JPH07196743A - Radiation-sensitive material and method for forming pattern - Google Patents
Radiation-sensitive material and method for forming patternInfo
- Publication number
- JPH07196743A JPH07196743A JP33811293A JP33811293A JPH07196743A JP H07196743 A JPH07196743 A JP H07196743A JP 33811293 A JP33811293 A JP 33811293A JP 33811293 A JP33811293 A JP 33811293A JP H07196743 A JPH07196743 A JP H07196743A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- resist
- sensitive material
- copolymer
- methyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は放射線感光材料及びその
放射線感光材料を用いたパターン形成方法に関する。近
年、半導体集積回路は集積化が進んでLSIやLSIが
実用化されており、こうした素子の高集積化・微細化に
伴ない、微細加工技術における最小線幅はサブミクロン
乃至ハーフミクロン以下の領域に及んでおり、更に微細
化の傾向にある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation sensitive material and a pattern forming method using the radiation sensitive material. In recent years, the integration of semiconductor integrated circuits has advanced, and LSI and LSI have been put into practical use. With the high integration and miniaturization of such elements, the minimum line width in the microfabrication technology is in the submicron or half-micron region. , And there is a tendency for further miniaturization.
【0002】微細加工技術における微細パターンの形成
には、薄膜を形成した被処理基板上にレジストを被覆
し、選択露光を行った後に現像してレジストパターンを
作り、これをマスクとしてドライエッチングを行い、そ
の後にレジストを溶解除去することにより薄膜パターン
を得るリソグラフィ(写真触刻)技術の使用が必須であ
る。そしてこのリソグラフィ技術に使用する露光光源と
して、当初は紫外線が使用されていたが、パターンの微
細化に伴って短波長化が進み、遠紫外線、電子線、X線
などが光源として用いられるようになった。To form a fine pattern in the fine processing technology, a resist is coated on a substrate on which a thin film is formed, and after selective exposure, development is performed to form a resist pattern, and this is used as a mask for dry etching. Then, it is essential to use a lithography (photolithography) technique for obtaining a thin film pattern by dissolving and removing the resist after that. At first, ultraviolet rays were used as an exposure light source used in this lithography technique, but with the miniaturization of patterns, the wavelength has been shortened, and far ultraviolet rays, electron beams, X-rays, etc. are used as light sources. became.
【0003】従って、特に電子線を用いた新たなリソグ
ラフィ技術に対応して、高解像性、高感度、優れた耐ド
ライエッチング性を有するレジスト材料が要求されてい
る。Therefore, a resist material having high resolution, high sensitivity, and excellent dry etching resistance is required especially in response to a new lithography technique using an electron beam.
【0004】[0004]
【従来の技術】電子線用ポジレジストについては、容易
に高感度を達成できるレジストとして化学増幅レジスト
の開発がすすんでいるが(H.Ito and C.G.Willson, ACS
Symp.Ser.242,1-13,1984 ほか多数)、表面不溶化層の
生成やPEDのため、安定した性能が得られない。特に
ポジレジストにおいては顕著でありその実用化は困難で
ある。2. Description of the Related Art Regarding positive resists for electron beams, a chemically amplified resist is being developed as a resist that can easily achieve high sensitivity (H.Ito and CG Willson, ACS
Symp.Ser.242,1-13,1984 and many others), stable performance cannot be obtained due to the formation of the surface insolubilized layer and PED. In particular, it is remarkable in a positive resist, and its practical application is difficult.
【0005】そのため、本発明者らは、電子線用ポジレ
ジストとして、αメチルスチレン共重合体を提示した
(特開昭63−137227号参照)。この共重合体は
スチレン骨格をもっているため、ドライエッチングに優
れており、電子線の照射により分解し、分子量による溶
解度の差を利用してパターニングを行うものである。と
ころが、このαメチルスチレン共重合体は実用可能な感
度が得られているものの、スループットを考えると更な
る高感度化が必要である。こうした高感度化は強現像液
を使うことによっても可能であるが、未露光部の膜べり
や解像性の低下を生じるため限界があるため、より高感
度を達成するためには樹脂自体をより高い分解効率をも
つポリマに変えることが必要である。Therefore, the present inventors have proposed an α-methylstyrene copolymer as a positive resist for electron beams (see JP-A-63-137227). Since this copolymer has a styrene skeleton, it is excellent in dry etching, is decomposed by electron beam irradiation, and is patterned by utilizing the difference in solubility depending on the molecular weight. However, although this α-methylstyrene copolymer has obtained a practical sensitivity, it is necessary to further increase the sensitivity in view of throughput. This kind of high sensitivity can be achieved by using a strong developing solution, but there is a limit because it causes film slippage in the unexposed area and a decrease in resolution, so the resin itself must be added to achieve higher sensitivity. It is necessary to change to polymers with higher degradation efficiency.
【0006】[0006]
【発明が解決しようとする課題】このように、電子線用
ポジレジストとして開発したαメチルスチレン共重合体
からなるレジストも、スループットを向上させるために
更なる高感度化を図らなけらばならないという課題があ
った。そこで本発明は、エキシマレーザや電子線を露光
源とするリソグラフィにおいて使用する、優れた透明性
及びエッチング耐性のみならず、高感度で、剥がれの少
ない放射線感光材料及びその放射線感光材料を用いたパ
ターン形成方法を提供することを目的とする。As described above, the resist composed of α-methylstyrene copolymer developed as a positive resist for electron beam must also have higher sensitivity in order to improve the throughput. There were challenges. Therefore, the present invention is used in lithography using an excimer laser or an electron beam as an exposure source, not only excellent transparency and etching resistance, but also a highly sensitive radiation-sensitive material with less peeling and a pattern using the radiation-sensitive material. An object is to provide a forming method.
【0007】[0007]
【課題を解決するための手段】上記課題は、一般式[Means for Solving the Problems]
【0008】[0008]
【化2】 (式中、R1 及びR2 はそれぞれ水素原子又はメチル基
を表す。)で示されるメタクリル酸アダマンチル又はそ
の誘導体とα位が電子吸引基で置換されたビニルモノマ
とを含む共重合体からなることを特徴とする放射線感光
材料によって達成される。[Chemical 2] (Wherein each of R1 and R2 represents a hydrogen atom or a methyl group), and a copolymer containing adamantyl methacrylate or a derivative thereof and a vinyl monomer in which the α-position is substituted with an electron-withdrawing group. Is achieved by the radiation-sensitive material.
【0009】また、上記の放射線感光材料において、前
記共重合体におけるアダマンチル基を有する単位構造
が、40〜70mol%であることが好ましい。尚、こ
こで、メタクリル酸アダマンチル又はその誘導体と共重
合させるモノマはα位に電子吸引基をもつビニルモノマ
である。例をあげれば、α−クロロアクリル酸メチル、
α−クロロアクリル酸エチル、α−クロロアクリル酸イ
ソプロピル、α−クロロアクリル酸、α−クロロアクリ
ル酸2,2,2−トリフルオロエチル、α−ブロモアク
リル酸メチル、α−ブロモアクリル酸エチル、α−ブロ
モアクリル酸イソプロピル、α−プロモアクリル酸、α
−トリフメチルロロアクリル酸メチル、α−トリフロロ
メチルアクリル酸エチル、α−トリフロロメチルアクリ
ル酸イソプロピル、α−トリフメチルロロアクリル酸
2,2,2−トリフロロエチル、イタコン酸、イタコン
酸ジメチル、イタコン酸モノメチル、α−クロロアクリ
ロニトリル、フマロニトリル、グルタロニトリル、α−
シアノアクリル酸メチル、α−シアノアクリル酸エチル
などが挙げられるが、これらのモノマに限られるもので
はない。In the radiation-sensitive material described above, the unit structure having an adamantyl group in the copolymer is preferably 40 to 70 mol%. The monomer to be copolymerized with adamantyl methacrylate or a derivative thereof is a vinyl monomer having an electron-withdrawing group at the α-position. For example, methyl α-chloroacrylate,
α-chloro acrylate, α-chloro acrylate, α-chloro acrylate, α-chloro acrylate 2,2,2-trifluoroethyl, α-bromo acrylate, α-bromo acrylate, α -Isopropyl bromoacrylate, α-promoacrylic acid, α
-Methyl trifmethylloroacrylate, ethyl α-trifluoromethylacrylate, isopropyl α-trifluoromethylacrylate, 2,2,2-trifluoroethyl α-trifmethylloroacrylate, itaconic acid, dimethyl itaconate, Monomethyl itaconate, α-chloroacrylonitrile, fumaronitrile, glutaronitrile, α-
Examples thereof include methyl cyanoacrylate and ethyl α-cyanoacrylate, but are not limited to these monomers.
【0010】また、上記課題は、上記の放射線感光材料
を用いてレジストを形成し、前記レジストを基板上に塗
布した後、プリベークを行い、前記基板上の前記レジス
トに放射線を選択的に露光した後、ポストベークを行
い、前記基板上の前記レジストを現像して、所定のレジ
ストパターンを形成することを特徴とするパターン形成
方法によって達成される。Further, the above-mentioned problem is that a resist is formed by using the radiation-sensitive material described above, the resist is applied onto a substrate, prebaking is performed, and the resist on the substrate is selectively exposed to radiation. After that, post-baking is performed, and the resist on the substrate is developed to form a predetermined resist pattern, which is achieved by a pattern forming method.
【0011】[0011]
【作用】本発明は、一般式The present invention has the general formula
【0012】[0012]
【化3】 (式中、R1 及びR2 はそれぞれ水素原子又はメチル基
を表す。)で示されるメタクリル酸アダマンチル又はそ
の誘導体とα位が電子吸引基で置換されたビニルモノマ
とを含む共重合体からなる放射線感光材料であり、この
メタクリル酸アダマンチル又はその誘導体からなる重合
体はα−メチル置換アクリル構造であるため、電子線照
射により分解する。α−メチル置換アクリル構造をもつ
分子鎖の切断効率はαメチルスチレン構造の10倍以上
である。更に、α−メチルスチレン重合体より高い切断
効率を有するにも関わらず、メタクリル酸アダマンチル
又はその誘導体からなる重合体はα−メチルスチレン重
合体に匹敵するドライエッチング耐性をもっている。他
方、α位がハロゲン又はシアノなどの電子吸引基で置換
されたアクリルポリマは電子線照射により非常に分解し
易い。このため切断効率の低いα−メチルスチレンとの
共重合体においても、実用可能な感度が得られる。そこ
で、更に分解効率を高め、高感度化を達成するためにメ
タクリル酸アダマンチル又はその誘導体と電子吸引基で
置換されたアクリル酸エステルとの共重合体とした。[Chemical 3] (Wherein R 1 and R 2 each represent a hydrogen atom or a methyl group), and a radiation-sensitive material comprising a copolymer containing adamantyl methacrylate or a derivative thereof and a vinyl monomer in which the α-position is substituted with an electron-withdrawing group. Since the polymer consisting of adamantyl methacrylate or its derivative has an α-methyl substituted acrylic structure, it is decomposed by electron beam irradiation. The cleavage efficiency of a molecular chain having an α-methyl substituted acrylic structure is 10 times or more that of an α-methylstyrene structure. Further, despite having higher cleavage efficiency than α-methylstyrene polymer, the polymer comprising adamantyl methacrylate or its derivative has a dry etching resistance comparable to that of α-methylstyrene polymer. On the other hand, an acrylic polymer in which the α-position is substituted with an electron withdrawing group such as halogen or cyano is very easy to decompose by electron beam irradiation. Therefore, practical sensitivity can be obtained even in the case of a copolymer with α-methylstyrene having a low cleavage efficiency. Therefore, in order to further improve the decomposition efficiency and achieve high sensitivity, a copolymer of adamantyl methacrylate or a derivative thereof and an acrylic acid ester substituted with an electron-withdrawing group was used.
【0013】ここで、この共重合体におけるアダマンチ
ル基を有する単位構造が40〜70mol%であること
が好ましいとしたのは、メタクリル酸アダマンチル又は
その誘導体の組成比が40〜70mol%より少ないと
ドライエッチング耐性が劣り、逆に多いと感度が低下す
るからである。Here, the unit structure having an adamantyl group in this copolymer is preferably 40 to 70 mol% because the composition ratio of adamantyl methacrylate or its derivative is less than 40 to 70 mol%. This is because the etching resistance is inferior, and conversely, if the etching resistance is high, the sensitivity decreases.
【0014】[0014]
[実施例 1]メタクリル酸アダマンチルモノマとα−
クロロアクリル酸メチルモノマとを2:1の割合で仕込
み、0.5mol/lの1,4−ジオキサン溶液とし、
開始剤としてAIBNを10mol%添加した。その
後、温度80℃で約8時間加熱した。加熱後大量のメタ
ノールに沈澱させ、精製を行った。その結果、次式[Example 1] Adamantyl methacrylate monomer and α-
Methyl chloroacrylate monomer was charged at a ratio of 2: 1 to prepare a 0.5 mol / l 1,4-dioxane solution,
AIBN was added at 10 mol% as an initiator. Then, it heated at the temperature of 80 degreeC for about 8 hours. After heating, it was precipitated in a large amount of methanol for purification. As a result,
【0015】[0015]
【化4】 で示される、組成比53:47、重量平均分子量570
00の共重合体を得た。次に、こうして合成したポリマ
をシクロヘキサノンに溶かし、10wt%のレジスト溶
液を調整した。この溶液をスピンコート法によりSiウ
ェーハ上に0.5μm厚に塗布し、オーブンで温度20
0℃、20分間のプリベークを行った。[Chemical 4] , Composition ratio 53:47, weight average molecular weight 570
00 copolymer was obtained. Next, the polymer thus synthesized was dissolved in cyclohexanone to prepare a 10 wt% resist solution. This solution was applied on a Si wafer to a thickness of 0.5 μm by spin coating, and the temperature was adjusted to 20 ° C. in an oven.
Prebaking was performed at 0 ° C. for 20 minutes.
【0016】こうして得られたSiウェーハを加速電圧
20KVの電子線露光装置を使って選択的に露光した。
その後、容積比3:1のキシレン/IPA(
)の混合液を用いた5分間現像した。このときの露光
エネルギーの閾値エネルギーEthは3μC/cm2 を示
し、0.4μm幅のL&Sを解像した。 [比較例 1]次式The Si wafer thus obtained was selectively exposed using an electron beam exposure apparatus with an accelerating voltage of 20 KV.
After that, xylene / IPA (volume ratio 3: 1
Development was performed for 5 minutes using the mixed solution of (1). The threshold energy Eth of the exposure energy at this time was 3 μC / cm 2, and L & S having a width of 0.4 μm was resolved. [Comparative example 1]
【0017】[0017]
【化5】 で示される、α−メチルスチレンとα−クロロアクリル
酸メチルとの1:1の共重合体(重量平均分子量560
00)のo−ジクロロベンゼン12wt%溶液をレジス
ト溶液として調整した。この溶液をスピンコート法によ
りSiウェーハ上に0.5μm厚に塗布し、オーブンで
温度200℃、20分間のプリベークを行った。こうし
て得られたSiウェーハを加速電圧20KVの電子線露
光装置を使って選択的に露光した。その後、キシレンを
用いて20分間現像した。このときの露光エネルギーの
閾値エネルギーEthは10μC/cm2 であった。 [実施例 2]メタクリル酸3,5−ジメチルアダマン
チルモノマとα−トリフロロメチルアクリル酸2,2,
2−トリフロロエチルモノマとを1:3で仕込み、8m
ol/lの1,4−ジオキサン溶液とし、開始剤として
AIBNを1mol%添加した。その後、温度80℃で
約3.5時間重合した。重合終了後、大量のメタノール
に沈澱させて精製を行い、次式[Chemical 5] A 1: 1 copolymer of α-methylstyrene and α-methyl chloroacrylate (weight average molecular weight 560
A 12 wt% o-dichlorobenzene solution of 00) was prepared as a resist solution. This solution was applied on a Si wafer to a thickness of 0.5 μm by spin coating, and prebaked at a temperature of 200 ° C. for 20 minutes in an oven. The Si wafer thus obtained was selectively exposed using an electron beam exposure apparatus with an acceleration voltage of 20 KV. Then, it was developed with xylene for 20 minutes. The threshold energy Eth of the exposure energy at this time was 10 μC / cm 2 . Example 2 3,5-Dimethyladamantyl Methacrylate Monomer and α-Trifluoromethyl Acrylate 2,2
2-trifluoroethyl monomer and 1: 3, 8m
An ol / l 1,4-dioxane solution was prepared, and 1 mol% of AIBN was added as an initiator. Then, polymerization was carried out at a temperature of 80 ° C. for about 3.5 hours. After the polymerization was completed, the product was purified by precipitating it in a large amount of methanol.
【0018】[0018]
【化6】 で示される、組成比58:42、重量平均分子量300
00、分散度1.9の共重合体を得た。次に、こうして
合成したポリマをシクロヘキサノンに溶かし、12wt
%のレジスト溶液を調整した。この溶液をスピンコート
法によりSiウェーハ上に0.5μm厚に塗布し、オー
ブンで温度200℃、20分間のプリベークを行った。
こうして得られたSiウェーハを加速電圧20KVの電
子線露光装置を使って選択的に露光した。その後、酢酸
イソアミルで5分間現像した。このときの露光エネルギ
ーの閾値エネルギーEthは1μC/cm2 を示し、その
解像性は0.45μm幅のL&Sであった。 [実施例 3]メタクリル酸3,5−ジメチルアダマン
チルモノマとα−トリフロロメチルアクリル酸とを1:
3で仕込み、8mol/lの1,4−ジオキサン溶液と
し、開始剤としてBPOを1mol%添加した。その
後、温度80℃で約5時間重合した。重合終了後、大量
のジエチルエーテルに沈澱させて精製を行い、次式[Chemical 6] Composition ratio 58:42, weight average molecular weight 300
A copolymer having a dispersity of 00 and a dispersity of 1.9 was obtained. Next, the polymer thus synthesized is dissolved in cyclohexanone to obtain 12 wt.
% Resist solution was prepared. This solution was applied on a Si wafer to a thickness of 0.5 μm by spin coating, and prebaked at a temperature of 200 ° C. for 20 minutes in an oven.
The Si wafer thus obtained was selectively exposed using an electron beam exposure apparatus with an acceleration voltage of 20 KV. Then, it was developed with isoamyl acetate for 5 minutes. The threshold energy Eth of the exposure energy at this time was 1 μC / cm 2 , and the resolution was 0.45 μm wide L & S. [Example 3] 3,5-dimethyladamantyl methacrylate monomer and α-trifluoromethylacrylic acid were mixed with 1: 5.
The mixture was charged with 3 to prepare an 8 mol / l 1,4-dioxane solution, and 1 mol% of BPO was added as an initiator. Then, polymerization was carried out at a temperature of 80 ° C. for about 5 hours. After the polymerization was completed, the product was purified by precipitation in a large amount of diethyl ether.
【0019】[0019]
【化7】 で示される、組成比51:49、重量平均分子量230
00、分散度2.1の共重合体を得た。次に、こうして
合成したポリマをエチルセロソルプに溶かし、12wt
%のレジスト溶液を調整した。この溶液をスピンコート
法によりSiウェーハ上に0.5μm厚に塗布し、オー
ブンで温度170℃、20分間のプリベークを行った。
こうして得られたSiウェーハを加速電圧20KVの電
子線露光装置を使って選択的に露光した。その後、酢酸
エチルで5分間現像した。このときの露光エネルギーの
閾値エネルギーEthは1.6μC/cm2 を示し、その
解像性は0.5μm幅のL&Sであった。 [実施例 4]上記実施例1におけるメタクリル酸アダ
マンチルの代わりに、メタクリル酸3,5−ジメチルア
ダマンチルを用いても、同様の結果が得られた。 [実施例 5]メタクリル酸アダマンチルモノマとα−
シアノアクリル酸メチルモノマとを1:1で仕込み、1
mol/lのベンゼン溶液とし、開始剤としてAIBN
を5mol%添加した。その後、温度80℃で約8時間
重合した。重合終了後、大量のメタノールに沈澱させて
精製を行った。こうして、次式[Chemical 7] , Composition ratio 51:49, weight average molecular weight 230
A copolymer having a dispersity of 00 and a dispersity of 2.1 was obtained. Next, the polymer thus synthesized was dissolved in ethyl cellosolve to obtain 12 wt.
% Resist solution was prepared. This solution was applied on a Si wafer to a thickness of 0.5 μm by spin coating, and prebaked at a temperature of 170 ° C. for 20 minutes in an oven.
The Si wafer thus obtained was selectively exposed using an electron beam exposure apparatus with an acceleration voltage of 20 KV. Then, it was developed with ethyl acetate for 5 minutes. At this time, the threshold energy Eth of the exposure energy was 1.6 μC / cm 2 , and the resolution was L & S with a width of 0.5 μm. Example 4 Similar results were obtained even when 3,5-dimethyladamantyl methacrylate was used instead of adamantyl methacrylate in Example 1 above. Example 5 Adamantyl Methacrylate Monomer and α-
1: 1 with methyl cyanoacrylate monomer and 1
Mol / l benzene solution, AIBN as the initiator
Was added in an amount of 5 mol%. Then, the polymerization was carried out at a temperature of 80 ° C. for about 8 hours. After completion of the polymerization, the product was purified by precipitation in a large amount of methanol. Thus,
【0020】[0020]
【化8】 で示される、組成比50:50、重量平均分子量120
000、分散度1.8の共重合体を得た。次に、こうし
て合成したポリマをシクロヘキサノンに溶かし、9wt
%のレジスト溶液を調整した。この溶液をスピンコート
法によりSiウェーハ上に0.5μm厚に塗布し、オー
ブンで温度200℃、20分間のプリベークを行った。
こうして得られたSiウェーハを加速電圧20KVの電
子線露光装置を使って選択的に露光した。その後、メチ
ルエチルケトンで3分間現像した。このときの露光エネ
ルギーの閾値エネルギーEthは4μC/cm2 を示し、
解像性は0.4μm幅のL&Sパターンが得られた。 [実施例 6]上記実施例5におけるメタクリル酸アダ
マンチルの代わりに、メタクリル酸3,5−ジメチルア
ダマンチルを用いても、同様の結果が得られた。[Chemical 8] The composition ratio is 50:50 and the weight average molecular weight is 120.
000 and a dispersity of 1.8 were obtained. Next, the polymer thus synthesized was dissolved in cyclohexanone to obtain 9 wt.
% Resist solution was prepared. This solution was applied on a Si wafer to a thickness of 0.5 μm by spin coating, and prebaked at a temperature of 200 ° C. for 20 minutes in an oven.
The Si wafer thus obtained was selectively exposed using an electron beam exposure apparatus with an acceleration voltage of 20 KV. Then, it was developed with methyl ethyl ketone for 3 minutes. The threshold energy Eth of the exposure energy at this time is 4 μC / cm 2 ,
An L & S pattern having a resolution of 0.4 μm was obtained. Example 6 Similar results were obtained when 3,5-dimethyladamantyl methacrylate was used instead of adamantyl methacrylate in Example 5 above.
【0021】[0021]
【発明の効果】以上のように本発明によれば、一般式As described above, according to the present invention, the general formula
【0022】[0022]
【化9】 (式中、R1 及びR2 はそれぞれ水素原子又はメチル基
を表す。)で示されるメタクリル酸アダマンチル又はそ
の誘導体とα位が電子吸引基で置換されたビニルモノマ
とを含む共重合体からなる放射線感光材料であることに
より、この重合体がα−メチル置換アクリル構造である
ため、電子線照射により分解すると共に、ドライエッチ
ング耐性をもち、実用可能な感度が得られる。[Chemical 9] (Wherein R 1 and R 2 each represent a hydrogen atom or a methyl group), and a radiation-sensitive material comprising a copolymer containing adamantyl methacrylate or a derivative thereof and a vinyl monomer in which the α-position is substituted with an electron-withdrawing group. By virtue of this, since this polymer has an α-methyl-substituted acrylic structure, it is decomposed by electron beam irradiation, has dry etching resistance, and practical sensitivity can be obtained.
【0023】このようにして、電子線を露光源とするリ
ソグラフィにおいて、優れた透明性及びエッチング耐性
のみならず、高感度で、剥がれの少ない放射線感光材
料、及びその放射線感光材料を用いたパターン形成方法
を提供することができ、高精度のパターン形成に大いに
寄与することができる。Thus, in lithography using an electron beam as an exposure source, not only excellent transparency and etching resistance but also a highly sensitive radiation-sensitive material with less peeling, and pattern formation using the radiation-sensitive material. A method can be provided and can greatly contribute to highly accurate pattern formation.
Claims (3)
を表す。)で示されるメタクリル酸アダマンチル又はそ
の誘導体とα位が電子吸引基で置換されたビニルモノマ
とを含む共重合体からなることを特徴とする放射線感光
材料。1. A general formula: (Wherein each of R1 and R2 represents a hydrogen atom or a methyl group), and a copolymer containing adamantyl methacrylate or a derivative thereof and a vinyl monomer in which the α-position is substituted with an electron-withdrawing group. Radiation sensitive material.
て、 前記共重合体におけるアダマンチル基を有する単位構造
が、40〜70mol%であることを特徴とする放射線
感光材料。2. The radiation-sensitive material according to claim 1, wherein the unit structure having an adamantyl group in the copolymer is 40 to 70 mol%.
を用いてレジストを形成し、 前記レジストを基板上に塗布した後、プリベークを行
い、 前記基板上の前記レジストに放射線を選択的に露光した
後、ポストベークを行い、 前記基板上の前記レジストを現像して、所定のレジスト
パターンを形成することを特徴とするパターン形成方
法。3. A resist is formed using the radiation-sensitive material according to claim 1 or 2, and the resist is applied onto a substrate and then prebaked to selectively expose the resist on the substrate to radiation. After the exposure, post-baking is performed, and the resist on the substrate is developed to form a predetermined resist pattern.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33811293A JPH07196743A (en) | 1993-12-28 | 1993-12-28 | Radiation-sensitive material and method for forming pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33811293A JPH07196743A (en) | 1993-12-28 | 1993-12-28 | Radiation-sensitive material and method for forming pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07196743A true JPH07196743A (en) | 1995-08-01 |
Family
ID=18315029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33811293A Withdrawn JPH07196743A (en) | 1993-12-28 | 1993-12-28 | Radiation-sensitive material and method for forming pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07196743A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999061404A1 (en) * | 1998-05-25 | 1999-12-02 | Daichel Chemical Industries, Ltd. | Acid-sensitive compound and resin composition for photoresist |
JP2000136165A (en) * | 1998-05-25 | 2000-05-16 | Daicel Chem Ind Ltd | Acid-sensitive compound and resin composition for photoresist |
WO2002092651A1 (en) * | 2001-05-11 | 2002-11-21 | Clariant International Ltd | Polymer suitable for photoresist compositions |
US6887644B1 (en) | 1997-06-23 | 2005-05-03 | Fujitsu Limited | Polymer compound for a chemical amplification resist and a fabrication process of a semiconductor device using such a chemical amplification resist |
KR100489312B1 (en) * | 2000-12-04 | 2005-05-17 | 토쿄오오카코교 가부시기가이샤 | Positive-working photoresist composition |
-
1993
- 1993-12-28 JP JP33811293A patent/JPH07196743A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6887644B1 (en) | 1997-06-23 | 2005-05-03 | Fujitsu Limited | Polymer compound for a chemical amplification resist and a fabrication process of a semiconductor device using such a chemical amplification resist |
WO1999061404A1 (en) * | 1998-05-25 | 1999-12-02 | Daichel Chemical Industries, Ltd. | Acid-sensitive compound and resin composition for photoresist |
JP2000136165A (en) * | 1998-05-25 | 2000-05-16 | Daicel Chem Ind Ltd | Acid-sensitive compound and resin composition for photoresist |
EP1445266A2 (en) * | 1998-05-25 | 2004-08-11 | Daicel Chemical Industries, Ltd. | Photoresist copolymer |
EP1445266A3 (en) * | 1998-05-25 | 2004-09-15 | Daicel Chemical Industries, Ltd. | Photoresist copolymer |
JP4527212B2 (en) * | 1998-05-25 | 2010-08-18 | ダイセル化学工業株式会社 | Acid-sensitive compound and resin composition for photoresist |
KR100489312B1 (en) * | 2000-12-04 | 2005-05-17 | 토쿄오오카코교 가부시기가이샤 | Positive-working photoresist composition |
WO2002092651A1 (en) * | 2001-05-11 | 2002-11-21 | Clariant International Ltd | Polymer suitable for photoresist compositions |
US6686429B2 (en) | 2001-05-11 | 2004-02-03 | Clariant Finance (Bvi) Limited | Polymer suitable for photoresist compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2881969B2 (en) | Radiation-sensitive resist and pattern forming method | |
KR100301354B1 (en) | Resist Composition and Resist Pattern Formation Method | |
JP3748596B2 (en) | Resist material and resist pattern forming method | |
JPH08250416A (en) | Manufacture of negative resist image | |
JPH11109632A (en) | Radiation sensitive material and pattern forming method using the same | |
CN113214427B (en) | Bio-based ArF photoresist film-forming resin, photoresist composition and preparation method thereof | |
JP3584968B2 (en) | Method of forming negative photoresist pattern | |
JP4527827B2 (en) | Photoresist crosslinking agent, photoresist composition, photoresist pattern forming method, and semiconductor device | |
JPS5949536A (en) | Formation of micropattern | |
JP3221909B2 (en) | Photoresist material and pattern forming method using the same | |
JP3980201B2 (en) | Resist composition and method for forming resist pattern using the same | |
JPH07196743A (en) | Radiation-sensitive material and method for forming pattern | |
JP2001027806A (en) | Chemical amplification type resist composition and resist pattern forming method | |
JPH05255216A (en) | Radiation-sensitive mixture containing polymeric binder having alpha,beta-unsaturated carboxamide unit | |
CN113214429B (en) | ArF photoresist film-forming resin, preparation method thereof and photoresist composition | |
JP4437991B2 (en) | Method for producing resin for deep ultraviolet photosensitive material for semiconductor integrated circuit, and method for forming semiconductor pattern | |
JP2001318472A5 (en) | ||
JPH08240911A (en) | Radiation sensitive resin composition | |
JP6741540B2 (en) | Method for controlling surface properties of substrate | |
JP3421328B2 (en) | Method for producing resin for radiation-sensitive material | |
JP2002226664A (en) | Silicon-based positive resist composition, and patterning method | |
JP4023867B2 (en) | Photosensitive resin composition for resist | |
JPH0682215B2 (en) | Radiation resist and pattern forming method using the same | |
JPH05257285A (en) | Radiosensitive material and formation of pattern using the same | |
JPH0915862A (en) | Resist composite and forming method of resist pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010306 |