JPH0353202A - Production of waveguide added with rare earth element - Google Patents

Production of waveguide added with rare earth element

Info

Publication number
JPH0353202A
JPH0353202A JP18756389A JP18756389A JPH0353202A JP H0353202 A JPH0353202 A JP H0353202A JP 18756389 A JP18756389 A JP 18756389A JP 18756389 A JP18756389 A JP 18756389A JP H0353202 A JPH0353202 A JP H0353202A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
film
core
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18756389A
Other languages
Japanese (ja)
Inventor
Masataka Nakazawa
正隆 中沢
Yasuro Kimura
康郎 木村
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP18756389A priority Critical patent/JPH0353202A/en
Publication of JPH0353202A publication Critical patent/JPH0353202A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To provide the smaller size, lower loss and multi function by adding a rare earth element with good controllability to a core waveguide which is the light propagating part of the glass waveguide having a planar structure. CONSTITUTION:A glass filter 3 for the core contg. the rare earth element is formed by using an electron beam vapor deposition device on a substrate 1 on which a buffer layer 2 having a low refractive index is formed. The substrate is thereafter heat-treated at a high temp. A metal 4 is then formed on the core glass film 3 by a sputtering device and thereafter, a photoresist film 5 is applied on the metal film 4 and is subjected to photolithography and dry etching to pattern the core glass film 3. The photoresist film 5 and the metal film 4 are removed and the entire part of the core glass waveguide 3 is coated with a clad film 6. The rare earth element is added with the good controllability into the core of the glass waveguide having the planar structure. Thus, the optical device having the small size, the low loss and the multi function is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類元素を添加したガラス導波路の製遣方法
に関するものである, [従来の技術] 光ファイバのコアに希土類元素を添加した光ファイバ増
幅器及びレーサーの研究が活発に行われるようになり、
光波通信用増幅器及びレーザーとして注目されるように
なってきた。
[Detailed description of the invention] [Industrial field of application] The present invention relates to a method for manufacturing a glass waveguide doped with rare earth elements. [Prior art] An optical fiber doped with rare earth elements in the core of an optical fiber. Research into fiber amplifiers and racers began to be actively conducted.
It has started to attract attention as an amplifier and laser for light wave communication.

従来、光ファイバ増幅器として第71図に示すように、
希土類元素のErを添加した光ファイバ20内に信号光
を伝搬させ、この信号光の伝搬方向に対して励起光を光
ファイバカプラ21を用いて合成し、反転分布状態を形
或させることにより、信号光を増幅させ、出力側より光
ファイバカプラ22で励起光を分離させる方法が検討さ
れている(木村,中沢:光ファイバレーザーの発振特性
とその光通信への応用,レーザー学会研究会, RTH
−87−16.1)l).31〜37. 1988年1
月}。
Conventionally, as shown in FIG. 71, as an optical fiber amplifier,
By propagating the signal light in the optical fiber 20 doped with the rare earth element Er, and combining the excitation light with respect to the propagation direction of the signal light using the optical fiber coupler 21 to form a population inversion state, A method of amplifying the signal light and separating the pumping light from the output side with an optical fiber coupler 22 is being considered (Kimura, Nakazawa: Oscillation characteristics of optical fiber lasers and their application to optical communications, Laser Society Research Group, RTH
-87-16.1)l). 31-37. 1988 1
Month}.

[発明が解決しようとする課題] 光ファイバ増幅器及びレーザーは、(1)コア径が10
μ個程度と細径であるため、励起パワー密度が大きくな
り励起効率が上がること、(2)相互作用長を長くとれ
ること、(3)石英系光ファイバの場合、非常に低損失
であること、などの特徴がある。しかしながら、半導体
レーザー.受光素子,光変調回路,光分岐・結合回路.
光スイッチ回路,光合分波回路などと共に実装したシス
テムを構成しようとする場合に、それぞれが個別部品で
あるので、小形化、低損失化がむずかしいといった問題
点がある。また、個別部品を個々に光軸調整して配置さ
せなければならないので、調整時間が膨大にかかり、コ
スト高になる.信頼性に問題がある,などの課題もあっ
た。
[Problems to be solved by the invention] The optical fiber amplifier and laser have (1) a core diameter of 10
Due to its small diameter of about μ, the pumping power density increases and the pumping efficiency increases; (2) the interaction length can be long; and (3) in the case of silica-based optical fibers, the loss is extremely low. , and other characteristics. However, semiconductor lasers. Photodetector, optical modulation circuit, optical branching/coupling circuit.
When trying to configure a system in which optical switching circuits, optical multiplexing/demultiplexing circuits, etc. are mounted, there is a problem that it is difficult to downsize and reduce loss because each is an individual component. In addition, since the optical axis of each individual component must be adjusted and placed individually, it takes a huge amount of adjustment time and increases costs. There were also issues such as reliability issues.

本発明の目的は、前記した従来技術の問題点を解消し、
小形.低損失,多機能性を実現させるために、プレーナ
構造のガラス導波路の光伝搬部分であるコア導波路に希
土類元素を制御性良く添加させることができるガラス導
波路の製造方法を提供することにある, [課題を解決するだめの手段] 本発明の希土類元素添加導波路の製造方法は、次の各プ
ロセス(a)〜(d)からなる。
The purpose of the present invention is to solve the problems of the prior art described above,
Small size. In order to achieve low loss and multifunctionality, we provide a method for manufacturing a glass waveguide that allows rare earth elements to be added with good control to the core waveguide, which is the optical propagation part of a glass waveguide with a planar structure. [Means for Solving the Problems] The method for manufacturing a rare earth element-doped waveguide of the present invention consists of the following processes (a) to (d).

(a)希土類元素,屈折率制御用酸化物,S i 02
の粉末を混合し、固体化したタブレノトを電子ビーム蒸
着法により蒸発させて、低屈折率層を有する基板上に該
混合物のガラス膜を形成するプロセス、 (b)前記基板を高温熱処理するプロセス、(c)ホト
リソグラフィ,ドライエッチングプロセスにより前記ガ
ラス膜を略矩形状に加工するプロセス、 (d)前記加工した膜全面に低屈折率のカラス膜を被覆
するプロセス。
(a) Rare earth element, oxide for controlling refractive index, S i 02
A process of mixing powders of and evaporating the solidified tablenot by electron beam evaporation to form a glass film of the mixture on a substrate having a low refractive index layer; (b) a process of heat-treating the substrate at a high temperature; (c) A process of processing the glass film into a substantially rectangular shape by photolithography and dry etching processes; (d) A process of coating the entire surface of the processed film with a glass film having a low refractive index.

上記希土類元素としては、希土類元素の酸化物を用いた
り、Fを含んだ希土類元素を用いることができ、また、
上記希土類元素が2種類以上含まれていても良い。
As the rare earth element, an oxide of a rare earth element or a rare earth element containing F can be used, and
Two or more types of the above rare earth elements may be included.

[作用] ガラス導波路の光伝搬部分であるコア部分に希土類元素
を添加して、レーザ.増幅器1あるいは増幅機能付きの
各種光回路を実現する際に、励起光の出力.導波路長が
定められている場合には希土類元素の添加量を制御する
必要がある.しかしながら、ガラス導波路中へ希土類元
素を制御よく添加させる製造方法はまだ報告されていな
い。
[Function] Rare earth elements are added to the core portion of the glass waveguide, which is the light propagation portion, to generate a laser beam. When implementing the amplifier 1 or various optical circuits with an amplification function, the output of pumping light. When the waveguide length is fixed, it is necessary to control the amount of rare earth elements added. However, a manufacturing method for adding rare earth elements into a glass waveguide in a well-controlled manner has not yet been reported.

本発明は、低屈折率層の形成された基板上に、電子ビー
ム蒸着装置を用いて希土類元素を含むコア用ガラス膜を
形成させ、その後、高温熟処理.ホトリソグラフィ,ド
ライエッチング,及び低屈折率ガラス膜形或プロセスに
よりガラス導波路を製造する方法であり、特に、コア用
ガラス膜の形或方法に特徴がある.即ち、希土類元素,
屈折率制御用酸化物,及びSi02の粉末を混合し、ホ
ットプレス等で固めた後、焼結して、粒状,板状,ある
いは棒状のタブレットとし、このタブレットを電子ビ、
一ム蒸着法により、例えば10−’〜10−410『r
の電子ビーム蒸着装置中の酸素雰囲気中で、蒸発させて
、コア用ガラス膜を形威させる方法である. ここで希土類元素としては、エルビウムEr,ネオジム
Nd ,イヴテルビウムYb,セリウムCe.ホルミウ
ムHo,ツリウムTn+等の17元素の少なくも一種を
含んだものを言う。また屈折率制御用酸化物としては、
リンP,ゲルマニウムGe,チタンT+,アルミニウム
Aj,亜鉛Zn,ホウ素B,フッ素F等を少なくも一種
含んだ酸化物を言う. [実施例] 第1図に本発明の希土類元素添加導波路の製造方法の実
施例を示す。同図(a)〜(11)は製造方法の工程を
示したものである。
In the present invention, a core glass film containing a rare earth element is formed on a substrate on which a low refractive index layer is formed using an electron beam evaporation apparatus, and then subjected to high temperature aging treatment. This is a method of manufacturing a glass waveguide using photolithography, dry etching, and a process using a low refractive index glass film, and is particularly characterized by the shape and method of the glass film for the core. That is, rare earth elements,
The refractive index controlling oxide and SiO2 powder are mixed, hardened using a hot press, etc., and then sintered to form a granular, plate-like, or rod-like tablet.
For example, 10-'~10-410'r
In this method, the glass film for the core is formed by evaporation in an oxygen atmosphere in an electron beam evaporator. Here, the rare earth elements include erbium Er, neodymium Nd, eveterbium Yb, cerium Ce. A substance containing at least one of 17 elements such as holmium Ho and thulium Tn+. In addition, as an oxide for controlling the refractive index,
An oxide containing at least one of phosphorus P, germanium Ge, titanium T+, aluminum Aj, zinc Zn, boron B, fluorine F, etc. [Example] FIG. 1 shows an example of the method for manufacturing a rare earth element-doped waveguide of the present invention. Figures (a) to (11) show the steps of the manufacturing method.

まず(a)に示すように、基板1(S Ga As ,Si 02系カラス.LiNb03,サ
ファイアなど)上にバッファ層2(屈折率Nb,たとえ
ばSi02.あるいはS102に屈折率制御用添加物と
してB,P,Ti ,Ge ,F,AJJsnなどを少
なくとも一種含んだもの)を数μ−〜10数μ沼の厚み
に形或させる。
First, as shown in (a), a buffer layer 2 (refractive index Nb, for example Si02. , P, Ti, Ge, F, AJJsn, etc.) is formed to a thickness of several microns to several tens of microns.

次に(b)に示すように、バッファ層2の上にコアガラ
スWA3を数μm〜10μ−形成し、その後、1000
゜C前後の高温度で上記基板を熱処理する。
Next, as shown in (b), a core glass WA3 of several μm to 10 μm is formed on the buffer layer 2, and then
The substrate is heat-treated at a high temperature of around .degree.C.

ここで、コアガラス膜3の形成方法は第2図に示すよう
な電子ビーム蒸着法により行なう。すなわち、真空排気
系l1によって高真空に保たれた電子ビーム蒸着装置7
内に蒸発源9を設け、この蒸発源9内にタブレット10
を入れておく,このタブレット10は、少なくとも希土
類元素.屈折率制御用酸化物、SiO2の粉末を混合し
、ボヅ1〜プレスでかためた後、焼結して、粒状,板状
あるいは棒状のいずれかのタブレノトにしたものである
,コアガラス膜3内への希土類元素の添加量の#I御は
上記粉末状態で調合する段階で行なうことができる。ま
た、コアガラス膜3の屈折率nW  (nw>nb)も
、上記端末状態で屈折率制御用酸化#’lJ (Ti 
, Ge , P, AJI, Zn , SnB,F
などを少なくと,も一種含んだ酸化物)の量を調節する
ことによって制御することかできる。
Here, the core glass film 3 is formed by an electron beam evaporation method as shown in FIG. That is, the electron beam evaporation device 7 is kept in a high vacuum by the vacuum evacuation system l1.
An evaporation source 9 is provided inside the evaporation source 9, and a tablet 10 is placed inside the evaporation source 9.
This tablet 10 contains at least rare earth elements. A core glass film that is made by mixing powder of SiO2, an oxide for controlling the refractive index, hardening it with a bottle press, and then sintering it to form a tablet in the shape of a granule, plate, or rod. The amount of rare earth element to be added to #3 can be controlled at the stage of preparing the powdered material. Further, the refractive index nW (nw>nb) of the core glass film 3 is also changed to oxidation #'lJ (Ti
, Ge, P, AJI, Zn, SnB,F
This can be controlled by adjusting the amount of oxides containing at least one type of oxide.

第2図において、タブレット10の上方には基板ホルタ
8が設けられ、このポルダ8に基板(バッファ層2付き
)■が10枚以上はりつけられている.基板lは基板ホ
ルダ8の上部に設けられた加熱装置(図示せず)により
、約300〜350゜Cに加熟されている。そして高真
空に保たれた電子ビーム蒸着装置7内に酸素ガス12を
送り込み、10−3〜10−’Torrの真空度にしな
がら、蒸発#9中のタブレット10を電子ビーム(図示
せず)にまり苛発させ、基板1のバッファ層2表面全体
にコアカラスPIA3を形成させる方法である。
In FIG. 2, a substrate holder 8 is provided above the tablet 10, and ten or more substrates (with buffer layer 2) (2) are attached to this holder 8. The substrate 1 is heated to about 300 to 350° C. by a heating device (not shown) provided on the top of the substrate holder 8. Oxygen gas 12 is then fed into the electron beam evaporator 7 maintained at a high vacuum, and while maintaining a vacuum level of 10-3 to 10-' Torr, the tablet 10 in evaporation #9 is exposed to an electron beam (not shown). In this method, the core crow PIA 3 is formed on the entire surface of the buffer layer 2 of the substrate 1.

第3図に上記第2図の方法により作或したコアガラス膜
の特性の一例を示す。これは、タブレット10として、
S+ 02 ,T+ 02 ,Er203の粉末を混合
したものを用い、Er203の仕込み量を種々変えてコ
アガラス膜3を形成さぜた場合ののコアガラスvAB中
へのErの添加濃度を分析した結果である。Er203
の仕込み量に対してE「の添加濃度を制御できることを
示している。この結果からターゲットを作るFI Pa
でEr203の量を調整しておくことにより、コアガラ
スM3中へのErの添加量を制御できることがわかる.
次に、第1図(c)に示すように、コアガラス膜3の上
にメタル4(たとえば、WSilg!)をスパッタリン
グ装置により形成させる. その後、メタルv4の上にボトレジスト膜5を塗布し、
1リベーク後、その上に所望のパターンを形成したガラ
スマスクをのせ、その上から紫外線を照肘することによ
り、ホトレジスト膜をパターン化させる((d)のホト
リソグラフィ冫。
FIG. 3 shows an example of the characteristics of the core glass film produced by the method shown in FIG. 2 above. This is as Tablet 10,
Results of analyzing the concentration of Er added to the core glass vAB when the core glass film 3 was formed using a mixture of powders of S+ 02 , T+ 02 , and Er203 and varying the amount of Er203 added. It is. Er203
This shows that it is possible to control the addition concentration of E' with respect to the amount of preparation. From this result, the target is created using FI Pa.
It can be seen that by adjusting the amount of Er203 in advance, the amount of Er added to the core glass M3 can be controlled.
Next, as shown in FIG. 1(c), a metal 4 (for example, WSilg!) is formed on the core glass film 3 using a sputtering device. After that, apply the bottom resist film 5 on the metal v4,
After one rebake, a glass mask with a desired pattern formed thereon is placed, and ultraviolet rays are irradiated from above to pattern the photoresist film (photolithography method in (d)).

次に(0)に示すように、ホトレジストv.5をマスク
にしてメタル膜4をドライエッチングによりパターン化
させる, その後、(f)に示すように、ホトレジスト膜5.メタ
ル膜l1をマスクにしてコアカラス1漠3をドライエッ
チングによりパターン化さぜる。
Next, as shown in (0), photoresist v. 5 as a mask, the metal film 4 is patterned by dry etching, and then, as shown in (f), the photoresist film 5. Using the metal film 11 as a mask, the core glass 1 and 3 are patterned by dry etching.

ついで(g)に示すように、ホトレジスト膜5,メタル
膜4を除去した後、コアカラス導波路3全体をクラッド
膜6(屈折率nC , nc <n1v )で被覆する
Nh)). 以上のようにして埋込み型のカラス導波路を製造する方
法である。
Next, as shown in (g), after removing the photoresist film 5 and the metal film 4, the entire core glass waveguide 3 is covered with a cladding film 6 (refractive index nC, nc < n1v) (Nh). The method described above is for manufacturing a buried-type glass waveguide.

本発明の希土類元素添加樺波路の製造方法は」二記実施
例に限定されない。たとえば、リンシ形、盛土形、装荷
形などの導波路にも適用することかできる.また、希土
類元素として、上記Er203のような酸化物以外に、
Er F3 ,Nd F3などのFを含んだ希土類元素
を用いると、希土類元素を多量に添加する場合に有効で
ある。すなわち、希土類元素を多量に添加すると、コア
カラス膜の屈折率が高くなるが、Fも同時に入ると、F
か屈折率を下げる役目をはたすので、わざわざ屈折率制
御用酸化物を入れなくてもよいというメリンl−がある
The method for manufacturing a rare earth element-doped birch wave path of the present invention is not limited to the above-mentioned embodiments. For example, it can be applied to waveguides of lintel type, embankment type, loaded type, etc. In addition, as rare earth elements, in addition to oxides such as the above Er203,
The use of rare earth elements containing F, such as Er F3 and Nd F3, is effective when adding a large amount of rare earth elements. In other words, adding a large amount of rare earth elements increases the refractive index of the core glass film, but if F is also added at the same time, F
There is Mellin l-, which has the role of lowering the refractive index, so there is no need to take the trouble to add an oxide for controlling the refractive index.

なお、第l図の製造方法において、基板lに8102基
板を用いた場合には、低屈折率N2は形成されていなく
てもよい。
Note that in the manufacturing method shown in FIG. 1, when an 8102 substrate is used as the substrate 1, the low refractive index N2 does not need to be formed.

また、第2図のコアガラス膜形成方法において、蒸発源
9はもう一つ設け、同一組或のタブレットを同時に蒸発
させるようにすれば、より短時間で膜形或を行なうこと
かができるので、有効な方法である。
Furthermore, in the core glass film forming method shown in FIG. 2, if another evaporation source 9 is provided to evaporate the same set of tablets at the same time, the film formation can be carried out in a shorter time. , is an effective method.

さらに、希土類元素として、少なくとも2Nの希土類元
素を粉末状態でSi02,屈折率制御用酸化物と共に混
合するようにすれば、螢光特性を改善することができる
.たとえば、Er203,Yb203 ,P2 05 
,Si 02の粉末を混合して作ったタブレット,Nd
203 ,Yb203 ,T+ 02 ,Si 02の
粉末を混合して作ったタブレット, F,r F3 ,
 Nd203 , Cr203 ,P2 05 ,Si
 02の粉末を混合して作ったタブレットなどを用いる
ことができる。
Furthermore, the fluorescent properties can be improved by mixing at least 2N of rare earth elements in a powdered state with Si02 and an oxide for controlling the refractive index. For example, Er203, Yb203, P2 05
, tablets made by mixing powders of Si02, Nd
Tablet made by mixing powders of 203, Yb203, T+ 02, Si 02, F, r F3,
Nd203, Cr203, P205, Si
Tablets made by mixing the powder of No. 02 can be used.

本発明の製造方法によって作った希土類元素添加導波路
を使うことにより、種々の光デバイスを実現することが
できる。たとえば、レーザー、増幅器、増幅機能付きの
光スターカプラ、光合分波器、光スイッチなど、さらに
は上記各種光デバイスを組み合せた光機能デバイスなど
である.[発明の効果] 以上のように本発明は、希土類元素,屈折率制御用添加
物、SiO2の粉末を混合し、ホットプレスでかためた
後、焼結してタブレットにしたものを電子ビーム蒸着装
置で蒸発させる方法を用いることにより、ブレーナm造
のガラス導波路のコア内に希土類元素を制御性良く添加
させることができる。その結果、小型.低損失.多機能
性をもった光デバイスを実現することができる.
By using the rare earth element-doped waveguide produced by the manufacturing method of the present invention, various optical devices can be realized. Examples include lasers, amplifiers, optical star couplers with amplification functions, optical multiplexers/demultiplexers, optical switches, and even optical functional devices that combine the various optical devices mentioned above. [Effects of the Invention] As described above, the present invention mixes a rare earth element, an additive for controlling the refractive index, and SiO2 powder, hardens it by hot pressing, and then sinters it into a tablet by electron beam evaporation. By using the method of evaporating with an apparatus, it is possible to add rare earth elements into the core of the glass waveguide made of Brehner with good controllability. As a result, it is small. Low loss. Optical devices with multifunctionality can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の希土類元素添加導波路の製造方法の実
施例を示す図、第2図は本発明の希土類元素添加コアガ
ラス膜の製造方法の実施例を示す図、第3図は第2図の
方法を用いて得た希土類元素添加濃度の制御結果の一例
を示した図、第4図は従来の光ファイバ増幅器の概略図
である。 図中、1は基板、2はバッファ層、3はコアガラス膜、
4はメタル膜、5はホトレジスト膜、6はクラッド膜、
7は電子ビーム蒸着装置、8は基板ホルダ、9は蒸発源
、10はタブレyト、12は酸素ガスを示す.
FIG. 1 is a diagram showing an example of the method for manufacturing a rare earth element-doped waveguide of the present invention, FIG. 2 is a diagram showing an example of the method for manufacturing a rare earth element-doped core glass film of the present invention, and FIG. A diagram showing an example of the control result of the rare earth element doping concentration obtained using the method shown in FIG. 2, and FIG. 4 is a schematic diagram of a conventional optical fiber amplifier. In the figure, 1 is a substrate, 2 is a buffer layer, 3 is a core glass film,
4 is a metal film, 5 is a photoresist film, 6 is a cladding film,
7 is an electron beam evaporator, 8 is a substrate holder, 9 is an evaporation source, 10 is a tablet, and 12 is oxygen gas.

Claims (1)

【特許請求の範囲】 1、次の各プロセス(a)〜(d)からなる希土類元素
添加導波路の製造方法 (a)希土類元素、屈折率制御用酸化物、 SiO2の粉末を混合し、固体化したタブレットを電子
ビーム蒸着法により蒸発させて、低屈折率層を有する基
板上に該混合物のガラス膜を形成するプロセス、 (b)前記基板を高温熱処理するプロセス、(c)ホト
リソグラフィ、ドライエッチングプロセスにより前記ガ
ラス膜を略矩形状に加工するプロセス、 (d)前記加工した膜全面に低屈折率のガラス膜を被覆
するプロセス。 2、上記希土類元素として希土類元素の酸化物を用いた
ことを特徴とする請求項1記載の希土類元素添加導波路
の製造方法。 3、上記希土類元素としてFを含んだ希土類元素を用い
たことを特徴とする請求項1記載の希土類元素添加導波
路の製造方法。 4、上記希土類元素は2種類以上含まれていることを特
徴とする請求項1記載の希土類元素添加導波路の製造方
法。
[Claims] 1. A method for manufacturing a rare earth element-doped waveguide comprising the following processes (a) to (d) (a) Mix powders of a rare earth element, an oxide for controlling the refractive index, and SiO2 to form a solid (b) a process of heat-treating the substrate at a high temperature; (c) photolithography, drying; (d) a process of processing the glass film into a substantially rectangular shape by an etching process; (d) a process of covering the entire surface of the processed film with a glass film having a low refractive index. 2. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein an oxide of a rare earth element is used as the rare earth element. 3. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein a rare earth element containing F is used as the rare earth element. 4. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein two or more types of rare earth elements are contained.
JP18756389A 1989-07-21 1989-07-21 Production of waveguide added with rare earth element Pending JPH0353202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18756389A JPH0353202A (en) 1989-07-21 1989-07-21 Production of waveguide added with rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18756389A JPH0353202A (en) 1989-07-21 1989-07-21 Production of waveguide added with rare earth element

Publications (1)

Publication Number Publication Date
JPH0353202A true JPH0353202A (en) 1991-03-07

Family

ID=16208275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18756389A Pending JPH0353202A (en) 1989-07-21 1989-07-21 Production of waveguide added with rare earth element

Country Status (1)

Country Link
JP (1) JPH0353202A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422906A (en) * 1990-05-18 1992-01-27 Hitachi Cable Ltd Production of rare earth element-added waveguide
JPH06216456A (en) * 1993-01-18 1994-08-05 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of waveguide type glass laser
JPH07196334A (en) * 1993-02-17 1995-08-01 Canada Optical fiber with increased photo- sensitivity and its production
CN1300638C (en) * 2004-11-25 2007-02-14 上海交通大学 Method for manufacturing micro mechanical components with different aspect ratio using X-ray exposure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146504A (en) * 1988-11-29 1990-06-05 Fujikura Ltd Production of nonlinear light guide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146504A (en) * 1988-11-29 1990-06-05 Fujikura Ltd Production of nonlinear light guide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422906A (en) * 1990-05-18 1992-01-27 Hitachi Cable Ltd Production of rare earth element-added waveguide
JPH06216456A (en) * 1993-01-18 1994-08-05 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of waveguide type glass laser
JPH07196334A (en) * 1993-02-17 1995-08-01 Canada Optical fiber with increased photo- sensitivity and its production
JP3011308B2 (en) * 1993-02-17 2000-02-21 カナダ Manufacturing method of optical fiber with increased photosensitivity.
CN1300638C (en) * 2004-11-25 2007-02-14 上海交通大学 Method for manufacturing micro mechanical components with different aspect ratio using X-ray exposure

Similar Documents

Publication Publication Date Title
EP0510883B1 (en) Planar optical device
US5200029A (en) Method of making a planar optical amplifier
US5555342A (en) Planar waveguide and a process for its fabrication
JPH09105965A (en) Optical device
JP2006309222A (en) Optical waveguide comprising quantum dot waveguide layer and manufacturing method therefor
US7369733B2 (en) Glass optical waveguide
JPH07507151A (en) Silica waveguide structure
JP2628821B2 (en) Optical amplification device
JPH0353202A (en) Production of waveguide added with rare earth element
CN1985201A (en) Glass optical waveguide
JP2788652B2 (en) Method for manufacturing rare earth element-doped glass waveguide
JP2747359B2 (en) Manufacturing method of rare earth element doped waveguide
JP2900732B2 (en) Manufacturing method of optical waveguide
JPH04359230A (en) Rare earth added optical waveguide and production thereof
JP3107334B2 (en) Rare earth ion doped optical waveguide film and method of manufacturing optical waveguide
JP2831407B2 (en) Manufacturing method of rare earth element doped waveguide
JPH06144867A (en) Method for forming glass film
JP2002068779A (en) Producing method for light amplifying thin glass film
JP2002311277A (en) Production method for glass waveguide
JPH03119305A (en) Production of optical waveguide film
JP3106201B2 (en) Optical circuit manufacturing method
JPH07261045A (en) Rare earth element-added glass waveguide and its production
KR100369239B1 (en) Aerosol Flame Deposition Method for Over-cladding process of Planar Silica Optical Waveguide
CN117374701A (en) Rare earth doped gallium oxide waveguide amplifier, preparation method and planar waveguide
KR100328132B1 (en) Planar optical amplifier and its fabrication method