JPS58168047A - Photosensitive material - Google Patents

Photosensitive material

Info

Publication number
JPS58168047A
JPS58168047A JP5015382A JP5015382A JPS58168047A JP S58168047 A JPS58168047 A JP S58168047A JP 5015382 A JP5015382 A JP 5015382A JP 5015382 A JP5015382 A JP 5015382A JP S58168047 A JPS58168047 A JP S58168047A
Authority
JP
Japan
Prior art keywords
group
photosensitive
photosensitive material
acid residue
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5015382A
Other languages
Japanese (ja)
Other versions
JPH0334057B2 (en
Inventor
Hideo Ochi
英夫 越智
Haruo Hatakeyama
畠山 晴夫
Tomoyuki Kitaori
北折 智之
Ichiro Sugawara
一郎 菅原
Kotaro Nagasawa
長澤 孝太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somar Corp
Original Assignee
Somar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somar Corp filed Critical Somar Corp
Priority to JP5015382A priority Critical patent/JPS58168047A/en
Publication of JPS58168047A publication Critical patent/JPS58168047A/en
Publication of JPH0334057B2 publication Critical patent/JPH0334057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Abstract

PURPOSE:To obtain a photosensitive material with high sensitivity and high resolving power to far ultraviolet rays and electron beams and stability to heat, moisture, etc. by using a high polymer compound having halogenated benzoic acid residues or halogenated phenoxycarbonyl groups as a film forming photosensitive component. CONSTITUTION:A photosensitive soln. is prepared by dissolving a high polymer compound having about 500-500,000mol.wt. in a solvent. The compound has 1- 100mol% bonded groups represented by the formula (where each of X, X' and X'' is C, Br or I, Y is carboxyl or hydroxycarbonyl, and l, m and n are numbers satisfying l+m+n=1-5), and the stock polymer includes a copolymer of 20- 90mol% vinyl monomer having a benzene ring such as styrene with other vinyl monomer. By applying the photosensitive soln. to a silicon wafer or the like, a resist film is formed to obtain a photosensitive material for forming a fine pattern used in the manufacture of an integrated circuit by a drawing method with far ultraviolet rays or electron beams.

Description

【発明の詳細な説明】 本発明は感光性材料、さらに詳しくは微細加工レノスト
用に好適な感光性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photosensitive material, and more particularly to a photosensitive material suitable for microfabricated lenost.

近年マイクロエレクトロニクスの分野では、益々集積度
か大きくなり複雑化し又いるためサブミクロン領埴に達
する加工精度が必要となり、電子線描画法が採り入れら
れるようになった。電子線描画法は加工精度が優れ℃い
ると共に・ンターンジェネレーターとしての機能も有し
、でいるためマスターマスクの製作π用いられている。
In recent years, in the field of microelectronics, as the degree of integration has become larger and more complex, processing precision reaching submicron levels is required, and electron beam lithography has been adopted. The electron beam lithography method has excellent processing accuracy and also functions as a turn generator, so it is used in the production of master masks.

しかし現状では、電子線描画法は、その描画速度が遅い
ので、同一の・ぞターンを大量に生産する手段として適
しでいない。このため、電子線描画法によって作成した
マスターマスクから高精度で転写する技術が求められて
いる。3300〜450.OAの比較的長い波長の紫外
線(近紫外線と呼ばれろ)を用いる従来のフォトリング
ラフ1−は尤の回折・モ渉を伴うために1μm以下の・
にターンの転写は不可能で)・る。このためX線や電子
線を用いる転写法も研究されでいるが、まだ実用装置は
開発されていない。
However, at present, the electron beam lithography method has a slow lithography speed, so it is not suitable as a means for producing large quantities of identical strips. Therefore, there is a need for a technology that transfers with high precision from a master mask created by electron beam lithography. 3300-450. Conventional photolin graphs using OA's relatively long wavelength ultraviolet rays (referred to as near ultraviolet rays) are accompanied by significant diffraction and radiation, resulting in ultraviolet radiation of 1 μm or less.
It is impossible to transfer the turn). For this reason, transfer methods using X-rays or electron beams are also being researched, but no practical device has been developed yet.

ところで、1975年K B、J、リンは2000〜2
600への比較的波長の短い紫外線(深紫外線、Dee
pUVと呼ばれる)を用いることによりサブミクロン・
eターンの転写が可能であることを発表した( B、J
、 Lin 二Deep UV LITHOGRAPH
Y、 Journal of Vacuum3cien
ce and Technology、 vol、l 
2. Jli (’+。
By the way, in 1975, KB, J, and Lin were 2000-2.
Ultraviolet rays with relatively short wavelengths (deep ultraviolet rays, Dee
By using pUV (called pUV), submicron
We announced that e-turn transcription is possible (B, J
, Lin 2Deep UV LITHOGRAPH
Y, Journal of Vacuum3cien
ce and Technology, vol, l
2. Jli ('+.

1975 、 pp  1317〜1320+。このた
め実現可能性の高い技術として急速に研究が進み、既に
実用的露光装置が開発されている。しかし、DeepU
■リソグラフ3いえども、従来のフォトレノストをその
まま用いたのでは十分な解像性を得ることが出来ない。
1975, pp 1317-1320+. For this reason, research is progressing rapidly as a technology with high feasibility, and a practical exposure apparatus has already been developed. However, DeepU
■Even with RISOGRAPH 3, sufficient resolution cannot be obtained by using conventional photorenost as is.

B、J、リンは高解像性の電子線レノストとして知られ
又いるポリメチルメタクリレート(PMMAIを用いて
上述の結果を得ている。
B, J, and Lin obtained the above results using polymethyl methacrylate (PMMAI), which is also known as a high-resolution electron beam renost.

ある。前述のPMMAはポジ形レノストである。Dee
pUVリソグラフィー用のネガ形レジストとし1実用的
に満足出来るものはまだ開発されていない。微細加工に
おい又は、工程に応じてボッ形とネガ形の両しソストを
使い分ける方が有利であり、実用的なネガ形DI・ep
UVレソストの開発が求められている。
be. The aforementioned PMMA is a positive renost. Dee
A practically satisfactory negative resist for pUV lithography has not yet been developed. In microfabrication or depending on the process, it is advantageous to use both a bottom type and a negative type soto, and it is a practical negative type DI/ep.
The development of UV Resost is required.

一般にネガ形レノスト用感光性材料は、塗膜形成性物質
(主として高分子化合物)を基幹物質としてこれに架橋
基を化学結合させるか、または架橋剤(低分子化合物)
を塗膜形成性物質と混合することによって製造し得る。
In general, photosensitive materials for negative tone renosts are made by chemically bonding a crosslinking group to a film-forming substance (mainly a high molecular compound) as a base substance, or by using a crosslinking agent (low molecular compound).
can be prepared by mixing with a film-forming substance.

このような観点に立ち、本発明者らは、鋭意研究を進め
た結果、一般式(1)で示されろ基1r。
From this point of view, the present inventors have carried out extensive research and have found a group 1r represented by the general formula (1).

を有する高分子鍼は低分子の化合物が1)eepUV 
K対して極めて高い感度を示し、かつ可視光線・熱・湿
気などには安定性が高く、ネガ形DeepUVレノスト
用の架橋性感光剤として極めて好適であり、またこのも
のが電子ヒ゛−ムレノスト用の感光成分としても有効で
あ4)ことを見出し、本発明を完成するに至った1、!
も 即ち本発明は、ネガ形Deep UVレノスト用藝は電
子ビームレジスト用として使用できる感光性材料を提供
することを目的とし、下記を要旨とするものである。
Polymer acupuncture needles with
It exhibits extremely high sensitivity to K, and is highly stable against visible light, heat, moisture, etc., making it extremely suitable as a crosslinkable photosensitizer for negative-tone Deep UV renost. They discovered that it is also effective as a photosensitive component 4) and completed the present invention 1.!
That is, the present invention aims to provide a photosensitive material that can be used as a negative type deep UV resist and an electron beam resist, and has the following gist.

一般式 (式中、x 、 x /  、 x //は同一または
異な!3 って塩素原子、臭素原子、黄は沃素原子のいずれかを表
わし、Yはカルボキシル基5 (/’)条件を満たすよ
りな0または1以上の整数を表わす。) で示される基を有する高分子化合物を塗膜形成性感光成
分として含有することを特徴とする感光性材料。また、
本発明は、同じ目的において、一般式(1)で示される
基を有する低分子化合物を感光成分として含有し、かつ
塗膜j4成性物質を含有することを特徴とする感光性材
料である。
General formula (where x, x /, x // are the same or different! 3 represents a chlorine atom, a bromine atom, yellow represents an iodine atom, Y is a carboxyl group 5 (/') satisfies the condition (representing an integer of 0 or 1 or more). Also,
For the same purpose, the present invention is a photosensitive material characterized by containing a low molecular weight compound having a group represented by the general formula (1) as a photosensitive component and also containing a coating film forming substance.

本発明により、Deep UVレジストおよび電子ビー
ムレノスト、とりわけ、感度・成膜性・基板に対する密
着力・解像力・耐食性・安定性に優れた実用的なネガ形
Deep UVレノストを得ることが出来る。一般式(
1)で示される基は同一または異なってよく、1個また
は2個以上を結合して含んでいてもよい。また、一般式
(1)で示される基の中で、〇−位または/およびp−
位に置換基を有するものが特に高い感度を示す。本発明
で用いる基幹物質または塗膜形成性物質としては、セル
ロースゲ)ような天然高分子化合物、フエノールノポラ
ノク樹脂・ポリエステル樹脂・ポリ°rミド、ll+1
脂のような縮合重合体またはビニル重合体σ)ような付
加重合体を用いることが出来ろ。なかでも、ビニル重合
体は、モノマーの種類と4を合比を比較的自由に選ぶこ
とが出来、七〇)十重合開始剤elfを変えたり、連鎖
移動剤を用いる一般によく知し)れた方法により重合度
を調節することが容易であり、有利に用いることが出来
る、一般に、重合体の物性はそれを構成するモノマーの
組成からある程度予測することが出来る。スチレン、a
−メチルスチレン、ビニルトルエン、ビニルナフタリン
、ビニルカルバゾール、アセナフチレンのヨウなベンゼ
ン核を有するモノマーを多く含む重合体は、プラズマエ
ツチング、反応性イオンエツチング、イオンエツチング
のヨウな、いわゆるドライエツチングに対する耐性が優
れていることで当該技術分野ではよぐ知られている。一
方、このようなベンゼン核を含ムモノマーの比率が高く
なると、薄膜にしたときVζひび割れを起こしやすくな
り、かつ基板に対する密着力が悪くなる傾向がある。ポ
リシタツエンのようなゴム系の重合体は有機溶剤で膨潤
を起こしやすく、高解像力のレジストを得ることが難か
しい。またレジストは100℃以上の高温下で使用され
る場合が多いので、重合体の軟化温度を低くするような
モノマーを多量に含むものは好ましくない。さll−1
VCまた、フッ素原子を含むモノマーは基板に対すろ密
着性を悪くする傾向がある。ここに述べたような知見は
当該技術分野ではよく知ら才1でいるが、このような観
点からモノマーの種類と比率を目的に応じ1選ぷことが
出来る。
According to the present invention, it is possible to obtain a deep UV resist and an electron beam renost, particularly a practical negative-tone deep UV renost that is excellent in sensitivity, film formability, adhesion to a substrate, resolution, corrosion resistance, and stability. General formula (
The groups represented by 1) may be the same or different, and may contain one or more groups bonded together. In addition, in the group represented by general formula (1), the 〇-position or/and p-position
Those having a substituent at that position exhibit particularly high sensitivity. The basic substance or film-forming substance used in the present invention includes natural polymer compounds such as cellulose gel, phenol nopolanox resin, polyester resin, polyamide, ll+1
Condensation polymers such as fats or addition polymers such as vinyl polymers σ) could be used. Among these, for vinyl polymers, the type of monomer and the mixing ratio can be selected relatively freely, and it is possible to change the polymerization initiator elf or use a chain transfer agent (generally well-known). It is easy to adjust the degree of polymerization by a method and can be used advantageously. Generally, the physical properties of a polymer can be predicted to some extent from the composition of the monomers constituting it. styrene, a
- Polymers containing a large amount of monomers with benzene nuclei such as methylstyrene, vinyltoluene, vinylnaphthalene, vinylcarbazole, and acenaphthylene have excellent resistance to so-called dry etching such as plasma etching, reactive ion etching, and ion etching. It is well known in the art for this. On the other hand, when the ratio of such benzene nucleus-containing monomer increases, Vζ cracks tend to occur when formed into a thin film, and the adhesion to the substrate tends to deteriorate. Rubber-based polymers such as polycitatsuene tend to swell with organic solvents, making it difficult to obtain resists with high resolution. Furthermore, since resists are often used at high temperatures of 100° C. or higher, it is not preferable to use a resist that contains a large amount of monomer that lowers the softening temperature of the polymer. Sll-1
Furthermore, monomers containing fluorine atoms tend to deteriorate the adhesion of the filter to the substrate. The knowledge described here is well known in the technical field, and from this point of view, the type and ratio of monomers can be selected depending on the purpose.

一般式(1)で示される基を重合体に結合させる場合、
重合体を構成するモノマーのうち少なくとも一種類は、
一般式(1)で示される基を、化学的な方法で結合させ
得ろ官能基を有するものでなければならない。このよう
なモノ−7−としではエポキシ基、ヒドロキンル基、カ
ルボキシル基、カルボン酸ハライド基などの官能基を有
するモノマーが有利に用いられろ。
When bonding a group represented by general formula (1) to a polymer,
At least one kind of monomers constituting the polymer is
It must have a functional group to which the group represented by general formula (1) can be bonded by a chemical method. As such mono-7-, monomers having functional groups such as epoxy groups, hydroquine groups, carboxyl groups, and carboxylic acid halide groups are advantageously used.

ネガ形レノストの場合、基幹物質の分子量が小さくなる
と解像力が良くなる傾向があるが、同時に感度は分子量
に比fll して低下する。
In the case of negative tone Lennost, the resolution tends to improve as the molecular weight of the base material decreases, but at the same time the sensitivity decreases in proportion to the molecular weight.

また、分子量が小さすぎる場合は塗膜の機械的強度が悪
くなる傾向もあり、基幹物質夕)分子量を極端に小さく
することは出来t、cい。このような観点から、基幹物
質の分子量範囲ケ決めることが出来るが、本発明の場合
、一般に分子量が約500〜500.000のもの、好
ましくは約5,000〜200.000の範囲のものが
有利に用いられる。基幹物質として分子量が約500〜
500..000の重合体を用い、一般式(1)で示さ
れる基を結合させろ場合、その導入量は、重合体のくり
返し単位当りl−100モル係の範囲で選び得ろが、好
ましくは2〜50モル係の範囲で選択される。
In addition, if the molecular weight is too small, the mechanical strength of the coating film tends to deteriorate, so it is impossible to make the molecular weight of the basic material extremely small. From this point of view, the molecular weight range of the basic substance can be determined, but in the case of the present invention, it is generally used that has a molecular weight of about 500 to 500,000, preferably about 5,000 to 200,000. Used to advantage. As a basic substance, the molecular weight is about 500~
500. .. When a group represented by the general formula (1) is bonded to a polymer of 000, the amount introduced can be selected within the range of 1 to 100 mol per repeating unit of the polymer, but preferably 2 to 50 mol. selected within the relevant range.

一般式(1)で示されろ基の導入量が2モル係未満の場
合は基幹物質の分子量を比較的大きくする必要があり、
高解像力のレノストを得る囲が狭くなり不利である。
When the amount of the introduced group shown in general formula (1) is less than 2 moles, it is necessary to make the molecular weight of the base substance relatively large.
This is disadvantageous because the scope for obtaining high-resolution Lennost becomes narrower.

一般式(1)で示されろ基は予めモノマーに結合させて
おいてもよいし、重合体に反応させで結合させてもよい
。一般式(1)で示されるよ1 うな基タモツマ−または重合体の側鎖としで結合させろ
反応方法は一般的しτ公知の方法を中いればよく、特に
限定されることはない、高分子化合物に一般式(1)で
示されろ基のほかに脂肪酸残基を併わせ結合させろこと
Dて゛より、さらに特性の優れた感光性材料を得ること
か出来る。脂肪酸残基の効果は主とし℃、現像時ルヅス
トの膨潤を抑えることによりレノストの解像力を改善f
ることにある。本発明で用いる脂肪酸は炭素数2〜6個
の飽和脂肪酸および不飽和脂肪酸が好適である。、この
ような脂肪酸の例とし又は、酢酸、!ロピオノ酸、酪酸
、クロトン酸、ビニル酢酸、アクリル酸、メタクリル酸
が挙げられろ。また、その導入割合は、式(])で示さ
才する基1個に対し脂肪酸残基0.2〜3個が好適であ
る。
The group represented by general formula (1) may be bonded to a monomer in advance, or may be bonded to a polymer by reaction. The reaction method for bonding to the side chain of a polymer or a polymer as shown in the general formula (1) is not particularly limited and may be any of the commonly known methods. By bonding a fatty acid residue to the compound in addition to the group represented by the general formula (1), it is possible to obtain a photosensitive material with even more excellent properties. The effect of fatty acid residues is mainly to improve the resolution of renost by suppressing the swelling of renost during development.
There are many things. The fatty acids used in the present invention are preferably saturated fatty acids and unsaturated fatty acids having 2 to 6 carbon atoms. Examples of such fatty acids are acetic acid,! Examples include lopionic acid, butyric acid, crotonic acid, vinylacetic acid, acrylic acid, and methacrylic acid. The ratio of introduction thereof is preferably 0.2 to 3 fatty acid residues per one group represented by the formula ().

一般式(11で示されろ基を有する低分子化合物を感光
成分として用いる場合、塗膜形成性物質に対する混合割
合は、塗膜形成性物質1重新部に対しlJ、05〜1.
0重量部の範囲で選び得る。添加量が0.05重量部よ
り少t〔いときは十分な感度が得られず、1.0重景部
を超えるときは成膜性、解像性に悪い影響な与える恐れ
がある。本発明で用いられる感光成分は、一般式(1)
で示されろ基を1個または2〜5個以上有する低分子化
合物であり、例えば一般式 (式中、X + X ’  1  ” Ht@ m H
n HYは@記と同じ童味を表わし、2は水素原子、ア
ルキル基または低級炭化水素鎖を表わす。)で示される
ものである。
When a low-molecular-weight compound having a group represented by the general formula (11) is used as a photosensitive component, the mixing ratio of the film-forming substance to 1 part of the film-forming substance is lJ, 05 to 1.
It can be selected within the range of 0 parts by weight. When the amount added is less than 0.05 parts by weight, sufficient sensitivity cannot be obtained, and when it exceeds 1.0 parts by weight, it may adversely affect film formability and resolution. The photosensitive component used in the present invention has the general formula (1)
It is a low-molecular compound having 1 or 2 to 5 or more groups represented by, for example, the general formula (wherein,
n HY represents the same flavor as @, and 2 represents a hydrogen atom, an alkyl group, or a lower hydrocarbon chain. ).

このような化合物の例としては、2.4−ソクロル安息
香酸、2,4−ソクロル安息香酸メチル、0−クロル安
息香酸エチレングリコーレノエステル、0−クロル安息
香酸ペンタエリスリトールトリエステル、2,4−ソク
ロルフェノール酢酸エステルなどが挙ケラオするが、こ
れらに限定されるものではない。
Examples of such compounds include 2,4-sochlorobenzoic acid, methyl 2,4-sochlorobenzoate, 0-chlorobenzoic acid ethylene glycolenoester, 0-chlorobenzoic acid pentaerythritol triester, 2,4- Examples include, but are not limited to, sochlorophenol acetate.

本発明の感光性材料は約2000〜3000人の波長の
光および電子ビームにより有効VCレノストを形成する
が、とりわけ約2000〜2600への波長の光(De
ep UV l vc対し有効である。
The photosensitive material of the present invention forms effective VC renosts with light and electron beams with wavelengths of about 2000-3000, but especially with light with wavelengths of about 2000-2600 (De
Valid for ep UV l vc.

本発明の感光性材料なりeep UVレノスト用に使用
する場合について例示すれば、シリコンウェハーのよう
な基板上〇で、本発明の感た性材料を適当な溶剤、例え
ばエチレングリコールモノメチルエーテルアセテートに
浴かし、スピンナーを用いて均一に塗布し、乾燥して厚
さ帆4〜1μmのレノスト層を形成させる、次いで、約
2000〜2600への波長の光を効率よく放射する光
源、例えばキセノン−水銀灯を用いて、この光を透過す
る材料、例えば人工石英板を支持体とするマスクツJ?
ターンを介して露光する。次いで、これを現像液、例え
ばメチルエチルケトンとエタノールの混合溶剤に浸漬し
、非露光部を浴出させれば、マスクに忠実な微細・ぞタ
ーンを得ることが出来ろ。本発明σ)感光材料は可視光
線には感光しないので明室中で取扱うことが出来る。ま
た、湿気や熱に対し又も安定であり、取扱い上特別の注
意を要することもなく、保存安定性にも優れている。
For example, when the photosensitive material of the present invention is used for eep UV renost, the photosensitive material of the present invention is bathed in a suitable solvent such as ethylene glycol monomethyl ether acetate on a substrate such as a silicon wafer. Then, apply it uniformly using a spinner and dry to form a 4-1 μm thick lennost layer. Next, apply a light source that efficiently emits light with a wavelength of about 2000 to 2600, such as a xenon-mercury lamp. A mask using a material that transmits this light, such as an artificial quartz plate, is used as a support.
Exposure through turns. Next, if this is immersed in a developer, such as a mixed solvent of methyl ethyl ketone and ethanol, and the unexposed areas are exposed, it is possible to obtain minute turns that are faithful to the mask. Since the photosensitive material σ) of the present invention is not sensitive to visible light, it can be handled in a bright room. In addition, it is stable against moisture and heat, does not require special care in handling, and has excellent storage stability.

本発明の感光性材料は電子ビームリングラフ1−用のレ
ジストとしても有用である。加速電圧10〜30KVの
電子ビームに対しlOマイクロクーロン/ c11以上
の感度を示し、0.3μmの格子状ノ’?ターンを解像
することが出来る。
The photosensitive material of the present invention is also useful as a resist for electron beam photolithography 1-. It exhibits a sensitivity of more than 10 microcoulombs/c11 to an electron beam with an accelerating voltage of 10 to 30 KV, and has a lattice shape of 0.3 μm. Turns can be resolved.

次に、実施911 Kより本発明をさらに詳しく説明す
る。ただし、本発明はこれらの実施例により制限される
ものではない。
Next, the present invention will be explained in more detail from Example 911K. However, the present invention is not limited to these Examples.

実癲例1 (高分子化合物の合成) 基幹物質とじ又メチ1フ85モル係とグリシツルメタク
リレート15モル係からなる分子B22.oooの共重
合体を用意し、そのエポキシ基に第1表に示した誘導体
を重合体に対しlOモル係結合させた。ここで用いた反
応の1例を示せば次の如くである。
Practical example 1 (Synthesis of polymeric compound) Molecule B22 consisting of 85 moles of base material Tojimata methacrylate and 15 moles of glycitul methacrylate. A copolymer of ooo was prepared, and the derivatives shown in Table 1 were attached to the epoxy group in 1O molar bond to the polymer. An example of the reaction used here is as follows.

前述の共重合体282と2,4−ヅクロル安息香酸12
Fをメチルエチルケトン250m1Kgかし、これに触
媒とじ又トリエチルベンノルアンモニウムクロライド0
.52を加えで、かきまぜながら4時間加熱還流した。
The aforementioned copolymer 282 and 2,4-duchlorobenzoic acid 12
F was dissolved in 250 ml of methyl ethyl ketone (250 ml/kg), and a catalyst was added to it.
.. 52 was added, and the mixture was heated under reflux for 4 hours while stirring.

放冷後反応液をインゾロビルアルコール中に注入し又ポ
リマーを回収し、これを室温で減圧乾燥した。こうして
得たポリマーの一部を採り、常法により未反応エポキシ
基を定量した結果、2,4−ヅクロル安息香酸の導入量
は重合体に対し10モル係であった。
After cooling, the reaction solution was poured into inzorobil alcohol and the polymer was recovered, which was dried under reduced pressure at room temperature. A portion of the thus obtained polymer was taken and the amount of unreacted epoxy groups was determined by a conventional method. As a result, the amount of 2,4-duchlorobenzoic acid introduced was 10 moles relative to the polymer.

(感光数の調製と使用) 次に、第1表に示した誘導体を各々付加した重合体20
2をエチレングリコールモノメチルエーテルアセテート
1OO−に溶かして感光液を調製した。
(Preparation and use of photosensitive number) Next, polymer 20 to which each derivative shown in Table 1 was added was prepared.
2 was dissolved in ethylene glycol monomethyl ether acetate (1OO-) to prepare a photosensitive solution.

この感光液を、スピンナーを用いてシリコンウェハー上
に塗布した後90℃で30分間ベーキングし℃浴剤を除
去せしめて厚さく】、7μm(7)レジスト膜を形成さ
せた。このレジスト膜を15crnの距離から500w
のキセノン−水銀灯で段階的に時間を変えて露光した後
、メチルエチルケトンとエタノールの混合浴剤中に60
秒間浸漬して現像し、残存膜厚が塗布膜厚に等しくなる
のにセする時間の逆数により感度を評価し第1表の結果
を得た。第1表の相対感度は、ここで用いた基幹重合体
そのものの感度を1とし1示したものである。
This photosensitive solution was applied onto a silicon wafer using a spinner and then baked at 90° C. for 30 minutes to remove the bathing agent and form a resist film with a thickness of 7 μm (7). This resist film was heated at 500W from a distance of 15crn.
After exposure with a xenon-mercury lamp for varying times in stages, it was placed in a bath mixture of methyl ethyl ketone and ethanol for 60 minutes.
The film was immersed for a second and developed, and the sensitivity was evaluated by the reciprocal of the time required for the remaining film thickness to become equal to the coated film thickness, and the results shown in Table 1 were obtained. The relative sensitivities in Table 1 are expressed as 1, with the sensitivity of the base polymer itself used here being 1.

第1表 実施例2 実施例1で用いたものと同じ基幹重合体に2.4−ジク
ロル安息香酸な重合体に対し各々3モル係、6モル’1
.10モル係結合させた。実施例1と同様にして得たこ
れらの感光性材料の感度を実施例1と同じ方法で測定し
第2表の結果を得た。
Table 1 Example 2 The same base polymer as used in Example 1 and 2,4-dichlorobenzoic acid were added in proportions of 3 mol and 6 mol'1, respectively.
.. 10 molar bonds were made. The sensitivity of these photosensitive materials obtained in the same manner as in Example 1 was measured in the same manner as in Example 1, and the results shown in Table 2 were obtained.

纂2表 (注)※前記第1表&4と同じ 実施例3 基幹物質として、メチレフ40モル係、グリシツルメタ
クリレート60モル係からなる分子量11,000の共
重合体を用意し、実施例1に述べたような方法で2,4
−ジクロル安息香酸を重合体の繰返′し単位当り0.2
個結合させた感光性材料を合成した六この感光性材料は
第1表の基準に準ずれば相対感度300を示した。
Table 2 (Note) * Same as Table 1 & 4 above Example 3 A copolymer with a molecular weight of 11,000 consisting of 40 moles of methylene ref and 60 moles of glycitul methacrylate was prepared as the base material, and the same as in Example 1 was prepared. 2,4 in the manner described
- 0.2 dichlorobenzoic acid per repeating unit of the polymer
These six photosensitive materials, which were synthesized from photosensitive materials in which each individual was bonded, exhibited a relative sensitivity of 300 according to the standards shown in Table 1.

実施例4 実施例1で用いたものと同じ基幹重合体282.2,4
−ジクロル安息香酸12tおデ よび3−プラノイック酸242をメチルエールケ)y2
50dK播かして、これにトリエチルベンノルアンモニ
ウムクロライド0.52加えてかきまぜながら4時間加
熱還流した。
Example 4 Same backbone polymer 282.2,4 as used in Example 1
-dichlorobenzoic acid 12t and 3-planoic acid 242 methyl ether) y2
The mixture was seeded at 50 dK, and 0.52 ml of triethylbennolammonium chloride was added thereto, followed by heating and refluxing for 4 hours while stirring.

放冷後反応液をイソゾロビルアルコール中ニ注入してポ
リマーを回収し、これを室温で減圧乾燥した。こうして
得たポリマーの一部を採り、ポリマー中の塩素原子の量
と未反応エポキシ基の量を定量することにより、その組
成を計算した結果、2,4−ジクロル安息香酸と3−ブ
テノイック酸の導入量は、基幹重合体に対し各々6モル
%と5モル係であった。
After cooling, the reaction solution was poured into isozorobyl alcohol to recover the polymer, which was dried under reduced pressure at room temperature. A portion of the polymer obtained in this way was taken, and the composition was calculated by quantifying the amount of chlorine atoms and the amount of unreacted epoxy groups in the polymer. The amounts introduced were 6 mol % and 5 mol %, respectively, relative to the base polymer.

また、第1表と同じ基準で測定したこの感光性材料の相
対感度は350であった。
Further, the relative sensitivity of this photosensitive material measured using the same criteria as in Table 1 was 350.

実施例5 基幹物質として、メチレフ90モル係、2−ヒドロキシ
エチルメタクリレ−)100モル%らなる分子量20.
000の共重合体を用意しまた。この共重合体109と
2.47ノクロル安息香酸クロリド25fをメチルエチ
ルケトン50−に溶かし、これにトリエチ!レアミン1
7 cc  を加え室温で24時間かきまぜた後、水に
注入t7て重合体を回収した。この重合体をメチルエチ
ルケトンCで浴かしイソグロ・ぞノールに再沈し1精製
し、室温で減圧乾燥した。こうして得た重合体の赤外線
吸収スーククトルには3400 tyn ’付近のヒド
ロギシル基が殆んど認められず、エステル化は定量的に
進行したものと思われる。
Example 5 The basic substance was 90 mol% of methyl methacrylate and 100 mol% of 2-hydroxyethyl methacrylate, with a molecular weight of 20.
000 copolymer was prepared. This copolymer 109 and 2.47 nochlorobenzoic acid chloride 25f were dissolved in methyl ethyl ketone 50-, and triethyl chloride was added to the solution. raremin 1
After adding 7 cc and stirring at room temperature for 24 hours, the polymer was poured into water at t7 and recovered. This polymer was purified by bathing it in methyl ethyl ketone C, reprecipitating it in isoglozonol, and drying it under reduced pressure at room temperature. Almost no hydroxyl group around 3400 tyn' was observed in the infrared absorbing polymer thus obtained, indicating that the esterification proceeded quantitatively.

この感光性材料lOvをエチレングリコールモノメチル
エーテルアセテート50−に溶かして感光液を調製し、
実施例1と同じ方法で感度を測定した。
A photosensitive solution was prepared by dissolving lOv of this photosensitive material in 50% of ethylene glycol monomethyl ether acetate,
Sensitivity was measured in the same manner as in Example 1.

この感光性材料はiE1表と同じ比較基準で相対感度5
00を示した。
This photosensitive material has a relative sensitivity of 5 using the same comparison criteria as in the iE1 table.
It showed 00.

実施例6 2.4〜ヅクロルフエノール259ヲ5%苛性ソーダ水
浴1140fに浴かし又氷冷した。これにメタクリル酸
クロリド16fを滴FLIQ分間がきまぜた後、混合物
を室温に戻し更に30分間かきまぜた。生成した結晶状
の沈澱を濾過して回収し、1%苛性ソーダ水浴液で洗っ
た後室温で減圧乾燥した。さらにエタノールで再結晶し
て針状結晶18.7 Fを得た。
Example 6 2.4~Duchlorphenol 259 was soaked in a 5% caustic soda water bath 1140f and cooled on ice. Methacrylic acid chloride 16f was added dropwise to the mixture and stirred for FLIQ minutes, and then the mixture was returned to room temperature and stirred for an additional 30 minutes. The formed crystalline precipitate was collected by filtration, washed with a 1% caustic soda water bath, and then dried under reduced pressure at room temperature. Further, it was recrystallized with ethanol to obtain needle-like crystals of 18.7 F.

この結晶の融点は56〜57℃で、2.4−ジクロルフ
ェニルメタクリレートの融点56℃に一致した。また赤
外線吸収スペクトルか「)も2,4−ジクロルフェニル
メタクリレートであることが確認出来た。次に、こうし
て合成した2、4−ジクロルフェニルメタクリレート4
.69 (20モル%)とメチルメタクリレート8.O
f (80モル係)をメチルエチルケトン10−に浴か
し、アゾビスインゾチロニトリル帆lfを添加して、か
きまぜながら80℃に加熱した。2時間後メチルエチル
ケトン5ゴを追加し、さI−1に1時間8゜CK保った
後、′冷却してからイノゾロパノールに注入して重合体
を碍だ。
The melting point of this crystal was 56-57°C, which corresponded to the melting point of 2,4-dichlorophenyl methacrylate, 56°C. It was also confirmed that the infrared absorption spectrum ( ) was 2,4-dichlorophenyl methacrylate.
.. 69 (20 mol%) and methyl methacrylate8. O
(80 mol) was added to methyl ethyl ketone 10, azobisinzotyronitrile was added, and the mixture was heated to 80° C. with stirring. After 2 hours, 5 grams of methyl ethyl ketone was added, and the mixture was kept at 8°C for 1 hour, cooled, and then poured into inozolopanol to sinter the polymer.

これをメチルエチルケトンに浴がしイソゾロパノールで
再沈してt o、o tの精製重合体を得た。この重合
μの分子量は約30,000であった。
This was bathed in methyl ethyl ketone and reprecipitated with isozolopanol to obtain purified polymers of t o and o t. The molecular weight of this polymerized μ was approximately 30,000.

この重合体202をエチレングリコールモノメチルエー
テルアセテ−)100−に浴がして感光液を調製し、実
施例1と同じ方法で感度を測定した。
This polymer 202 was bathed in ethylene glycol monomethyl ether acetate (100) to prepare a photosensitive solution, and the sensitivity was measured in the same manner as in Example 1.

この感光性材料はネガ形であり、II1表と同じ評価基
準では、相対感度7oであった。
This photosensitive material was negative-tone and had a relative sensitivity of 7o according to the same evaluation criteria as in Table II1.

実施例7 実施例2の第2表A 2 vζ示した感光性材料20f
をエチレングリコールモノメチルエーテルアセテートl
oom/に溶がし、0.2μmのメンブランフィルタ−
で渥過して感光液を調製した。この感光液を、スピンナ
ーを用いて、11さ5000Aの酸化膜を有するシリコ
ン基板上に塗布した後、90℃で30分間ベーキングし
て厚さ帆7μmのレジスト膜を形成させた。次に、石英
マスクパターンをこのレジスト膜に密着させて、500
Wのキセノン−水銀灯で6秒間露光した後、容量比l:
lのメチルエチルケトンとエタノールの混合浴剤に60
秒間浸漬して現像を行い、次いでイソゾロ・セノールで
洗浄することにより、0.5μmのマスクツにターンの
転写像を精度よく得ることが出来た。
Example 7 Photosensitive material 20f shown in Table 2 A 2 vζ of Example 2
ethylene glycol monomethyl ether acetate l
Dissolve in 0.2 μm membrane filter
A photosensitive solution was prepared. This photosensitive solution was applied using a spinner onto a silicon substrate having an oxide film of 5,000 Å in thickness, and then baked at 90° C. for 30 minutes to form a resist film with a thickness of 7 μm. Next, a quartz mask pattern was brought into close contact with this resist film, and
After exposure for 6 seconds with a xenon-mercury lamp of W, the volume ratio l:
60 l of methyl ethyl ketone and ethanol mixed bath agent
By immersing it for a second to develop it, and then washing it with isozolosenol, it was possible to accurately obtain a transferred image of a turn on a 0.5 μm mask.

次に、このレノストi+ターンを形成したシリコン基板
を120℃で30分間ベーキングした後平行平板形プラ
ズマエツチング装置のカソード側Oで置き、次のような
条件でシリコン酸化膜のエツチングを行なった。
Next, the silicon substrate on which the Renost i+turn was formed was baked at 120° C. for 30 minutes, and then placed on the cathode side O of a parallel plate type plasma etching apparatus, and the silicon oxide film was etched under the following conditions.

レノストは十分なドライエツチング耐性を示し、マスク
パターンに忠実なエッチングノ?ターンを得ることが出
来た。
Renost shows sufficient dry etching resistance and can be etched faithfully to the mask pattern. I was able to get a turn.

エツチング条件:エツチングガス CF4+為 (20%) ガス圧  0.02 Torr がス流量 70SCCM RF市力 200W 実施例8 実施9’ll 3の感光性材料2 ofをエチレングリ
コールモノメチルエーテルアセテート100−に溶かし
、0.2μmのメンブランフィルタ−で沖過して調製し
た感光液を、スピンナーを用いて、5000Aの酸化膜
を有−するシリコンウェハー上に塗布し、90℃で30
分間ベーキングして厚さ帆7μmのレノスト膜を形成し
た。このレノスト膜に石英マスクを密着させ、500W
キセノン−水銀灯で8秒間露光した後、7:3容量比の
イノゾロパノールとメチルエチルケトンの混合浴剤で現
f象し、n−へブタンでリンスすることによ’10.5
μmのパターンを精度よく転写することが出来た。次に
、ノ母ターンを形成させたシリコンウェハーを150℃
で30分間ベーキングしてから30℃のフッ化水素酸緩
衝浴g + 401フツ化水素酸I N +401フッ
化アンモニウム水溶液6部)に4分間浸漬しでエツチン
グしたところ、しみ込みやレノストの剥離もなくマスク
・母ターンに忠実なエツチングノソターンが得られた。
Etching conditions: Etching gas CF4+ (20%) Gas pressure 0.02 Torr Gas flow rate 70SCCM RF power 200W Example 8 Dissolve the photosensitive material 2 of Example 9'll 3 in ethylene glycol monomethyl ether acetate 100- A photosensitive solution prepared by filtering through a 0.2 μm membrane filter was applied onto a silicon wafer with a 5000A oxide film using a spinner, and heated at 90°C for 30 minutes.
Baking was performed for a minute to form a Lenost film with a thickness of 7 μm. A quartz mask was placed in close contact with this Renost film, and a 500W
After exposure to a xenon-mercury lamp for 8 seconds, the mixture was developed with a bath mixture of inozolopanol and methyl ethyl ketone in a 7:3 volume ratio, and rinsed with n-hebutane.
We were able to transfer micrometer patterns with high precision. Next, the silicon wafer with the mother turns formed thereon was heated to 150°C.
After baking for 30 minutes at 30°C and then immersing it in a 30°C hydrofluoric acid buffer bath (g + 401 hydrofluoric acid I N + 6 parts of 401 ammonium fluoride aqueous solution) for 4 minutes and etching, there was no seepage or peeling of the renost. I was able to obtain an etching noso turn that was faithful to the mask/mother turn.

実施例9 実施例4で得た感光性材料2Ofをエチレングリコール
モノメチルエーテルアセテート100W1t[漬かし、
0.2 μmのメンブランフィルタ−で濾過して調製し
た感光液を、スピンナーを用いてシリコンウェハーに塗
布し、90Cで30分間ベーキングしt厚さ帆7μmの
レジスト膜を形成した。このレジスト膜に石英マスクを
密着させて、500Wのキセノン−水銀灯で6秒間露光
した後、実施例7と同じように、メチルエチルケトンと
エタノールの混合溶剤で現像し、次いでイソゾロ・ぞノ
ールで洗浄した。現像中のレノスト像の膨潤が非常に少
なく極めて精度の良い転写パターンを得た。
Example 9 The photosensitive material 2Of obtained in Example 4 was treated with ethylene glycol monomethyl ether acetate 100W1t [soaked,
A photosensitive solution prepared by filtering through a 0.2 μm membrane filter was applied to a silicon wafer using a spinner and baked at 90 C for 30 minutes to form a resist film with a thickness of 7 μm. A quartz mask was brought into close contact with this resist film, and after exposure for 6 seconds with a 500 W xenon-mercury lamp, it was developed in the same manner as in Example 7 with a mixed solvent of methyl ethyl ketone and ethanol, and then washed with isozolo-zonol. The swelling of the Lennost image during development was very small, and an extremely accurate transfer pattern was obtained.

実、怖例1〇 一般式(1)で示される基を何する低分子化合物として
2,4−ジクロル安息香酸2.72および塗゛膜形成性
物質としてメチレフ85モル係とグリシジルメタクリレ
ート15モル係とからなる分子量22.000の共重合
体20Fをエチレングリコールモノメチルエーテルアセ
テート100−に浴がし感光液を調製した。
In fact, scary example 10 2,4-dichlorobenzoic acid 2.72 as a low-molecular compound with a group represented by general formula (1) and 85 mol of methyl ref as a film-forming substance and 15 mol of glycidyl methacrylate as a film-forming substance. A photosensitive solution was prepared by bathing copolymer 20F with a molecular weight of 22,000 consisting of the following in 100% of ethylene glycol monomethyl ether acetate.

実施汐1ト場合と同じ評価方法により調べた結果、そσ
)相対感度は4であった。この結果に加えて、同様にし
て別種の低分子1ヒ合物を用いて得た結果をまとめて第
3表に示す。
As a result of an investigation using the same evaluation method as in the case of implementation, σ
) The relative sensitivity was 4. In addition to these results, Table 3 summarizes the results obtained using another type of low-molecular-weight compound.

第3表 実施例11 実施例7で調製した感′#、欣を、ガラス根土に厚さ7
00人のクロム層を有するクロム基板に塗布し、90℃
で30分間ベーキングしで、厚さ0.6μmのレジスト
膜を形成した。
Table 3 Example 11 The paste prepared in Example 7 was added to glass soil to a thickness of 7.
Coated on a chrome substrate with a chromium layer of 0.00 and heated at 90℃
A resist film having a thickness of 0.6 μm was formed by baking for 30 minutes.

この基板を真空中に置き、加速電圧27KVの電子ビー
ムでレノスト面を掃引した後取出して、実施例7と同じ
ようにメチルエチルケトンとエタノールの混合浴剤で現
像し、次いでイソプロ・七ノールで洗浄したところ、電
子ビームで照射した部分にレノスト像を得た。
This substrate was placed in a vacuum, and after sweeping the Lennost surface with an electron beam with an acceleration voltage of 27 KV, it was taken out, developed in a mixed bath of methyl ethyl ketone and ethanol in the same manner as in Example 7, and then washed with isopro7ol. However, a Lennost image was obtained in the area irradiated with the electron beam.

このレノスト像は0.3μmの格子/やターンを解像し
くいた。また、この時照射した電荷量はl平方センチ当
り8マイクロクーロンであり、現像後のレジスト膜の厚
さは0.35μmであった。
This Lennost image was able to resolve gratings/turns of 0.3 μm. Further, the amount of charge irradiated at this time was 8 microcoulombs per square centimeter, and the thickness of the resist film after development was 0.35 μm.

参考例 〔一般式(1)においてYがカルボキシル基で
もオキシカルボニル基でもな い基〕 クロルスチレン(0−クロルスチレン65係、p−クロ
ルスチレン35係の混合物)を車合し又分子量′20.
000のポリクロルスチレンを得た。この重合体2 O
f ヲクロルベンゼン100m/に苗がし、()、2μ
mのメンブランフィルタ−で濾過した。
Reference Example [In the general formula (1), Y is neither a carboxyl group nor an oxycarbonyl group] Chlorstyrene (a mixture of 65 parts of 0-chlorostyrene and 35 parts of p-chlorostyrene) is combined with a compound having a molecular weight of '20.
000 polychlorostyrene was obtained. This polymer 2O
f Seedlings are grown in 100m/100m of wochlorobenzene, (), 2μ
It was filtered with a membrane filter of 1.0 m.

次にこの重合体gfiY、スピンナーを用いてシリコン
ウェハー上に塗布した後、9ocで30分間ベーキング
して厚さく)、7μmの重合体膜を形成した。この重合
体膜を実施1(il +と1司じようにして、5ocw
のキセノン−水銀灯で露光した後、メチルエチルケトン
とエタノールの混合浴剤で現像して感度を測定し7たと
ころ、本発明の感光性材料に較べて著しく感度が低く、
第1表と同じ比率い相対感度は()、9以下であった。
Next, this polymer gfiY was applied onto a silicon wafer using a spinner, and then baked at 9 oc for 30 minutes to form a 7 μm thick polymer film. This polymer membrane was applied to conduction 1 (il + 1) and 5 ocw
After exposure with a xenon-mercury lamp of
The relative sensitivity (), which is the same as in Table 1, was 9 or less.

Claims (1)

【特許請求の範囲】 (1)  一般式 (式中、x、x’、x”は同一 または異!7 なって塩素原子、臭素原子、嗅は沃素原子)いずれかを
表わし、Yはカルボキンm、nは同一または異なって1
≦を十m十n≦5の条件を満たすような0または1以上
の整数を表わす。) で示さ才する基を有する高分子化合物を塗膜形成性感光
成分としで含有することを特徴とする感光性材料。 (2)  一般式(11で示される基が、0−クロル安
息香酸残基、p−クロル安息香酸残基、2゜4−ノクロ
ル安息香酸残基、2,6−ヅクロル安息香酸残基、0−
クロルフェノキシカルボニル基、p−クロルフェノキシ
カル&=/L4;、214−ヅクロルフエノキシ力ルボ
ニル基または2,6−ノクロルフエノキ7カルポニル基
のいずれかである特許請求の範囲(1)の感光性材料、 (3)感光成分が分子量約500〜500.000の重
合体で、一般式(1)で示されろ基を1〜100モル係
結合して有する高分子化合物である特許請求の範囲(1
)の感光性材料。 (41i光成分カ、スチレン、ビニルトルエン、a−メ
チルスチレン、ビニルナフタリン、ビニルカルバゾール
、アセナフチレンのようなベンゼン核を有するビニルモ
ノマー2()〜90モル係と他の1種または2種以上の
ビニルモノマーからなる分子量約 5.000〜200,000の共重合体で、一般式(1
)で示される基を2〜50モル係結合して有する高分子
化合物である特許請;、g O)範囲(1)の感光性材
料。 (5)感光成分が一般式(1)で示される基1個VC対
しC2〜。の脂肪酸残基を0.2〜3個の割合で結合し
て有する高分子化合物である特許請求の範囲(1) (
7’)感光性材料。 (61一般式 子のいずれかを表わし、Yはカルボキンm、nは同一ま
たは異−なってl≦L+m+n≦5の条件を満たすよう
な0または1以上の整数を表わす。) で示される基を有する低分子化合物を感光成分として含
有し、かつ塗膜形成性物質を含有することを特徴とする
感光性材料。 (7)一般式(1)で示される基が、0〜クロル安息香
酸残基、p−クロル安息香酸残基、2゜4〜ソクロル安
息香酸残基、2,6−ヅクロル安息香酸残基、0−クロ
ルフェノキシカルボニル基、p−クロルフェノキシカル
ボニル基、2,4−ジクロルフエノキシ力ルホニル基マ
たは2.6−ヅクロルフエノキンカルボニル基のいずれ
がである特許請求の範囲(6)の感光性材料。
[Scope of Claims] (1) Represents any of the general formulas (in the formula, x, x', x'' are the same or different! 7 is a chlorine atom, a bromine atom, and an iodine atom), and Y is a carboquine m , n are the same or different and 1
≦ represents an integer of 0 or 1 or more that satisfies the condition of 10m10n≦5. ) A photosensitive material comprising a polymeric compound having a group exhibiting the above properties as a film-forming photosensitive component. (2) The group represented by the general formula (11) is a 0-chlorobenzoic acid residue, p-chlorobenzoic acid residue, 2゜4-nochlorobenzoic acid residue, 2,6-dichlorobenzoic acid residue, 0 −
The photosensitive material according to claim (1), which is either a chlorophenoxycarbonyl group, a p-chlorophenoxycarbonyl group, a 214-dichlorophenoxycarbonyl group, or a 2,6-nochlorophenoxycarbonyl group (3) The photosensitive component is a polymer having a molecular weight of about 500 to 500,000, and is a polymer compound having 1 to 100 molar groups represented by the general formula (1).
) Photosensitive materials. (41i optical component) A vinyl monomer having a benzene nucleus such as styrene, vinyltoluene, a-methylstyrene, vinylnaphthalene, vinylcarbazole, acenaphthylene (2() to 90 mol) and one or more other vinyl monomers. A copolymer composed of monomers with a molecular weight of about 5,000 to 200,000 and having the general formula (1
) A photosensitive material falling within the range (1), which is a polymeric compound having 2 to 50 moles of groups represented by the formula (O). (5) The photosensitive component has one group represented by the general formula (1), C2 to VC. Claim (1), which is a polymer compound having 0.2 to 3 fatty acid residues bonded together (
7') Photosensitive material. (Represents any of the 61 general formulas, Y is carboquine m, and n is the same or different and represents an integer of 0 or 1 or more satisfying the condition l≦L+m+n≦5.) 1. A photosensitive material, characterized in that it contains a low-molecular-weight compound as a photosensitive component, and also contains a film-forming substance. (7) The group represented by general formula (1) is 0~chlorobenzoic acid residue, p-chlorobenzoic acid residue, 2゜4~sochlorobenzoic acid residue, 2,6-dichlorobenzoic acid residue, Claim (6) Which is a 0-chlorophenoxycarbonyl group, a p-chlorophenoxycarbonyl group, a 2,4-dichlorophenoxysulfonyl group, or a 2,6-dichlorophenoquine carbonyl group. photosensitive material.
JP5015382A 1982-03-30 1982-03-30 Photosensitive material Granted JPS58168047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015382A JPS58168047A (en) 1982-03-30 1982-03-30 Photosensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015382A JPS58168047A (en) 1982-03-30 1982-03-30 Photosensitive material

Publications (2)

Publication Number Publication Date
JPS58168047A true JPS58168047A (en) 1983-10-04
JPH0334057B2 JPH0334057B2 (en) 1991-05-21

Family

ID=12851233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015382A Granted JPS58168047A (en) 1982-03-30 1982-03-30 Photosensitive material

Country Status (1)

Country Link
JP (1) JPS58168047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129741A (en) * 1983-12-16 1985-07-11 Japan Synthetic Rubber Co Ltd X-ray resist composition
EP0354789A2 (en) * 1988-08-11 1990-02-14 Somar Corporation High energy beam-sensitive copolymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320771A (en) * 1976-08-06 1978-02-25 Western Electric Co Method of manufacturing semiconductor element
JPS565984A (en) * 1979-04-16 1981-01-22 Lubrizol Corp Corrosion inhibiting agent * aqueous composition and corrosion inhibiting method
JPS57124731A (en) * 1981-01-28 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Negative type resist with dry etching resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320771A (en) * 1976-08-06 1978-02-25 Western Electric Co Method of manufacturing semiconductor element
JPS565984A (en) * 1979-04-16 1981-01-22 Lubrizol Corp Corrosion inhibiting agent * aqueous composition and corrosion inhibiting method
JPS57124731A (en) * 1981-01-28 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Negative type resist with dry etching resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129741A (en) * 1983-12-16 1985-07-11 Japan Synthetic Rubber Co Ltd X-ray resist composition
JPH0542659B2 (en) * 1983-12-16 1993-06-29 Japan Synthetic Rubber Co Ltd
EP0354789A2 (en) * 1988-08-11 1990-02-14 Somar Corporation High energy beam-sensitive copolymer
US5015558A (en) * 1988-08-11 1991-05-14 Somar Corporation High energy beam-sensitive copolymer

Also Published As

Publication number Publication date
JPH0334057B2 (en) 1991-05-21

Similar Documents

Publication Publication Date Title
JP4999499B2 (en) Photosensitive film copolymer, photosensitive film copolymer manufacturing method, photosensitive film, photosensitive film manufacturing method, semiconductor device manufacturing method, and semiconductor device
JP2845225B2 (en) Polymer compound, photosensitive resin composition and pattern forming method using the same
JPH05249683A (en) Radiation sensitive composition
JPH07199467A (en) Photosensitive resin composition and method for forming pattern
JP2000204115A (en) Polymer for organic anti-reflection film coating use and its preparation
JPH0218564A (en) Making of radiation sensitive mixture and relief pattern
JP3835506B2 (en) Copolymer resin for photoresist, photoresist composition, method for forming photoresist pattern, and method for manufacturing semiconductor device
TW200530748A (en) Photoresist composition
JP4102010B2 (en) Composition for organic antireflection film and method for producing the same
JP3643491B2 (en) COMPOUND, COPOLYMER AND METHOD FOR PRODUCING SAME, PHOTORESIST COMPOSITION, METHOD FOR FORMING PHOTORESIST PATTERN USING THE SAME, AND SEMICONDUCTOR DEVICE
JP4268249B2 (en) Copolymer resin and manufacturing method thereof, photoresist and manufacturing method thereof, and semiconductor element
US6455226B1 (en) Photoresist polymers and photoresist composition containing the same
JPH0812626A (en) Organocyclic hydrocarbon alcohol
JP3022412B2 (en) Negative photoresist material and pattern forming method using the same
JPH0119135B2 (en)
CN111538210A (en) Positive photoresist composition and method for forming photoresist pattern
KR920008724B1 (en) High energy beam-sensitive copolymer
JPS58168047A (en) Photosensitive material
JP2825543B2 (en) Negative radiation sensitive resin composition
JPH04287042A (en) Resin composition for photoresist and pattern forming method
TWI278012B (en) Pattern forming material and method of pattern formation
JPS5862642A (en) Ionization radiation sensitive negative type resist
KR20020032025A (en) Photoresist monomer comprising bisphenol derivative and polymer thereof
TWI506360B (en) Novel absorber and composition for preparing organic antireflective protecting layer comprising the same
JPH0153772B2 (en)