JP3317301B2 - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JP3317301B2
JP3317301B2 JP2001237736A JP2001237736A JP3317301B2 JP 3317301 B2 JP3317301 B2 JP 3317301B2 JP 2001237736 A JP2001237736 A JP 2001237736A JP 2001237736 A JP2001237736 A JP 2001237736A JP 3317301 B2 JP3317301 B2 JP 3317301B2
Authority
JP
Japan
Prior art keywords
quartz glass
optical
waveguide
glass substrate
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001237736A
Other languages
Japanese (ja)
Other versions
JP2002090564A (en
Inventor
広明 岡野
康晴 武藤
敏和 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001237736A priority Critical patent/JP3317301B2/en
Publication of JP2002090564A publication Critical patent/JP2002090564A/en
Application granted granted Critical
Publication of JP3317301B2 publication Critical patent/JP3317301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光回路部品として
好適な平板状の光導波路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat optical waveguide suitable as an optical circuit component.

【0002】[0002]

【従来の技術】近年、光加入者システム、光CATV、
光海底ケーブルシステム、光情報処理システム等(以
下、これらを総称して本発明では「光システム」とい
う)の実現に向けた技術開発が活発に行われており、こ
れらの光システム構築には光スターカプラ、光合分波
器、光スイッチ、光変調器、波長無依存型カプラ等の光
回路部品及びこれらの光回路部品と半導体レーザやフォ
トダイオード等の光素子をアセンブルした光伝送モジュ
ールなどがキーデバイスとして不可欠である。
2. Description of the Related Art In recent years, optical subscriber systems, optical CATV,
Optical submarine cable systems, optical information processing systems, etc. (hereinafter collectively referred to as “optical systems” in the present invention) are being actively developed in technology. Optical circuit components such as star couplers, optical multiplexer / demultiplexers, optical switches, optical modulators, wavelength-independent couplers, and optical transmission modules that assemble these optical circuit components and optical elements such as semiconductor lasers and photodiodes are key. Indispensable as a device.

【0003】光回路部品としては、光ファイバ型デバイ
ス、光導波路型デバイスがあるが、光導波路型デバイス
は光ファイバ型デバイスの複数の機能を集積化すること
ができ、また小型化、低コスト化と共に量産化が期待で
きる。
As optical circuit components, there are an optical fiber type device and an optical waveguide type device. The optical waveguide type device can integrate a plurality of functions of the optical fiber type device, and can reduce the size and cost. At the same time, mass production can be expected.

【0004】光導波路には、シリコン等の半導体基板を
基板としたもの、石英ガラス基板を使用したものがある
が、後者の石英ガラス基板を使用した光導波路は光ファ
イバとの融着接続が可能、偏光依存性損失が小さいとい
う点で有利である。
There are optical waveguides using a semiconductor substrate such as silicon as a substrate and those using a quartz glass substrate. The latter optical waveguide using a quartz glass substrate can be fusion spliced with an optical fiber. This is advantageous in that the polarization dependent loss is small.

【0005】図4は石英ガラス基板を使用した光導波路
の構造の一例を示す断面図であり、41は石英ガラス基
板、42は石英ガラス基板41上に形成された矩形状の
コア導波路、43はコア導波路42を覆うように石英ガ
ラス基板41上に形成されたクラッドであり、コア導波
路42の屈折率がクラッド43の屈折率よりも高くなる
ように、コア導波路42及びクラッド43のそれぞれに
屈折率制御用のドーパントが添加されている。
FIG. 4 is a sectional view showing an example of the structure of an optical waveguide using a quartz glass substrate. Reference numeral 41 denotes a quartz glass substrate; 42, a rectangular core waveguide formed on the quartz glass substrate 41; Is a clad formed on the quartz glass substrate 41 so as to cover the core waveguide 42. The core waveguide 42 and the clad 43 are formed such that the refractive index of the core waveguide 42 is higher than that of the clad 43. Each is doped with a dopant for controlling the refractive index.

【0006】図5は図4に示した光導波路の製造方法の
一例を示す説明図である。まず、直径3インチ、厚さ1
mm程度の石英ガラスウエハ51を準備し、その上に電子
ビーム蒸着法により最終的にコア導波路となるドーパン
ト添加SiO2 系ガラス膜54を形成する(図5
(a))。次に、スパッタリング法により金属マスク5
5を形成し(図5(b))、更にその上にフォトリソグ
ラフィによりフォトレジスト56を形成する(図5
(c))。次に、反応性イオンエッチング(RIE)に
よりコア導波路52をパターン化する(図5(d))。
ここで、コア導波路52の屈折率の安定化を図る目的で
1200℃以上での高温熱処理を施しておく。次に火炎
堆積法により原料ガスを加水分解反応させてクラッドと
なるべき多孔質SiO2 系ガラス膜57を堆積させる
(図5(e))。その後、1200℃以上に加熱して多
孔質SiO2 系ガラス膜57を焼結し、透明ガラス化し
たクラッド53を得る(図5(f))。次に、各光導波
路58毎にブレード59によりダイシングを行い(図5
(g))、図4に示した光導波路を得る。
FIG. 5 is an explanatory view showing an example of a method of manufacturing the optical waveguide shown in FIG. First, 3 inches in diameter and 1 thickness
A quartz glass wafer 51 of about mm is prepared, and a dopant-added SiO 2 -based glass film 54 to be a core waveguide is finally formed thereon by an electron beam evaporation method (FIG. 5).
(A)). Next, the metal mask 5 is formed by a sputtering method.
5 (FIG. 5B), and a photoresist 56 is formed thereon by photolithography (FIG. 5B).
(C)). Next, the core waveguide 52 is patterned by reactive ion etching (RIE) (FIG. 5D).
Here, high-temperature heat treatment at 1200 ° C. or higher is performed in order to stabilize the refractive index of the core waveguide 52. Next, the raw material gas is subjected to a hydrolysis reaction by a flame deposition method to deposit a porous SiO 2 -based glass film 57 to be a clad (FIG. 5E). Thereafter, the porous SiO 2 -based glass film 57 is sintered by heating to 1200 ° C. or higher to obtain a clad 53 which is made vitrified (FIG. 5F). Next, dicing is performed for each optical waveguide 58 with a blade 59 (FIG. 5).
(G)), the optical waveguide shown in FIG. 4 is obtained.

【0007】[0007]

【発明が解決しようとする課題】図5に示す製造方法に
より2入力×16出力の導波路型光スターカプラを試作
し、この導波路型光スターカプラの16個の出力側ポー
トに、ブロック表面に所定ピッチで形成されたV溝に光
ファイバの端部を固定した光ファイバアレイを接続した
ところ、その接続損失が極めて大きいものが数多く存在
し、歩留りが極めて悪いものであった。
A prototype of a 2-input × 16-output waveguide-type optical star coupler was produced by the manufacturing method shown in FIG. 5, and 16 output-side ports of the waveguide-type optical star coupler were connected to the block surface. When an optical fiber array in which the ends of optical fibers were fixed to V-grooves formed at a predetermined pitch was connected, there were many ones with extremely large connection loss, and the yield was extremely poor.

【0008】その原因について検討した結果、製造工程
中の高温熱処理によってコア導波路間ピッチが設計値に
対して大幅に収縮していただけでなく、ものによっては
パッケージへの実装が不可能になる等、ほとんどのもの
に反りが発生していたため、これらの変形がコア導波路
と光ファイバとの軸ずれを起こす要因となっていた。こ
れらの変形は、光導波路面内、石英ガラスウエハ面内及
びウエハ間でもかなりばらつきがあり、単純に収縮量、
反り量を見込んだ設計によって解決できるものではなか
った。
As a result of studying the cause, not only the pitch between the core waveguides largely shrinks with respect to the design value due to the high-temperature heat treatment during the manufacturing process, but also, depending on the case, the mounting to the package becomes impossible. Since most of the optical fibers were warped, these deformations caused the axial deviation between the core waveguide and the optical fiber. These deformations vary considerably in the plane of the optical waveguide, the plane of the quartz glass wafer, and between wafers.
It could not be solved by designing for warpage.

【0009】また、光導波路の変形は上記した光ファイ
バとの接続不良を引き起こすだけでなく、コア導波路の
長さによって特性が左右される光合分波器、波長無依存
型カプラ等の光回路にあっては、所望の光学特性が得ら
れないという問題があった。
The deformation of the optical waveguide causes not only the above-mentioned poor connection with the optical fiber, but also an optical circuit such as an optical multiplexer / demultiplexer or a wavelength-independent coupler whose characteristics depend on the length of the core waveguide. However, there is a problem that desired optical characteristics cannot be obtained.

【0010】更に、上記の2入力×16出力の導波路型
光スターカプラに限らず、従来の光導波路では、水酸基
の存在によるものと認められる波長1.39μmの光の
吸収損失が存在していた。この原因はコア導波路膜形成
条件に起因するものと考え、その形成条件について種々
検討してみたものの、波長1.39μmの光吸収損失を
なくすことができなかった。
Furthermore, not only the above-mentioned waveguide type optical star coupler having 2 inputs × 16 outputs, but also a conventional optical waveguide has an absorption loss of 1.39 μm wavelength light recognized as being caused by the presence of a hydroxyl group. Was. The cause was considered to be due to the conditions for forming the core waveguide film, and various investigations were made on the conditions for forming the core waveguide film. However, the light absorption loss at a wavelength of 1.39 μm could not be eliminated.

【0011】本発明の目的は、上記した従来技術の課題
を解消し、軸ずれを起すことなく光ファイバと高精度に
接続することができ、しかも所望の光学特性を達成でき
ると共に波長1.39μmの光吸収損失を低減すること
のできる光導波路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, to enable high-precision connection to an optical fiber without causing axial misalignment, to achieve desired optical characteristics, and to achieve a wavelength of 1.39 μm. An object of the present invention is to provide an optical waveguide capable of reducing the light absorption loss of the optical waveguide.

【0012】また、本発明の他の目的は、光ファイバの
高精度な接続を可能とすることにより、製造歩留まりの
向上及び低価格化を達成できる光導波路を提供すること
にある。
Another object of the present invention is to provide an optical waveguide capable of improving the production yield and reducing the cost by enabling high-precision connection of optical fibers.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するために、石英ガラス基板の表面上にシリカ系ガラ
スからなる複数のコア導波路が形成され、該コア導波路
を覆うように前記石英ガラス基板の前記表面上に前記コ
ア導波路より低い屈折率を有するシリカ系ガラスからな
るクラッドが形成され光導波路において、前記石英ガ
ラス基板は、塩素を実質的に含まない純粋SiO2から
なり、水酸基濃度が300ppm以下の無水合成石英ガラ
ス基板を用いることにより、製造工程中の高温熱処理に
よる前記光導波路の収縮を抑えて前記コア導波路間ピッ
チの収縮が2μm以下となるようにしたことを特徴とす
る光導波路を提供する。本発明は、上記目的を達成する
ために、石英ガラス基板の表面上にシリカ系ガラスから
り、長さによって特性が左右される光回路を構成する
複数のコア導波路が形成され、該コア導波路を覆うよう
に前記石英ガラス基板の前記表面上に前記コア導波路よ
り低い屈折率を有するシリカ系ガラスからなるクラッド
が形成され光導波路において、前記石英ガラス基板
は、塩素を実質的に含まない純粋SiO 2 からなり、水
酸基濃度が300ppm以下の無水合成石英ガラス基板を
用いることにより、製造工程中の高温熱処理による前記
光導波路の収縮を抑えて前記光回路の所望の特性が得ら
れるようにするとともに、前記コア導波路間ピッチの収
縮が2μm以下となるようにしたことを特徴とする光導
波路を提供する。
According to the present invention, a plurality of core waveguides made of silica-based glass are formed on a surface of a quartz glass substrate so as to cover the core waveguides. In an optical waveguide in which a clad made of silica-based glass having a lower refractive index than the core waveguide is formed on the surface of the quartz glass substrate, the quartz glass substrate is made of pure SiO 2 substantially containing no chlorine. becomes, the Rukoto hydroxyl group concentration using anhydrous synthetic quartz glass substrate under 300ppm or less, the high-temperature heat treatment during the manufacturing process
The optical waveguide is prevented from contracting due to the
The optical waveguide is characterized in that the shrinkage of the optical waveguide is 2 μm or less . The present invention, in order to achieve the above object, Ri Na <br/> silica based glass on the surface of the quartz glass substrate, characteristics constitutes the dependent optical circuit by the length
Is formed with a plurality of core waveguides, in the quartz glass the optical waveguide cladding made of silica glass is formed to have a lower refractive index than the core waveguide on said surface of the substrate so as to cover the core waveguide, The quartz glass substrate is made of pure SiO 2 containing substantially no chlorine, and is made of water.
The acid concentration is Rukoto using <br/> the following anhydrous synthetic quartz glass substrate 300 ppm, the high-temperature heat treatment during the manufacturing process
The desired characteristics of the optical circuit can be obtained by suppressing the contraction of the optical waveguide.
As well as the pitch between the core waveguides.
An optical waveguide characterized in that the shrinkage is 2 μm or less .

【0014】本発明者らは、純粋SiO2 からなる合成
石英ガラス基板にあっては、水酸基濃度が低下いほど耐
熱性が高くなることを見出した。そこで水酸基を実質的
に含まない純粋SiO2 からなる合成石英ガラス基板を
用いれば光導波路の収縮及び反りが極めて小さくなり、
光ファイバとの接続を高精度に行うことができると共
に、設計値通りの回路寸法のものが得られるため所望の
光学特性を達成できる。
The present inventors have found that, in a synthetic quartz glass substrate made of pure SiO 2, the lower the hydroxyl group concentration, the higher the heat resistance. Therefore, if a synthetic quartz glass substrate made of pure SiO 2 containing substantially no hydroxyl groups is used, the shrinkage and warpage of the optical waveguide become extremely small,
The connection with the optical fiber can be performed with high accuracy, and a circuit having a circuit size as designed can be obtained, so that desired optical characteristics can be achieved.

【0015】更に、本発明者らは、コア導波路の波長
1.39μmの光吸収損失は、基板から拡散する水酸基
の存在によることを突き止めた。そこで基板中の水酸基
を実質的になくすことで、コア導波路の波長1.39μ
mの光吸収損失を低減することができる。
Further, the present inventors have found that the light absorption loss at a wavelength of 1.39 μm of the core waveguide is due to the presence of hydroxyl groups diffused from the substrate. Therefore, by substantially eliminating the hydroxyl groups in the substrate, the wavelength of the core waveguide is 1.39 μm.
m can be reduced.

【0016】なお、上記目的を達成できる合成石英ガラ
ス基板中の水酸基濃度としては、300ppm より小さい
ことが必要であり、好ましくは100ppm より小さく、
更に好ましくは50ppm より小さくすることが望まし
い。
The hydroxyl group concentration in the synthetic quartz glass substrate that can achieve the above object needs to be less than 300 ppm, preferably less than 100 ppm.
More preferably, it is desirable to make it less than 50 ppm.

【0017】また、合成石英ガラスを製造する場合、四
塩化けい素を酸水素火炎やプラズマ炎中で分解させてシ
リカを堆積させる方法があり、また合成石英ガラス中の
水酸基を低減する手段として塩素を用いた脱水処理方法
があるが、これらの製造方法及び脱水処理方法では、ガ
ラス中に塩素が10ppm 〜100ppm 残留する。しかし
ながらこの残留塩素は、ガラスの軟化温度、即ち耐熱性
を低下させる要因となるため、本発明の合成石英ガラス
基板中には塩素が実質的に含まれていないことも重要な
条件である。
When producing synthetic quartz glass, there is a method in which silicon tetrachloride is decomposed in an oxyhydrogen flame or a plasma flame to deposit silica, and chlorine is used as a means for reducing hydroxyl groups in the synthetic quartz glass. However, in these production methods and dehydration methods, 10 to 100 ppm of chlorine remains in the glass. However, since this residual chlorine causes a reduction in the softening temperature of the glass, that is, the heat resistance, it is also an important condition that the synthetic quartz glass substrate of the present invention contains substantially no chlorine.

【0018】更に、前記合成石英ガラス基板は、10
14.5ポイズの粘度となる歪点温度が1000℃以上であ
ることが要求され、より好ましくは1050℃以上であ
ることが望ましい。なお、歪点温度とは、直径が6イン
チで厚さが0.8mmのウエハを加熱炉にセットし、50
0gの荷重をかけ各温度における伸び量を測定し、試料
の粘度が1014.5ポイズとなるときの温度をいう。歪点
温度は水酸基量の減少と共に高くなり、この歪点温度が
高いほど基板の熱変形が小さい。
Further, the synthetic quartz glass substrate has
It is required that the strain point temperature at which the viscosity becomes 14.5 poise is 1000 ° C. or higher, more preferably 1050 ° C. or higher. The strain point temperature is defined as a value obtained by setting a wafer having a diameter of 6 inches and a thickness of 0.8 mm in a heating furnace,
The elongation at each temperature is measured by applying a load of 0 g, and the temperature is the temperature at which the viscosity of the sample becomes 10 14.5 poise. The strain point temperature increases as the amount of hydroxyl groups decreases, and the higher the strain point temperature, the smaller the thermal deformation of the substrate.

【0019】なお、本発明において、「純粋SiO2
とは、基板に含まれるFe,Cu等の重金属やNa,C
a,K等のアルカリ金属,アルカリ土類金属などの金属
不純物濃度が10ppm 以下のSiO2 をいう。これら金
属不純物濃度はガラスの歪点温度,軟化温度を低下させ
たり、コア導波路に拡散してその屈折率に影響を及ぼす
ため、10ppm 以下、好ましくは1ppm 以下にしなけれ
ばならない。
In the present invention, “pure SiO 2
Means heavy metals such as Fe and Cu, Na, C
This refers to SiO 2 having a metal impurity concentration of 10 ppm or less such as an alkali metal such as a and K and an alkaline earth metal. These metal impurity concentrations must be 10 ppm or less, preferably 1 ppm or less, because they lower the strain point temperature and softening temperature of the glass, or diffuse into the core waveguide and affect its refractive index.

【0020】また、上記した無水合成石英ガラス基板を
用いた光導波路を用いて、一端側コア導波路に発光素子
または受光素子からなる光素子を接続し、他端側コア導
波路に光ファイバを接続した光モジュールを構成すれ
ば、光導波路の変形に起因した光ファイバまたは光素子
との接続不良が起きないため、歩留まりを向上させるこ
とができると共に低価格化を図ることができる。更に、
このような光モジュールを光送信器や光受信器に搭載す
れば、信頼性の高い光システムを構築することができ
る。
Further, using the optical waveguide using the above-mentioned anhydrous synthetic quartz glass substrate, an optical element comprising a light emitting element or a light receiving element is connected to one end of the core waveguide, and an optical fiber is connected to the other end of the core waveguide. If the connected optical module is configured, the connection failure with the optical fiber or the optical element due to the deformation of the optical waveguide does not occur, so that the yield can be improved and the price can be reduced. Furthermore,
If such an optical module is mounted on an optical transmitter or an optical receiver, a highly reliable optical system can be constructed.

【0021】また、光スターカプラ、光合分波器、光ス
イッチ、光変調器、波長無依存型カプラ等の光回路部品
が、例えば光ファイバ線路などの光路途中に介挿される
ような光システムにおいても、光回路部品が優れた光学
特性を有し、しかも光ファイバとの接続を高精度に行え
るため、信頼性の高い光システムを構築することができ
る。
In an optical system in which optical circuit components such as an optical star coupler, an optical multiplexer / demultiplexer, an optical switch, an optical modulator, and a wavelength-independent coupler are inserted in an optical path such as an optical fiber line. However, since the optical circuit component has excellent optical characteristics and can be connected to the optical fiber with high precision, a highly reliable optical system can be constructed.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0023】図1は本発明の一実施形態である光導波路
の構造を示す断面図である。1は石英ガラス基板、2は
石英ガラス基板1上に形成された矩形状のコア導波路、
3はコア導波路2より低い屈折率を有しコア導波路2を
覆うように石英ガラス基板1上に形成されたクラッドで
ある。コア導波路2は、例えば幅、高さが8μm×8μ
mの寸法を有し、材質として例えばTiO2 −SiO2
系ガラス等が用いられる。クラッド3は、材質として例
えばB23 −P25 −SiO2 系ガラス等が用いら
れ、コア導波路2との比屈折率差が0.3%程度となる
よう組成比が調整されている。
FIG. 1 is a sectional view showing the structure of an optical waveguide according to an embodiment of the present invention. 1 is a quartz glass substrate, 2 is a rectangular core waveguide formed on the quartz glass substrate 1,
Reference numeral 3 denotes a clad having a lower refractive index than the core waveguide 2 and formed on the quartz glass substrate 1 so as to cover the core waveguide 2. The core waveguide 2 has, for example, a width and a height of 8 μm × 8 μm.
m, and the material is, for example, TiO 2 —SiO 2
System glass or the like is used. Cladding 3, for example, B 2 O 3 -P 2 O 5 -SiO 2 based glass or the like as the material is used, the composition ratio so that the relative refractive index difference between the core waveguide 2 is about 0.3% is adjusted ing.

【0024】この図1に示す本発明の一実施形態である
光導波路において、石英ガラス基板1は、水酸基を実質
的に含まない純粋SiO2 からなる合成石英ガラス基板
(以下、無水合成石英ガラス基板という)である。
In the optical waveguide according to an embodiment of the present invention shown in FIG. 1, a quartz glass substrate 1 is a synthetic quartz glass substrate made of pure SiO 2 containing substantially no hydroxyl groups (hereinafter, an anhydrous synthetic quartz glass substrate). It is).

【0025】従来の石英ガラスウエハにあっては、光導
波路製造工程で高温熱処理を受けることにより変形が発
生していたものであるが、その従来の石英ガラスウエハ
の水酸基濃度を測定したところ、全てのウエハが100
0ppm 程度の水酸基濃度を有し、ウエハ面内で最も低い
部分でも400ppm 以上の有水合成石英ガラスであっ
た。
In the conventional quartz glass wafer, deformation has occurred due to high temperature heat treatment in the optical waveguide manufacturing process. When the hydroxyl group concentration of the conventional quartz glass wafer was measured, 100 wafers
It had a hydroxyl group concentration of about 0 ppm, and was a water-containing synthetic quartz glass of 400 ppm or more even in the lowest part on the wafer surface.

【0026】そこで、本発明者らは基板中の水酸基濃度
が基板そのものの耐熱性に関与しているものと考え、基
板中の水酸基濃度が低いものを使用したところ、水酸基
濃度が低下するに従い、製造工程中の高温熱処理を経て
も光導波路の収縮及び反りを極めて小さくできることが
わかった。これは水酸基が減少することで高温に晒され
ても基板が軟化しにくくなる、即ち耐熱性が向上するか
らである。
Therefore, the present inventors consider that the hydroxyl group concentration in the substrate is related to the heat resistance of the substrate itself, and used a substrate having a low hydroxyl group concentration. It has been found that shrinkage and warpage of the optical waveguide can be extremely reduced even after high-temperature heat treatment during the manufacturing process. This is because the decrease in the number of hydroxyl groups makes it difficult for the substrate to be softened even when exposed to a high temperature, that is, the heat resistance is improved.

【0027】実際に、従来の有水合成石英ガラスウエハ
10枚と無水合成石英ガラスウエハ10枚を用いて2入
力×16出力の導波路型光スターカプラを各ウエハから
7素子ずつ試作した。なお出力側の16ポート全体の幅
は5mmである。その結果、有水合成石英ガラス基板のも
のはコア導波路間ピッチが設計値に対して平均で約4.
5μm以上も収縮しており、ウエハ面内及びウエハ間で
もかなりのばらつき(1〜9μm)があった。これに対
し、無水合成石英ガラス基板のものは、水酸基濃度が2
00ppm 以上300ppm 未満でも収縮を2μm以下に抑
えることができ、100ppm 以下では1μm以下、50
ppm 以下では0.5μm以下に収縮を抑えることができ
た。また、反りについては有水合成石英ガラス基板のも
のは平均で1μm以上の反りがあるばかりでなく実装が
不可とされている反り量2μm以上のものが1割程度も
あったのに対し、無水合成石英ガラス基板のものは、水
酸基濃度が200ppm 以上300ppm 未満で0.8μm
以下、100ppm 以下では0.5μm以下、50ppm 以
下では0.2μm以下に反り量を抑えることができた。
Actually, a waveguide type optical star coupler of 2 inputs × 16 outputs was prototyped from each wafer using 10 conventional water-containing synthetic quartz glass wafers and 10 anhydrous synthetic quartz glass wafers. The width of the entire 16 ports on the output side is 5 mm. As a result, the pitch between the core waveguides of the hydrated synthetic quartz glass substrate is approximately 4.
It shrank by 5 μm or more, and there was considerable variation (1 to 9 μm) within the wafer surface and between wafers. On the other hand, an anhydrous synthetic quartz glass substrate has a hydroxyl group concentration of 2
The shrinkage can be suppressed to 2 μm or less even when the content is not less than 00 ppm and less than 300 ppm.
At ppm or less, shrinkage could be suppressed to 0.5 μm or less. As for the warp, the water-containing synthetic quartz glass substrate has not only a warpage of 1 μm or more on average, but also about 10% of a warp amount of 2 μm or more, which is considered to be impossible to mount. When the synthetic quartz glass substrate has a hydroxyl group concentration of 200 ppm or more and less than 300 ppm, 0.8 μm
Hereinafter, the amount of warpage could be suppressed to 0.5 μm or less at 100 ppm or less and 0.2 μm or less at 50 ppm or less.

【0028】このように、光導波路素子の変形を抑制す
るためには、合成石英ガラス基板中の水酸基濃度は30
0ppm 未満、好ましくは水酸基濃度が100ppm より小
さく、更に好ましくは50ppm より小さいことが望まし
い。
As described above, in order to suppress the deformation of the optical waveguide element, the hydroxyl group concentration in the synthetic quartz glass substrate must be 30%.
It is desirable that the hydroxyl group concentration is less than 0 ppm, preferably less than 100 ppm, and more preferably less than 50 ppm.

【0029】次に、図6に示すMZ(マッハ・ツエンダ
ー)型光干渉計及び図7に示すWDM(Wavelength div
ision Multi/demultiplexer)フィルターをそれぞれ試作
した。
Next, an MZ (Mach-Zehnder) optical interferometer shown in FIG. 6 and a WDM (Wavelength div) shown in FIG.
ision Multi / demultiplexer) filters were prototyped.

【0030】図6に示すMZ型光干渉計60は、第1コ
ア導波路61と第2コア導波路62が2カ所で近接して
2個のカプラ63,64が形成され、カプラ63とカプ
ラ64間の第1コア導波路61と第2コア導波路62の
長さが異なるように設計されている。このMZ型光干渉
計60は、例えば長距離光伝送システムや光ファイバセ
ンサの光増幅器などに用いられ、この光増幅器に用いら
れる場合には、増幅媒体から出射された例えば励起光
0.98μmと信号光1.55μmの重畳光を第1コア
導波路61の入射端に入射したとき、信号光1.55μ
mを第1コア導波路61の出射端から出力し、励起光
0.98μmを第2コア導波路の出射端から出力するよ
うに光を波長ごとに分波するものである。
In the MZ type optical interferometer 60 shown in FIG. 6, a first core waveguide 61 and a second core waveguide 62 are formed in two places close to each other to form two couplers 63 and 64. The first core waveguide 61 and the second core waveguide 62 between 64 are designed to have different lengths. The MZ type optical interferometer 60 is used for, for example, a long-distance optical transmission system or an optical amplifier of an optical fiber sensor. When the superimposed light of the signal light 1.55 μm is incident on the incident end of the first core waveguide 61, the signal light 1.55 μm
m is output from the output end of the first core waveguide 61, and the light is split for each wavelength so that 0.98 μm of the excitation light is output from the output end of the second core waveguide.

【0031】図7に示すWDMフィルター70は、入力
導波路71と複数本の出力導波路72(図では8本)と
を、長さが異なる複数の導波路からなるアレイ導波路7
5により連結したものであり、入力導波路71及び出力
導波路72とアレイ導波路75との間にはそれぞれ入力
スラブ導波路73、出力スラブ導波路74が連結されて
いる。このWDMフィルター70は、波長多重光伝送シ
ステムなどの送信機の光源部や受信機の受光部に設けら
れるものであり、入力導波路71に入射したλ1〜λ8
の信号光を分波して各波長ごとに出力導波路72の各導
波路から出射するか、もしくは出力導波路72の各導波
路から入射したλ1〜λ8の信号光を合波して入力導波
路71から出射するものである。
The WDM filter 70 shown in FIG. 7 includes an input waveguide 71 and a plurality of output waveguides 72 (eight in FIG. 7), which are arrayed waveguides 7 of a plurality of waveguides having different lengths.
5, an input slab waveguide 73 and an output slab waveguide 74 are connected between the input waveguide 71 and the output waveguide 72 and the array waveguide 75, respectively. The WDM filter 70 is provided in a light source unit of a transmitter such as a wavelength division multiplexing optical transmission system or a light receiving unit of a receiver.
The signal light of each of the wavelengths is demultiplexed and emitted from each waveguide of the output waveguide 72 for each wavelength, or the signal light of λ1 to λ8 incident from each waveguide of the output waveguide 72 is multiplexed and input and guided. The light exits from the wave path 71.

【0032】これら図6に示すMZ型光干渉計及び図7
に示すWDMフィルターをそれぞれ試作した結果、いず
れの光導波路においても、有水合成石英ガラス基板のも
のは収縮により回路寸法が小さくなり、所望の光学特性
を満足するものが30%以下であった。これに対し、無
水合成石英ガラス基板のものは収縮がほとんどないた
め、水酸基濃度が300ppm 未満で85%以上、100
ppm 以下で95%以上、50ppm 以下ではほぼ100%
のものが所望の光学特性を満足していた。
The MZ type optical interferometer shown in FIG.
As a result of trial production of each of the WDM filters shown in (1) and (2), the circuit size of any of the optical waveguides having a water-containing synthetic quartz glass substrate was reduced due to shrinkage, and 30% or less satisfied the desired optical characteristics. On the other hand, an anhydrous synthetic quartz glass substrate hardly shrinks, so that the hydroxyl group concentration is less than 300 ppm, 85% or more, and 100% or less.
95% or more at less than ppm, almost 100% at less than 50ppm
Satisfy the desired optical characteristics.

【0033】このように、光導波路素子の光学特性の面
からも、合成石英ガラス基板中の水酸基濃度は300pp
m 未満、好ましくは水酸基濃度が100ppm より小さ
く、更に好ましくは50ppm より小さいことが望まし
い。
Thus, from the viewpoint of the optical characteristics of the optical waveguide element, the hydroxyl group concentration in the synthetic quartz glass substrate is 300 pp.
m, preferably less than 100 ppm, more preferably less than 50 ppm.

【0034】なお、合成石英ガラスを製造する際に、四
塩化けい素を使用したり、塩素ガス含有雰囲気に晒し脱
水処理を行うとガラス中に塩素が取り込まれ、この残留
塩素が、ガラスの軟化温度、即ち歪点温度を低下させる
要因となる。そこで、本実施の形態では、合成石英ガラ
スを堆積する際にはメトキシシランなどの塩素を含まな
い原料ガスを使用し、また脱水処理を塩素を用いずに真
空中或いは不活性ガス雰囲気中で行うことにより、基板
中に塩素が実質的に含まれないようにしている。
When synthetic quartz glass is used, when silicon tetrachloride is used or when it is subjected to a dehydration treatment by exposing it to an atmosphere containing chlorine gas, chlorine is taken into the glass, and this residual chlorine is used to soften the glass. This is a factor that lowers the temperature, that is, the strain point temperature. Therefore, in the present embodiment, when depositing synthetic quartz glass, a source gas containing no chlorine such as methoxysilane is used, and dehydration is performed in a vacuum or in an inert gas atmosphere without using chlorine. Thereby, chlorine is not substantially contained in the substrate.

【0035】また、Fe,Cu等の重金属やNa,C
a,K等のアルカリ金属,アルカリ土類金属もガラスの
歪点温度を低下させたり、コア導波路に拡散してその屈
折率に影響を及ぼす。そこで、本発明では合成石英ガラ
スの製造において高純度の原料を使用して金属不純物濃
度を10ppm 以下、好ましくは1ppm 以下に抑制した。
Further, heavy metals such as Fe and Cu, Na, C
Alkali metals and alkaline earth metals such as a and K also lower the strain point temperature of the glass or diffuse into the core waveguide to affect the refractive index. Therefore, in the present invention, in the production of synthetic quartz glass, a high-purity raw material is used to suppress the metal impurity concentration to 10 ppm or less, preferably 1 ppm or less.

【0036】図2は各種石英ガラスにおける歪点温度と
水酸基濃度との関係を示す説明図である。ここで、歪点
温度とは、上述した通り直径が6インチで厚さが0.8
mmのウエハを加熱炉にセットし、500gの荷重をかけ
各温度における伸び量を測定し、試料の粘度が1014.5
ポイズとなる温度をいう。図2からわかる通り、従来基
板として用いられていた水酸基濃度が400ppm 以上の
有水合成石英ガラスは歪点温度が1000℃以下である
のに対し、水酸基濃度が100ppm 以下の無水合成石英
ガラスは1050℃以上である。このように水酸基濃度
による差が歪点温度すなわち耐熱性に大きく影響を及ぼ
すものであり、高温熱処理を経ても熱変形を小さくする
には、1014.5ポイズの粘度となる歪点温度が1000
℃以上、より好ましくは1050℃以上、更に好ましく
は1100℃以上(水酸基濃度が10ppm 以下)の無水
合成石英ガラスを使用すれば良い。なお、天然石英ガラ
スは、無水合成石英ガラスよりも歪点温度が高いが、数
十ppm 以上の金属不純物濃度が存在し、その金属不純物
がコア導波路に拡散して屈折率を変化させるなどの光学
特性上好ましくない影響を及ぼすため、光導波路用の基
板としては不適当である。
FIG. 2 is an explanatory diagram showing the relationship between the strain point temperature and the hydroxyl group concentration in various types of quartz glass. Here, the strain point temperature is a diameter of 6 inches and a thickness of 0.8 as described above.
Set the mm of the wafer in a heating furnace, to measure the amount of elongation at the respective temperatures under a load of 500 g, the viscosity of the sample 10 14.5
Poise temperature. As can be seen from FIG. 2, the water-based synthetic quartz glass having a hydroxyl group concentration of 400 ppm or more, which has been conventionally used as a substrate, has a strain point temperature of 1000 ° C. or less, whereas the anhydrous synthetic quartz glass having a hydroxyl group concentration of 100 ppm or less has a ° C or higher. As described above, the difference due to the hydroxyl group concentration greatly affects the strain point temperature, that is, heat resistance. To reduce thermal deformation even after high-temperature heat treatment, the strain point temperature at which the viscosity of 10 14.5 poise is reached is 1000
C. or higher, more preferably 1050.degree. C. or higher, and still more preferably 1100.degree. C. or higher (having a hydroxyl group concentration of 10 ppm or lower). Natural quartz glass has a higher strain point temperature than anhydrous synthetic quartz glass, but has a metal impurity concentration of several tens of ppm or more, and the metal impurity diffuses into the core waveguide and changes the refractive index. Since it has an unfavorable effect on optical characteristics, it is not suitable as a substrate for an optical waveguide.

【0037】次に、本発明者らは、基板の水酸基濃度が
コア導波路の波長1.39μmにおける光吸収損失に及
ぼす影響を究明するために、有水合成石英ガラス基板及
び無水合成石英ガラス基板を用いて8μm×8μmの断
面矩形で長さ6cmの直線導波路を試作し、損失波長特性
を測定した。その結果を図3(a),(b)に示す。
Next, the present inventors investigated the effects of the hydroxyl group concentration of the substrate on the light absorption loss of the core waveguide at a wavelength of 1.39 μm in order to obtain a water-containing synthetic quartz glass substrate and an anhydrous synthetic quartz glass substrate. A prototype of a straight waveguide having a rectangular section of 8 μm × 8 μm and a length of 6 cm was manufactured by using the method described above, and loss wavelength characteristics were measured. The results are shown in FIGS. 3 (a) and 3 (b).

【0038】図3(a),(b)は、それぞれ有水合成
石英ガラス基板(水酸基濃度:420ppm )、無水合成
石英ガラス基板(水酸基濃度:50ppm )を用いた直線
導波路の損失波長特性を示す説明図であり、横軸は光の
波長、縦軸は吸収損失である。図3(a)に示されてい
る通り、有水合成石英ガラス基板を用いた場合には、波
長1.39μmにおいて1dB以上の吸収ピークが現れて
いる。これに対し、図3(b)の無水有水合成石英ガラ
ス基板を用いた場合にはこの吸収ピークが認められなか
った。従って、コア導波路の波長1.39μmにおける
光吸収損失を低減するためには、コア導波路の形成条件
だけでなく、基板の水酸基濃度を低減させなければなら
ない。
FIGS. 3A and 3B show loss wavelength characteristics of a linear waveguide using a water-containing synthetic quartz glass substrate (hydroxyl concentration: 420 ppm) and an anhydrous synthetic quartz glass substrate (hydroxyl concentration: 50 ppm), respectively. FIG. 3 is an explanatory diagram showing a graph, in which the horizontal axis represents light wavelength and the vertical axis represents absorption loss. As shown in FIG. 3A, when a water-containing synthetic quartz glass substrate is used, an absorption peak of 1 dB or more appears at a wavelength of 1.39 μm. On the other hand, when the anhydrous synthetic quartz glass substrate shown in FIG. 3B was used, this absorption peak was not observed. Therefore, in order to reduce the light absorption loss of the core waveguide at a wavelength of 1.39 μm, not only the conditions for forming the core waveguide but also the hydroxyl group concentration of the substrate must be reduced.

【0039】なお、以上の説明において、各水酸基濃度
の数値は、赤外分光光度計(日本分光社製)により測定
した値である。
In the above description, the numerical value of each hydroxyl group concentration is a value measured by an infrared spectrophotometer (manufactured by JASCO Corporation).

【0040】[0040]

【発明の効果】以上詳細に説明した通り、本発明の光導
波路によれば、製造工程中に光導波路がほとんど変形し
ないため、軸ずれを起すことなく光ファイバアレイと高
精度に接続することができ、しかも所望の光学特性を達
成できる。
As described in detail above, according to the optical waveguide of the present invention, since the optical waveguide is hardly deformed during the manufacturing process, it can be connected to the optical fiber array with high precision without causing axial misalignment. And can achieve desired optical characteristics.

【0041】また、基板からコア導波路へ水酸基が拡散
することがないため、波長1.39μmの光吸収損失を
低減することができる。
Further, since hydroxyl groups do not diffuse from the substrate to the core waveguide, light absorption loss at a wavelength of 1.39 μm can be reduced.

【0042】更に、光導波路と光ファイバの高精度な接
続を可能とすることにより、光モジュールの製造歩留ま
りを向上できると共に低価格化を達成でき、しかもこの
ような光モジュールを光送信器や光受信器に搭載すれ
ば、信頼性の高い光システムを構築することができる。
Furthermore, by enabling high-precision connection between the optical waveguide and the optical fiber, the production yield of the optical module can be improved and the price can be reduced. If mounted on a receiver, a highly reliable optical system can be constructed.

【0043】また、光回路部品が優れた光学特性を有
し、しかも光ファイバとの接続を高精度に行えるため、
例えば光ファイバ線路などの光路途中に光回路部品を介
挿した光システムを、信頼性の高いシステムとして構築
することができる。
Also, since the optical circuit component has excellent optical characteristics and can be connected to the optical fiber with high precision,
For example, an optical system in which an optical circuit component is inserted in the optical path such as an optical fiber line can be constructed as a highly reliable system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態である光導波路の構造を示
す断面図である。
FIG. 1 is a cross-sectional view illustrating a structure of an optical waveguide according to an embodiment of the present invention.

【図2】各種石英ガラスにおける歪点温度と水酸基濃度
との関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a strain point temperature and a hydroxyl group concentration in various types of quartz glass.

【図3】(a),(b)はそれぞれ有水合成石英ガラス
基板、無水合成石英ガラス基板を用いた直線導波路の損
失波長特性を示す説明図である。
FIGS. 3A and 3B are explanatory diagrams showing loss wavelength characteristics of a linear waveguide using a water-containing synthetic quartz glass substrate and an anhydrous synthetic quartz glass substrate, respectively.

【図4】石英ガラス基板を使用した光導波路の構造の一
例を示す断面図である。
FIG. 4 is a cross-sectional view showing an example of the structure of an optical waveguide using a quartz glass substrate.

【図5】(a)〜(f)はそれぞれ光導波路の製造方法
の工程の一例を示す説明図である。
FIGS. 5A to 5F are explanatory views each showing an example of steps of a method for manufacturing an optical waveguide.

【図6】MZ型光干渉計の一例を示す断面図である。FIG. 6 is a sectional view showing an example of an MZ optical interferometer.

【図7】WDMフィルターの一例を示す断面図である。FIG. 7 is a cross-sectional view illustrating an example of a WDM filter.

【符号の説明】[Explanation of symbols]

1 石英ガラス基板 2 コア導波路 3 クラッド 41 石英ガラス基板 42 コア導波路 43 クラッド 51 石英ガラスウエハ 52 コア導波路 53 クラッド 54 ドーパント添加SiO2 系ガラス膜 55 金属マスク 56 フォトレジスト 57 多孔質SiO2 系ガラス膜 58 光導波路 59 ブレード 60 型光干渉計 61,62 コア導波路 63,64 カプラ 70 フィルター 71 入力導波路 72 出力導波路 73 入力スラブ導波路 74 出力スラブ導波路 75 アレイ導波路Reference Signs List 1 quartz glass substrate 2 core waveguide 3 clad 41 quartz glass substrate 42 core waveguide 43 clad 51 quartz glass wafer 52 core waveguide 53 clad 54 dopant-added SiO 2 glass film 55 metal mask 56 photoresist 57 porous SiO 2 system Glass film 58 Optical waveguide 59 Blade 60 type optical interferometer 61, 62 Core waveguide 63, 64 Coupler 70 Filter 71 Input waveguide 72 Output waveguide 73 Input slab waveguide 74 Output slab waveguide 75 Array waveguide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鴨志田 敏和 茨城県日立市日高町5丁目1番1号 日 立電線株式会社オプトロシステム研究所 内 (56)参考文献 特開 平5−181031(JP,A) 特開 平5−241035(JP,A) 特開 平6−67198(JP,A) 特開 平5−97466(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/14 G02B 6/30 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshikazu Kamoshida 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture Nippon Electric Cable Co., Ltd. Optro System Laboratory (56) References JP-A-5-181031 ( JP, A) JP-A-5-241035 (JP, A) JP-A-6-67198 (JP, A) JP-A-5-97466 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) G02B 6/12-6/14 G02B 6/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石英ガラス基板の表面上にシリカ系ガラス
からなる複数のコア導波路が形成され、該コア導波路を
覆うように前記石英ガラス基板の前記表面上に前記コア
導波路より低い屈折率を有するシリカ系ガラスからなる
クラッドが形成され光導波路において、 前記石英ガラス基板は、塩素を実質的に含まない純粋S
iO2からなり、水酸基濃度が300ppm以下の無水合成
石英ガラス基板を用いることにより、製造工程中の高温
熱処理による前記光導波路の収縮を抑えて前記コア導波
路間ピッチの収縮が2μm以下となるようにしたことを
特徴とする光導波路。
A plurality of core waveguides made of silica-based glass are formed on a surface of a quartz glass substrate, and a lower refractive index than the core waveguide is provided on the surface of the quartz glass substrate so as to cover the core waveguide. In the optical waveguide in which a clad made of silica-based glass having a refractive index is formed, the quartz glass substrate is a pure S substantially free of chlorine.
It consists iO 2, the hydroxyl group concentration by Rukoto using the following anhydrous synthetic quartz glass substrate 300 ppm, high temperatures during the manufacturing process
The core waveguide is formed by suppressing shrinkage of the optical waveguide due to heat treatment.
An optical waveguide characterized in that contraction of a pitch between paths is set to 2 μm or less .
【請求項2】石英ガラス基板の表面上にシリカ系ガラス
からなり、長さによって特性が左右される光回路を構成
する複数のコア導波路が形成され、該コア導波路を覆う
ように前記石英ガラス基板の前記表面上に前記コア導波
路より低い屈折率を有するシリカ系ガラスからなるクラ
ッドが形成され光導波路において、 前記石英ガラス基板は、塩素を実質的に含まない純粋S
iO2からなり、水酸基濃度が300ppm以下の無水合成
石英ガラス基板を用いることにより、製造工程中の高温
熱処理による前記光導波路の収縮を抑えて前記光回路の
所望の特性が得られるようにするとともに、前記コア導
波路間ピッチの収縮が2μm以下となるようにしたこと
を特徴とする光導波路。
Wherein Ri Do silica based glass on the surface of the quartz glass substrate, constituting the dependent optical circuit characteristics by the length
A plurality of core waveguides are formed in the quartz glass the optical waveguide cladding made of silica glass is formed to have a lower refractive index than the core waveguide on said surface of the substrate so as to cover the core waveguide The quartz glass substrate is made of pure S substantially free of chlorine.
consists iO 2, the hydroxyl group concentration by Rukoto anhydrous synthetic quartz glass substrate under 300ppm or less, the high temperature during the manufacturing process
Suppressing the shrinkage of the optical waveguide due to heat treatment,
In order to obtain desired characteristics,
An optical waveguide characterized in that shrinkage of the pitch between the waveguides is 2 μm or less .
【請求項3】前記無水合成石英ガラス基板は、10 14.5
ポイズの粘度となる歪点温度が1000℃以上であるこ
とを特徴とする請求項1又は2記載の光導波路。
3. An anhydrous synthetic quartz glass substrate comprising: 10 14.5
The strain point temperature at which the viscosity of poise becomes 1000 ° C or higher
The optical waveguide according to claim 1, wherein:
JP2001237736A 2001-08-06 2001-08-06 Optical waveguide Expired - Fee Related JP3317301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237736A JP3317301B2 (en) 2001-08-06 2001-08-06 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237736A JP3317301B2 (en) 2001-08-06 2001-08-06 Optical waveguide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000046750A Division JP2000193836A (en) 2000-01-01 2000-02-18 Optical waveguide, optical module and optical system

Publications (2)

Publication Number Publication Date
JP2002090564A JP2002090564A (en) 2002-03-27
JP3317301B2 true JP3317301B2 (en) 2002-08-26

Family

ID=19068766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237736A Expired - Fee Related JP3317301B2 (en) 2001-08-06 2001-08-06 Optical waveguide

Country Status (1)

Country Link
JP (1) JP3317301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672805B2 (en) * 2016-01-12 2020-03-25 セイコーエプソン株式会社 Tunable interference filter, electronic component, method for manufacturing electronic component, and electronic device
JP2021039241A (en) * 2019-09-03 2021-03-11 古河電気工業株式会社 Optical waveguide circuit, light source module, and manufacturing method for optical waveguide circuit

Also Published As

Publication number Publication date
JP2002090564A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP3203178B2 (en) Optical waveguide, optical module and optical system
EP0322744B1 (en) Optical waveguide device
CN1413309A (en) Integrated optical device and method of formation
JP3317301B2 (en) Optical waveguide
JP2002156539A (en) Optical waveguide
JP2000275470A (en) Planar optical wave circuit device with input/output fiber
JP2000193836A (en) Optical waveguide, optical module and optical system
JP3374990B2 (en) Optical circuit characteristic adjustment method
KR20010022120A (en) Method of fabricating an optical component and optical component made thereby
US20050141078A1 (en) Optical signal amplifier, optical communication module comprising same and method for fabricating same
JP4086485B2 (en) Polarization-independent directional coupler and optical circuit using the same
JP3575342B2 (en) Method for manufacturing silica glass optical waveguide
Kufner et al. Ion exchange technology for optical waveguides: Single‐and multimode planar lightwave circuits fabricated by ion exchange in glass
JP3275758B2 (en) Waveguide type optical circuit
JPH0335203A (en) Glass waveguide added with rare earth element and production thereof and glass waveguide laser and device using this waveguide
JPH07318734A (en) Quartz glass waveguide and its production
EP1659430A1 (en) Optical waveguide circuit component and production method therefor
CN219266574U (en) PLC type optical waveguide chip for optical wavelength division multiplexer
KR20030083212A (en) Optical waveguide-type filter device for flattening gain and method for manufacturing the same
KR100405280B1 (en) a making methode of a sol-gel type planer light-wave circuit
JP2603652B2 (en) Optical waveguide manufacturing method
Imoto et al. Silica glass waveguide structure and its application to a multi/demultiplexer
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
Wosinski Technology for Silica-and Silicon-based Integrated Optics
JPH11258436A (en) Optical waveguide channel and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140614

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees