らなることを特徴とする請求項1又は2記載の多波長ガ
ラス導波路レーザーアレイ。
5. The multi-wavelength glass waveguide laser array according to claim 1, wherein the waveguide structure is of a buried type or a ridge type.
【請求項6】光スターカプラにはY分岐器、方向性結合
器、或いはこれらを組合せたものを用いたことを特徴と
する請求項1又は2記載の多波長ガラス導波路レーザー
アレイ。
6. The multiwavelength glass waveguide laser array according to claim 1, wherein a Y-branch, a directional coupler, or a combination thereof is used as the optical star coupler.
【請求項7】希土類元素を含んだSiO2系ガラス中のP
2O5、或いはAl2O3の添加量が略同一であるコア導波路を
N個予め作成しておき、該コア導波路の上部に炭酸ガス
レーザのビームを照射し、その照射量を異ならしめるこ
とによってコア導波路からのP2O5或いはAl2O3の蒸発量
を異ならしめ、もってP2O5或いはAl2O3の添加量の異な
るコア導波路を形成せしめてガラス導波路型共振器アレ
イとなしたことを特徴とする請求項1又は2記載の多波
長ガラス導波路レーザーアレイ。
7. P in a SiO 2 -based glass containing a rare earth element
N core waveguides having approximately the same addition amount of 2 O 5 or Al 2 O 3 are prepared in advance, and the upper portion of the core waveguide is irradiated with a carbon dioxide laser beam to vary the irradiation amount. core waveguide made different evaporation amount of P 2 O 5 or Al 2 O 3 from, with and P 2 O 5 or Al 2 O 3 amount of addition of different brought forming a core waveguide glass waveguide by resonance by 3. The multi-wavelength glass waveguide laser array according to claim 1, wherein the multi-wavelength glass waveguide laser array is a device array.
JP4251089A 1989-02-22 1989-02-22 Multi-wavelength glass waveguide laser array Expired - Fee Related JP2656972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4251089A JP2656972B2 (en) 1989-02-22 1989-02-22 Multi-wavelength glass waveguide laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4251089A JP2656972B2 (en) 1989-02-22 1989-02-22 Multi-wavelength glass waveguide laser array

Publications (2)

Publication Number Publication Date
JPH02222187A JPH02222187A (en) 1990-09-04
JP2656972B2 true JP2656972B2 (en) 1997-09-24

Family

ID=12638064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4251089A Expired - Fee Related JP2656972B2 (en) 1989-02-22 1989-02-22 Multi-wavelength glass waveguide laser array

Country Status (1)

Country Link
JP (1) JP2656972B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436919A (en) * 1994-01-25 1995-07-25 Eastman Kodak Company Multiwavelength upconversion waveguide laser
FR2786937B1 (en) * 1998-12-04 2001-02-16 Photonetics MULTI-WAVELENGTH SOURCE
US6330388B1 (en) * 1999-01-27 2001-12-11 Northstar Photonics, Inc. Method and apparatus for waveguide optics and devices
WO2002042803A2 (en) 2000-11-27 2002-05-30 Northstar Photonics, Inc. Apparatus and method for integrated photonic devices
US6813405B1 (en) 2002-03-29 2004-11-02 Teem Photonics Compact apparatus and method for integrated photonic devices having folded directional couplers
JP4655553B2 (en) * 2003-09-05 2011-03-23 住友電気工業株式会社 Optical amplifying waveguide, optical amplifying module, and optical communication system
EP2369695B1 (en) * 2004-08-25 2013-11-13 KLA-Tencor Technologies Corporation Fiber amplifier based light source for semiconductor inspection
JP2007250654A (en) * 2006-03-14 2007-09-27 Seiko Electric Co Ltd Method of manufacturing solid coloring matter laser
CN113675716A (en) * 2021-08-16 2021-11-19 厦门大学 LED (light-emitting diode) pumping multi-wavelength waveguide laser and multi-wavelength waveguide laser

Also Published As

Publication number Publication date
JPH02222187A (en) 1990-09-04

Similar Documents

Publication Publication Date Title
US6636678B1 (en) Method and apparatus for waveguide optics and devices
US8116603B2 (en) Low-loss Bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays
US6628876B1 (en) Method for making a planar waveguide
US6778319B2 (en) Side-pumped multi-port optical amplifier and method of manufacture using fiber drawing technologies
JPH1174588A (en) Pumping unit for optical fiber laser
JPH0460618A (en) Optical waveguide added with rare earth element and production thereof
US5448586A (en) Pumping arrangements for arrays of planar optical devices
JP2003515958A (en) Waveguide laser device
JP2656972B2 (en) Multi-wavelength glass waveguide laser array
US20050195472A1 (en) Integration of rare-earth doped amplifiers into semiconductor structures and uses of same
US20030002771A1 (en) Integrated optical amplifier
US20030056546A1 (en) Photonic crystal materials and devices
JP2947142B2 (en) Tunable semiconductor laser
JP2788652B2 (en) Method for manufacturing rare earth element-doped glass waveguide
US7336684B2 (en) Planar multiwavelength optical power supply on a silicon platform
JP2656971B2 (en) Glass waveguide laser array
JP2001185805A (en) Optical semiconductor device
JP3529275B2 (en) WDM light source
JPH02221902A (en) Glass waveguide
JPH11103126A (en) Semiconductor optical element and its manufacture
JP2730955B2 (en) Rare earth element-doped long glass waveguide and method of manufacturing the same
JP2004063972A (en) Semiconductor laser, and manufacturing method thereof
JP2641289B2 (en) Optical amplifier with built-in optical wavelength filter
JP2859763B2 (en) Functional glass waveguide for single mode transmission
JP2641296B2 (en) Semiconductor laser with optical isolator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees