JPH0334057B2 - - Google Patents

Info

Publication number
JPH0334057B2
JPH0334057B2 JP57050153A JP5015382A JPH0334057B2 JP H0334057 B2 JPH0334057 B2 JP H0334057B2 JP 57050153 A JP57050153 A JP 57050153A JP 5015382 A JP5015382 A JP 5015382A JP H0334057 B2 JPH0334057 B2 JP H0334057B2
Authority
JP
Japan
Prior art keywords
polymer
mol
film
resist
photosensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57050153A
Other languages
Japanese (ja)
Other versions
JPS58168047A (en
Inventor
Hideo Ochi
Haruo Hatakeyama
Tomoyuki Kitaore
Ichiro Sugawara
Kotaro Nagasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somar Corp
Original Assignee
Somar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somar Corp filed Critical Somar Corp
Priority to JP5015382A priority Critical patent/JPS58168047A/en
Publication of JPS58168047A publication Critical patent/JPS58168047A/en
Publication of JPH0334057B2 publication Critical patent/JPH0334057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ネガ形レジスト用感光性材料、さら
に詳しくは、微細加工ネガ形レジスト用に好適な
感光性材料に関する。 近年、マイクロエレクトロニクスの分野では、
益々集積度が大きくなり複雑化しているため、サ
ブミクロン領域に達する加工精度が必要となり、
電子線描画法が採り入れられるようになつた。電
子線描画法は、加工精度が優れているとともにパ
ターンジエネレーターとしての機能も有している
ため、マスターマスクの製作に用いられている。
しかし、現状では、電子線描画法は、その描画速
度が遅いので、同一のパターンを大量に生産する
手段として適していない。このため、電子線描画
法によつて作成したマスターマスクから高精度で
転写する技術が求められている。3300〜4500Åの
比較的長い波長の紫外線(近紫外線と呼ばれる)
を用いる従来のフオトリソグラフイーは、光の回
折・干渉を伴うので、1μm以下のパタンーの転
写が不可能である。このため、X線や電子線を用
いる転写法も研究されているが、まだ実用的装置
は開発されていない。 ところで、1975年にB.J.リンは、2000〜2600Å
の比較的波長の短い紫外線(深紫外線、Deep
UVと呼ばれる)を用いることにより、サブミク
ロンパターンの転写が可能であることを発表した
(B.J.Lin:Deep UV LITHOGRAPHY、
Journal of Vacuum Science and Technology、
vol.12、No.6、1975、pp1317〜1320)。この新し
い転写技術は、深紫外線リソグラフイーと呼ばれ
て、これまでのフオトリソグラフイーと区別され
ているが、従来技術の延長上にあるため実現可能
性の高い技術として急速に研究が進み、すでに実
用的露光装置が開発されている。しかし、Deep
UVリソグラフイーといえども、従来のフオトレ
ジストをそのまま用いたのでは十分な解像性を得
ることができない。B.J.リンは、高解像性の電子
線レジストとして知られているポリメチルメタク
リレート(PMMA)を用いて上述の結果を得て
いる。レジストには、現像により、光を受けた部
分がレリーフとして残るネガ形レジストと、光を
受けた部分が非画像部として除去されるポジ形レ
ジストがある。前述のPMMAはポジ形レジスト
である。Deep UVリソグラフイー用のネガ形レ
ジストとして実用的に満足できるものは、まだ開
発されていない。微細加工においては、工程に応
じてポジ形とネガ形の両レジストを使い分ける方
が有利であり、実用的なネガ形Deep UVレジス
トの開発が求められている。 一般に、ネガ形レジスト用感光性材料は、塗膜
形成性物質(主として高分子化合物)を基幹物質
としてこれに架橋基を化学結合させるか、また
は、架橋剤(低分子化合物)を塗膜形成性物質と
混合することによつて製造し得る。 このような観点に立ち、本発明者らは、鋭意研
究を進めた結果、特定の高分子化合物がDeep
UVに対して極めて高い感度を示し、かつ、可視
光線・熱、湿気などに安定性が高く、ネガ形
Deep UVレジスト用の感光剤として極めて好適
であり、また、このものが電子ビームレジスト用
の感光成分としても有効であることを見出し、本
発明の完成させるに至つた。 本発明は、ネガ形Deep UVレジスト用または
電子ビームレジスト用として好適に使用できる感
光性材料を提供することを目的とするものであ
る。 本発明は下記のとおりである。 (1) 分子量約500〜500000の重合体であつて、o
−クロル安息香酸残基、p−クロル安息香酸残
基、2,4−ジクロル安息香酸残基、2,6−
ジクロル安息香酸残基のいずれかの基を1〜
100モル%結合して有する高分子化合物を塗膜
形成性感光成分として含有することを特徴とす
るネガ形レジスト用感光性材料。 (2) 塗膜形成性感光成分が、スチレン、ビニルト
ルエン、α−メチルスチレン、ビニルナフタリ
ン、ビニルカルバゾール、アセナフチレンのよ
うなベンゼン核を有するビニルモノマー20〜90
モル%と、他の1種または2種以上のビニルモ
ノマーとからなる分子量約5000〜200000の共重
合体で、前示される基を2〜50モル%結合して
有する高分子化合物である特許請求の範囲1の
感光性材料。 (3) 塗膜形成性感光成分が、前示される基1個に
対しC2〜6の脂肪酸残基を0.2〜3個の割合で結
合して有する高分子化合物である特許請求の範
囲1の感光性材料。 本発明のネガ形レジスト用感光性材料により、
Deep UVレジストおよび電子ビームレジストが
得られ、とりわけ、感度・成膜性、基板に対する
密着力、解像力、耐食性、安定性に優れた実用的
なネガ形Deep UVレジストが得られる。 本発明において好適な塗膜形成性感光成分は下
記の高分子化合物である。 スチレン、ビニルトルエン、α−メチルスチレ
ン、ビニルナフタリン、ビニルカルバゾール、ア
セナフチレンのようなベンゼン核を有するビニル
モノマー20〜90モル%と、他の1種または2種以
上のビニルモノマーとからなる分子量約5000〜
200000の共重合体で、前示される基を2〜50モル
%結合して有する高分子化合物。 上記の高分子化合物は、プラズマエツチング、
反応性イオンエツチングのような、いわゆるドラ
イエツチングに対する耐性が優れている。 上記したようなベンゼン核を有するビニルモノ
マーの比率が高くなると、薄膜にしたときにひび
割れを起こしやすくなり、かつ、基板に対する密
着力が悪くなる傾向がある。なお、ポリブタジエ
ンのようなゴム系の重合体は有機溶剤で膨潤を起
こしやすく、高解像力のレジストを得ることが難
かしい。また、レジストは100℃以上の高温下で
使用される場合が多いので、重合体の軟化温度を
低くするようなモノマーを多量に含むものは好ま
しくない。さらにまた、フツ素原子を含むモノマ
ーは基板に対する密着性を悪くする傾向がある。 本発明における高分子化合物の基幹物質は、エ
ポキシ基、ヒドロキシル基、カルボキシル基、カ
ルボン酸ハライド基などの官能基を有するものが
好ましい。 ネガ形レジストの場合、基幹物質、ひいては、
高分子化合物の分子量が小さくなると解像力が良
くなる傾向があるが、同時に感度は分子量に比例
して低下する。また、分子量が小さすぎる場合は
塗膜の機械的強度が悪くなる傾向もあり、分子量
を極端に小さくすることはできない。このような
観点から、基幹物質、ひいては、高分子化合物の
分子量範囲が決定される。 本発明における高分子化合物は、分子量が約
500〜500000、好ましくは約5000〜200000の範囲
のものであり、かつ、前示の安息香酸残基のいず
れかを1〜100モル%、好ましくは2〜50モル%
結合して有するものである。 分子量が500未満の場合は塗膜の機械的強度が
低下し、感光性の感度も低下する。500000超の場
合はそれに見合つた機械的強度及び感度の向上が
得られない。また、前示残基の結合量が1モル%
未満の場合は高解像力のレジストを得ることがで
きず、100モル%超の場合はそれに見合つた感光
特性の向上が得られない。 本発明における高分子化合物の製造について述
べる。前示の基は予めモノマーに結合させておい
てもよいし、重合体に反応させて結合させてもよ
い。基をモノマーまたは重合体の側鎖として結合
させる反応方法は、公知の方法を用いればよく、
特に限定されることはない。 本発明において他の好適な高分子化合物は、前
示される基1個に対しC2〜6の脂肪酸残基を0.2〜
3個の割合で結合して有する高分子化合物であ
る。 前示の安息香酸残基のほかに、脂肪酸残基
(C2〜6)を併わせ結合させることにより、さらに
特性の優れた感光性材料を得ることができる。脂
肪酸残基の効果は、主として、現像時のレジスト
の膨潤を抑えることによりレジストの解像力を改
善することにある。この脂肪酸は、炭素数2〜6
個の飽和脂肪酸または不飽和脂肪酸である。この
ような脂肪酸の例としては、酢酸、プロピオン
酸、ブテノイツク酸、クロトン酸、ビニル酢酸、
アクリル酸、メタクリル酸、およびこれら酸の2
種以上が挙げられる。脂肪酸残基の結合量は、前
示の安息香酸残基1個に対し脂肪酸残基0.2〜3
個が有利である。 本発明の感光性材料は、約2000〜3000Åの波長
の光および電子ビームにより有効にレジストを形
成するが、とりわけ約2000〜2600Åの波長の光
(Deep UV)に対し有効である。 本発明の感光性材料をDeep UVレジスト用に
使用する場合について例示する。シリコンウエハ
ーのような基板上に、本発明の感光性材料を適当
な溶剤、例えばエチレングリコールモノメチルエ
ーテルアセテートに溶かし、スピンナーを用いて
均一に塗布し、乾燥して厚さ0.4〜1μmのレジス
ト層を形成させる。次いで、約2000〜2600Åの波
長の光を効率よく放射する光源、例えばキセノン
−水銀灯を用いて、この光を透過する材料、例え
ば人工石英板を支持体とするマスクパターンを介
して露光する。次いで、これを現像液、例えばメ
チルエチルケトンとエタノールの混合溶剤に浸漬
し、非露光部を溶出させれば、マスクに忠実な微
細パターンを得ることができる。本発明の感光性
材料は、可視光線には感光しないので、明室中で
取扱うことができる。また、湿気や熱に対しても
安定であり、取扱い上特別の注意を要することも
なく、保存安定性にも優れている。 本発明の感光性材料は、電子ビームリソグラフ
イー用のレジストとしても有用である。加速電圧
10〜30KVの電子ビームに対し10マイクロクーロ
ン/cm2以上の感度を示し、0.3μmの格子状パター
ンを解像することができる。 次に、実施例により本発明をさらに詳しく説明
する。ただし、本発明は、これらの実施例により
制限されるものではない。 実施例 1 (高分子化合物の合成) 基幹物質としてスチレン85モル%とグリシジル
メタクリレート15モル%からなる分子量22000の
共重合体を用意し、そのエポキシ基に第1表に示
した誘導体を重合体に対し10モル%結合させた。
ここで用いた反応の1例を示せば次の如くであ
る。 前述の共重合体28gと2,4−ジクロル安息香
酸12gをメチルエチルケトン250mlに溶かし、こ
れに触媒としてトリエチルベンジルアンモニウム
クロライド0.5gを加えて、かきまぜながら4時
間加熱還流した。放冷後、反応液をイソプロピル
アルコール中に注入してモノマーを回収し、これ
を室温で減圧乾燥した。こうして得たポリマーの
一部を採り、常法により未反応エポキシ基を定量
した結果、2.4−ジクロル安息香酸の導入量は重
合体に対し10モル%であつた。 (感光液の調製と使用) 次に、第1表に示した誘導体を各々付加した重
合体20gをエチレングリコールモノメチルエーテ
ルアセテート100mlに溶かして感光液を調製した。 この感光液を、スピンナーを用いてシリコンウ
エハー上に塗布した後90℃で30分間ベーキングし
て溶剤を除去して、厚さ0.7μmのレジスト膜を形
成させた。このレジスト膜を15cmの距離から
500Wのキセノン−水銀灯で段階的に時間を変え
て露光した後、メチルエチルケトンとエタノール
の混合溶剤中に60秒間浸漬して現像し、残存膜厚
が塗布膜厚に等しくなるのに要する時間の逆数に
より感度を評価し、第1表の結果を得た。第1表
の相対感度は、ここで用いた基幹重合体そのもの
の感度を1として示したものである。
The present invention relates to a photosensitive material for negative resists, and more particularly to a photosensitive material suitable for microfabricated negative resists. In recent years, in the field of microelectronics,
As the degree of integration becomes larger and more complex, processing accuracy reaching the sub-micron range is required.
Electron beam lithography began to be adopted. The electron beam lithography method has excellent processing accuracy and also functions as a pattern generator, so it is used for manufacturing master masks.
However, at present, the electron beam lithography method is not suitable as a means for producing large quantities of the same pattern because its lithography speed is slow. For this reason, there is a need for a technique for highly accurate transfer from a master mask created by electron beam lithography. Ultraviolet light with a relatively long wavelength of 3300-4500Å (called near ultraviolet light)
Conventional photolithography using 1 μm or less is impossible because it involves light diffraction and interference. For this reason, transfer methods using X-rays or electron beams are also being researched, but no practical device has been developed yet. By the way, in 1975 BJ Lin reported that 2000-2600 Å
Ultraviolet rays with relatively short wavelengths (deep ultraviolet rays)
announced that it is possible to transfer submicron patterns by using UV (BJLin: Deep UV LITHOGRAPHY).
Journal of Vacuum Science and Technology,
vol.12, No.6, 1975, pp1317-1320). This new transfer technology is called deep ultraviolet lithography and is distinguished from conventional photolithography, but as it is an extension of conventional technology, research is progressing rapidly as a technology with high feasibility, and it has already been Practical exposure equipment has been developed. However, Deep
Even with UV lithography, sufficient resolution cannot be obtained by using conventional photoresists as they are. BJ Lin obtained the above results using polymethyl methacrylate (PMMA), which is known as a high-resolution electron beam resist. There are two types of resists: negative resists, in which the areas exposed to light remain as reliefs after development, and positive resists, in which the areas exposed to light are removed as non-image areas. The aforementioned PMMA is a positive resist. A practically satisfactory negative resist for deep UV lithography has not yet been developed. In microfabrication, it is advantageous to use both positive and negative resists depending on the process, and there is a need to develop a practical negative deep UV resist. In general, photosensitive materials for negative resists are made by chemically bonding a crosslinking group to a film-forming substance (mainly a high molecular compound) as a base material, or by adding a crosslinking agent (low-molecular compound) to a film-forming substance (mainly a polymer compound). It can be produced by mixing with substances. From this point of view, the inventors of the present invention have conducted intensive research and found that a specific polymer compound has a deep
It exhibits extremely high sensitivity to UV, and is highly stable to visible light, heat, moisture, etc., and is a negative type.
We have found that this product is extremely suitable as a photosensitizing agent for deep UV resists, and is also effective as a photosensitizing component for electron beam resists, leading to the completion of the present invention. An object of the present invention is to provide a photosensitive material that can be suitably used for negative-tone deep UV resists or electron beam resists. The present invention is as follows. (1) A polymer with a molecular weight of about 500 to 500,000, and o
-Chlorbenzoic acid residue, p-chlorobenzoic acid residue, 2,4-dichlorobenzoic acid residue, 2,6-
Any group of dichlorobenzoic acid residue from 1 to
A photosensitive material for a negative resist, characterized in that it contains 100 mol% of a polymer compound bound thereto as a film-forming photosensitive component. (2) The film-forming photosensitive component is a vinyl monomer having a benzene nucleus such as styrene, vinyltoluene, α-methylstyrene, vinylnaphthalene, vinylcarbazole, or acenaphthylene 20 to 90
A copolymer with a molecular weight of about 5,000 to 200,000 consisting of mol % and one or more other vinyl monomers, and a polymer compound having 2 to 50 mol % of the aforementioned groups bonded. A photosensitive material in range 1 of (3) The film-forming photosensitive component is a polymeric compound having 0.2 to 3 C2-6 fatty acid residues bonded to each of the above-mentioned groups. photosensitive material. With the photosensitive material for negative resist of the present invention,
Deep UV resists and electron beam resists can be obtained, and in particular, practical negative-tone deep UV resists with excellent sensitivity, film formability, adhesion to substrates, resolution, corrosion resistance, and stability can be obtained. Suitable film-forming photosensitive components in the present invention are the following polymer compounds. It has a molecular weight of about 5000 and consists of 20 to 90 mol% of vinyl monomers having a benzene nucleus such as styrene, vinyltoluene, α-methylstyrene, vinylnaphthalene, vinylcarbazole, and acenaphthylene, and one or more other vinyl monomers. ~
200,000 copolymer having 2 to 50 mol% of the groups listed above. The above polymer compounds can be processed by plasma etching,
It has excellent resistance to so-called dry etching such as reactive ion etching. When the ratio of vinyl monomers having benzene nuclei as described above increases, cracks tend to occur when formed into a thin film, and the adhesion to the substrate tends to deteriorate. Note that rubber-based polymers such as polybutadiene tend to swell with organic solvents, making it difficult to obtain a resist with high resolution. Furthermore, since resists are often used at high temperatures of 100° C. or higher, it is not preferable to use a resist that contains a large amount of monomer that lowers the softening temperature of the polymer. Furthermore, monomers containing fluorine atoms tend to deteriorate adhesion to the substrate. The base material of the polymer compound in the present invention preferably has a functional group such as an epoxy group, a hydroxyl group, a carboxyl group, or a carboxylic acid halide group. In the case of negative resists, the base material, and even
As the molecular weight of the polymer compound decreases, the resolution tends to improve, but at the same time, the sensitivity decreases in proportion to the molecular weight. Furthermore, if the molecular weight is too small, the mechanical strength of the coating film tends to deteriorate, and therefore the molecular weight cannot be made extremely small. From this point of view, the molecular weight range of the base material and, by extension, the polymer compound is determined. The polymer compound in the present invention has a molecular weight of about
500 to 500,000, preferably about 5,000 to 200,000, and contains 1 to 100 mol%, preferably 2 to 50 mol% of any of the above-mentioned benzoic acid residues.
It is something that is combined and possessed. If the molecular weight is less than 500, the mechanical strength of the coating film will decrease and the photosensitivity will also decrease. If it exceeds 500,000, a commensurate improvement in mechanical strength and sensitivity cannot be obtained. In addition, the binding amount of the above residue is 1 mol%
If it is less than 100 mol %, a resist with high resolution cannot be obtained, and if it exceeds 100 mol %, a commensurate improvement in photosensitive properties cannot be obtained. The production of the polymer compound in the present invention will be described. The above groups may be bonded to a monomer in advance, or may be bonded to a polymer by reaction. A known method may be used for the reaction method of bonding the group as a side chain of a monomer or polymer.
There are no particular limitations. Other suitable polymer compounds in the present invention include 0.2 to 0.2 to 6 C 2-6 fatty acid residues per group shown above.
It is a high molecular compound having three molecules bonded together. By combining fatty acid residues ( C2-6 ) in addition to the above-mentioned benzoic acid residues, a photosensitive material with even more excellent properties can be obtained. The effect of the fatty acid residue is mainly to improve the resolution of the resist by suppressing the swelling of the resist during development. This fatty acid has 2 to 6 carbon atoms.
saturated or unsaturated fatty acids. Examples of such fatty acids are acetic acid, propionic acid, butenoic acid, crotonic acid, vinylacetic acid,
Acrylic acid, methacrylic acid, and two of these acids
There are more than one species. The amount of fatty acid residue bound is 0.2 to 3 fatty acid residues per one benzoic acid residue shown above.
individual is advantageous. The photosensitive material of the present invention effectively forms a resist with light having a wavelength of approximately 2000 to 3000 Å and an electron beam, and is particularly effective against light having a wavelength of approximately 2000 to 2600 Å (Deep UV). The case where the photosensitive material of the present invention is used for a deep UV resist will be illustrated. On a substrate such as a silicon wafer, the photosensitive material of the present invention is dissolved in a suitable solvent such as ethylene glycol monomethyl ether acetate, applied uniformly using a spinner, and dried to form a resist layer with a thickness of 0.4 to 1 μm. Let it form. Next, using a light source that efficiently emits light with a wavelength of approximately 2,000 to 2,600 Å, such as a xenon-mercury lamp, exposure is performed through a mask pattern that uses a material that transmits this light, such as an artificial quartz plate, as a support. Next, by immersing this in a developer, such as a mixed solvent of methyl ethyl ketone and ethanol, and eluating the non-exposed areas, a fine pattern faithful to the mask can be obtained. Since the photosensitive material of the present invention is not sensitive to visible light, it can be handled in a bright room. Furthermore, it is stable against humidity and heat, does not require special care in handling, and has excellent storage stability. The photosensitive material of the present invention is also useful as a resist for electron beam lithography. acceleration voltage
It exhibits a sensitivity of more than 10 microcoulombs/cm 2 to an electron beam of 10 to 30 KV, and can resolve a grid pattern of 0.3 μm. Next, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to these Examples. Example 1 (Synthesis of a polymer compound) A copolymer with a molecular weight of 22,000 consisting of 85 mol% styrene and 15 mol% glycidyl methacrylate was prepared as a base material, and the derivatives shown in Table 1 were added to the epoxy group to form a polymer. The binding amount was 10 mol%.
An example of the reaction used here is as follows. 28 g of the aforementioned copolymer and 12 g of 2,4-dichlorobenzoic acid were dissolved in 250 ml of methyl ethyl ketone, 0.5 g of triethylbenzylammonium chloride was added as a catalyst, and the mixture was heated under reflux for 4 hours with stirring. After cooling, the reaction solution was poured into isopropyl alcohol to recover the monomer, which was dried under reduced pressure at room temperature. A portion of the thus obtained polymer was taken and the amount of unreacted epoxy groups was determined by a conventional method. As a result, the amount of 2,4-dichlorobenzoic acid introduced was 10 mol % based on the polymer. (Preparation and use of photosensitive solution) Next, a photosensitive solution was prepared by dissolving 20 g of the polymer to which each of the derivatives shown in Table 1 was added in 100 ml of ethylene glycol monomethyl ether acetate. This photosensitive solution was applied onto a silicon wafer using a spinner and then baked at 90° C. for 30 minutes to remove the solvent and form a resist film with a thickness of 0.7 μm. This resist film was applied from a distance of 15 cm.
After exposure with a 500W xenon-mercury lamp for different times in stages, the film was developed by immersing it in a mixed solvent of methyl ethyl ketone and ethanol for 60 seconds. The sensitivity was evaluated and the results shown in Table 1 were obtained. The relative sensitivities in Table 1 are shown assuming that the sensitivity of the base polymer itself used here is 1.

【表】 実施例 2 実施例1で用いたものと同じ基幹重合体に2,
4−ジクロル安息香酸を重合体に対し各々3モル
%、6モル%、10モル%結合させた。実施例1と
同様にして得たこれらの感光性材料を感度を実施
例1と同じ方法で測定し、第2表の結果を得た。
[Table] Example 2 2,
4-dichlorobenzoic acid was bound to the polymer in an amount of 3 mol%, 6 mol%, and 10 mol%, respectively. The sensitivity of these photosensitive materials obtained in the same manner as in Example 1 was measured in the same manner as in Example 1, and the results shown in Table 2 were obtained.

〔エツチング条件〕[Etching conditions]

エツチングガス:CF4+H2(20%) ガス圧:0.02Torr ガス流量:70SCCM RF電力:200W 実施例 7 実施例3の感光性材料20gをエチレングリコー
ルモノメチルエーテルアセテート100mlに溶かし、
0.2μmのメンブランフイルターで濾過して調製し
た感光液を、スピンナーを用いて5000Åの酸化膜
を有するシリコンウエハー上に塗布し、90℃で30
分間ベーキングして厚さ0.7μmのレジスト膜を形
成した。このレジスト膜に石英マスクを密着さ
せ、500Wキセノン−水銀灯で8秒間露光した後、
7:3容量比のイソプロパノールとメチルエチル
ケトンの混合溶剤で現像し、n−ヘプタンでリン
スすることにより0.5μmのパターンを精度よく転
写することができた。次に、パターンを形成させ
たシリコンウエハーを150℃で30分間ベーキング
してから30℃のフツ化水素酸緩衝溶液(40%フツ
化水素酸1部+40%フツ化アンモニウム水溶液6
部)に4分間浸漬してエツチングしたところ、し
み込みやレジストの剥離もなくマスクパターンに
忠実なエツチングパターンが得られた。 実施例 8 実施例4で得た感光性材料20gをエチレングリ
コールモノメチルエーテルアセテート100mlに溶
かし、0.2μmのメンブランフイルターで濾過して
調製した感光液を、スピンナーを用いてシリコン
ウエハーに塗布し、90℃で30分間ベーキングして
厚さ0.7μmのレジスト膜を形成した。このレジス
ト膜に石英マスクを密着させて、500Wのキセノ
ン−水銀灯で6秒間露光した後、実施例6と同じ
ように、メチルエチルケトンとエタノールの混合
溶剤で現像し、次いで、イソプロパノールで洗浄
した。現像中のレジスト像の膨潤が非常に少なく
極めて精度の良い転写パターンを得た。 実施例 9 実施例6で調製した感光液を、ガラス板上に厚
さ700Åのクロム層を有するクロム基板に塗布し、
90℃で30分間ベーキングして厚さ0.6μmのレジス
ト膜を形成した。この基板を真空中に置き、加速
電圧27KVの電子ビームでレジスト面を掃引した
後、取出して、実施例6と同じようにメチルエチ
ルケトンとエタノールの混合溶剤で現像し、次い
で、イソプロパノールで洗浄したところ、電子ビ
ームで照射した部分にレジスト像を得た。このレ
ジスト像は、0.3μmの格子パターンを解像してい
た。また、この時照射した電荷量は、1平方セン
チ当り8マイクロクーロンであり、現像後のレジ
スト膜の厚さは0.35μmであつた。 参考例 1 クロルスチレン(o−クロルスチレン65%、p
−クロルスチレン35%の混合物)を重合して分子
量20000のポリクロルスチレンを得た。この重合
体20gをクロルベンゼン100mlに溶かし、0.2μm
のメンブランフイルターで濾過した。 次に、この重合体溶液を、スピンナーを用いて
シリコンウエハー上に塗布した後、90℃で30分間
ベーキングして厚さ0.7μmの重合体膜を形成し
た。この重合体膜を実施例1と同じようにして、
500Wのキセノン−水銀灯で露光した後、メチル
エチルケトンとエタノールの混合溶剤で現像して
感度を測定したところ、本発明実施例の感光性材
料に較べて著しく感度が低く、第1表と同じ基準
で相対感度は0.9以下であつた。
Etching gas: CF 4 + H 2 (20%) Gas pressure: 0.02 Torr Gas flow rate: 70 SCCM RF power: 200 W Example 7 20 g of the photosensitive material of Example 3 was dissolved in 100 ml of ethylene glycol monomethyl ether acetate.
A photosensitive solution prepared by filtration with a 0.2 μm membrane filter was applied onto a silicon wafer with a 5000 Å thick oxide film using a spinner, and incubated at 90°C for 30 minutes.
A resist film having a thickness of 0.7 μm was formed by baking for a minute. A quartz mask was placed in close contact with this resist film, and after exposure for 8 seconds with a 500W xenon-mercury lamp,
By developing with a mixed solvent of isopropanol and methyl ethyl ketone at a volume ratio of 7:3 and rinsing with n-heptane, a 0.5 μm pattern could be accurately transferred. Next, the silicon wafer on which the pattern was formed was baked at 150°C for 30 minutes, and then a 30°C hydrofluoric acid buffer solution (1 part of 40% hydrofluoric acid + 6 parts of 40% ammonium fluoride aqueous solution) was used.
When etching was performed by immersing the mask in the mask pattern for 4 minutes, an etching pattern faithful to the mask pattern was obtained without seepage or peeling of the resist. Example 8 A photosensitive solution prepared by dissolving 20 g of the photosensitive material obtained in Example 4 in 100 ml of ethylene glycol monomethyl ether acetate and filtering it through a 0.2 μm membrane filter was applied to a silicon wafer using a spinner and heated at 90°C. A resist film with a thickness of 0.7 μm was formed by baking for 30 minutes. A quartz mask was brought into close contact with this resist film, and the resist film was exposed for 6 seconds with a 500 W xenon-mercury lamp, and then developed with a mixed solvent of methyl ethyl ketone and ethanol in the same manner as in Example 6, and then washed with isopropanol. The swelling of the resist image during development was very small, and an extremely accurate transfer pattern was obtained. Example 9 The photosensitive solution prepared in Example 6 was applied to a chrome substrate having a 700 Å thick chromium layer on a glass plate,
A resist film with a thickness of 0.6 μm was formed by baking at 90° C. for 30 minutes. This substrate was placed in a vacuum, the resist surface was swept with an electron beam at an acceleration voltage of 27 KV, and then taken out and developed with a mixed solvent of methyl ethyl ketone and ethanol in the same manner as in Example 6, and then washed with isopropanol. A resist image was obtained in the area irradiated with the electron beam. This resist image resolved a lattice pattern of 0.3 μm. The amount of charge irradiated at this time was 8 microcoulombs per square centimeter, and the thickness of the resist film after development was 0.35 μm. Reference example 1 Chlorstyrene (o-chlorostyrene 65%, p
- a mixture of 35% chlorostyrene) was polymerized to obtain polychlorostyrene with a molecular weight of 20,000. Dissolve 20g of this polymer in 100ml of chlorobenzene and
It was filtered with a membrane filter. Next, this polymer solution was applied onto a silicon wafer using a spinner, and then baked at 90° C. for 30 minutes to form a 0.7 μm thick polymer film. This polymer membrane was prepared in the same manner as in Example 1,
After exposure with a 500W xenon-mercury lamp, the sensitivity was measured by developing with a mixed solvent of methyl ethyl ketone and ethanol, and the sensitivity was significantly lower than that of the photosensitive materials of the examples of the present invention. The sensitivity was below 0.9.

Claims (1)

【特許請求の範囲】 1 分子量約500〜500000の重合体であつて、o
−クロル安息香酸残基、p−クロル安息香酸残
基、2,4−ジクロル安息香酸残基、2,6−ジ
クロル安息香酸残基のいずれかの基を1〜100モ
ル%結合して有する高分子化合物を塗膜形成性感
光成分として含有することを特徴とするネガ形レ
ジスト用感光性材料。 2 塗膜形成性感光成分が、スチレン、ビニルト
ルエン、α−メチルスチレン、ビニルナフタリ
ン、ビニルカルバゾール、アセナフチレンのよう
なベンゼン核を有するビニルモノマー20〜90モル
%と、他の1種または2種以上のビニルモノマー
とからなる分子量約5000〜200000の共重合体で、
前示される基を2〜50モル%結合して有する高分
子化合物である特許請求の範囲1の感光性材料。 3 塗膜形成性感光成分が、前示される基1個に
対しC2〜6の脂肪酸残基を0.2〜3個の割合で結合
して有する高分子化合物である特許請求の範囲1
の感光性材料。
[Scope of Claims] 1. A polymer having a molecular weight of about 500 to 500,000,
- A polymer having 1 to 100 mol% of any of the following groups: chlorobenzoic acid residue, p-chlorobenzoic acid residue, 2,4-dichlorobenzoic acid residue, 2,6-dichlorobenzoic acid residue A photosensitive material for a negative resist, characterized by containing a molecular compound as a film-forming photosensitive component. 2 The film-forming photosensitive component contains 20 to 90 mol% of a vinyl monomer having a benzene nucleus such as styrene, vinyltoluene, α-methylstyrene, vinylnaphthalene, vinylcarbazole, acenaphthylene, and one or more other types. A copolymer with a molecular weight of approximately 5,000 to 200,000 consisting of a vinyl monomer of
The photosensitive material according to claim 1, which is a polymer compound having 2 to 50 mol% of the groups shown above. 3. Claim 1, wherein the film-forming photosensitive component is a polymeric compound having 0.2 to 3 C2-6 fatty acid residues bonded to each of the aforementioned groups.
photosensitive material.
JP5015382A 1982-03-30 1982-03-30 Photosensitive material Granted JPS58168047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015382A JPS58168047A (en) 1982-03-30 1982-03-30 Photosensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015382A JPS58168047A (en) 1982-03-30 1982-03-30 Photosensitive material

Publications (2)

Publication Number Publication Date
JPS58168047A JPS58168047A (en) 1983-10-04
JPH0334057B2 true JPH0334057B2 (en) 1991-05-21

Family

ID=12851233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015382A Granted JPS58168047A (en) 1982-03-30 1982-03-30 Photosensitive material

Country Status (1)

Country Link
JP (1) JPS58168047A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129741A (en) * 1983-12-16 1985-07-11 Japan Synthetic Rubber Co Ltd X-ray resist composition
JPH0249011A (en) * 1988-08-11 1990-02-19 Somar Corp Resist for processing with high energy beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320771A (en) * 1976-08-06 1978-02-25 Western Electric Co Method of manufacturing semiconductor element
JPS565984A (en) * 1979-04-16 1981-01-22 Lubrizol Corp Corrosion inhibiting agent * aqueous composition and corrosion inhibiting method
JPS57124731A (en) * 1981-01-28 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Negative type resist with dry etching resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320771A (en) * 1976-08-06 1978-02-25 Western Electric Co Method of manufacturing semiconductor element
JPS565984A (en) * 1979-04-16 1981-01-22 Lubrizol Corp Corrosion inhibiting agent * aqueous composition and corrosion inhibiting method
JPS57124731A (en) * 1981-01-28 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Negative type resist with dry etching resistance

Also Published As

Publication number Publication date
JPS58168047A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
JP4028131B2 (en) Photoresist polymer and method for producing the same, photoresist composition, and method for forming photoresist pattern
JPH0219847A (en) Positive and negatively treated radiation sensitive mixture and relief pattern
JPH05249683A (en) Radiation sensitive composition
JPH0218564A (en) Making of radiation sensitive mixture and relief pattern
TW200530748A (en) Photoresist composition
JP4102010B2 (en) Composition for organic antireflection film and method for producing the same
JP4527827B2 (en) Photoresist crosslinking agent, photoresist composition, photoresist pattern forming method, and semiconductor device
JPH0155445B2 (en)
JPH0334057B2 (en)
JP2825543B2 (en) Negative radiation sensitive resin composition
JPS63199715A (en) Copolymer having o-nitrocarbinol ester, double-layer resist using the same and production of semiconductive element
JPH0249011A (en) Resist for processing with high energy beam
CN113219789A (en) Star-shaped ArF photoresist film-forming resin, preparation method thereof and photoresist composition
JPS6361651B2 (en)
JPH0216508B2 (en)
JPH0480377B2 (en)
JPS5828571B2 (en) Resist formation method for microfabrication
US4273858A (en) Resist material for micro-fabrication with unsaturated dicarboxylic moiety
JPH07196743A (en) Radiation-sensitive material and method for forming pattern
JPS63271253A (en) Positive type radiation sensitive resist having high resolution
EP0077056B1 (en) Negative-type resist sensitive to ionizing radiation
JPS649613B2 (en)
JPS6259950A (en) Ionizing radiation sensitive positive type resist
JPH0334055B2 (en)
US4349647A (en) Resist material for micro-fabrication