JPH0330323A - Lamp heating apparatus - Google Patents

Lamp heating apparatus

Info

Publication number
JPH0330323A
JPH0330323A JP16511189A JP16511189A JPH0330323A JP H0330323 A JPH0330323 A JP H0330323A JP 16511189 A JP16511189 A JP 16511189A JP 16511189 A JP16511189 A JP 16511189A JP H0330323 A JPH0330323 A JP H0330323A
Authority
JP
Japan
Prior art keywords
light
light scattering
heat
heated
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16511189A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
博士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16511189A priority Critical patent/JPH0330323A/en
Publication of JPH0330323A publication Critical patent/JPH0330323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform uniform temperature increase, heat retaining and temperature decrease by relatively turning two light scattering patterns, and adjusting the relative amounts of radiations at the central part and the peripheral part based on whether the light scattering patterns are made to agree or made different. CONSTITUTION:At least two sheets of heat-resisting light transmitting substrates 3 and 4 which are in parallel and are relatively turned are provided between a lamp 1 and a heated sample 2. Said heat resisting light transmitting substrates 3 and 4 have light scattering patterns 5 and 6 whose light scattering degrees with respect to the relative turning directions are changed. The heat-resisting light transmitting substrates 3 and 4 are relatively turned, and the light scattering patterns 5 and 6 are made to agree or made different. Thus the relative amounts of radiations at the central part and the peripheral part of the wafer 2 can be adjusted. In this way, uniform temperature increase, heat retaining and temperature decrease can be performed at the optimum state all the time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えば半導体装置の製造過程における酸化膜形
成の熱処理あるいは不純物の活性化処理等の各種アニー
ルに用いられるランプ加熱装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lamp heating device used for various annealing processes such as heat treatment for forming an oxide film or activation treatment of impurities in the manufacturing process of semiconductor devices, for example.

[発明の概要] 本発明はランプ加熱装置に係わり、そのランプと被加熱
試料との間に、平行状態を保持して相対的に回動する少
くとも2枚の耐熱性光透過基板を設け、これら少くとも
2枚の耐熱性光透過基板にその相対的回動方向に光散乱
度が変化するパターンを形成して、これら耐熱性光透過
基板の相対的回動位置の選定によって被加熱試料の加熱
分布へのランプからの照射量の制御を行って実質的被加
熱試料の昇温、所定の加熱温度保持、降温等における被
加熱試料上での各部における均一化をはかる。
[Summary of the Invention] The present invention relates to a lamp heating device, in which at least two heat-resistant, light-transmitting substrates are provided between the lamp and a sample to be heated, and which rotate relative to each other while maintaining a parallel state. A pattern in which the degree of light scattering changes in the direction of relative rotation is formed on at least two of these heat-resistant light-transmitting substrates, and by selecting the relative rotational position of these heat-resistant light-transmitting substrates, the sample to be heated can be heated. The amount of irradiation from the lamp applied to the heating distribution is controlled to substantially raise the temperature of the sample to be heated, to maintain a predetermined heating temperature, to lower the temperature, and to make it uniform in each part of the sample to be heated.

[従来の技術] 各種半導体装置の製造工程において、各種熱処理、例え
ば熱酸化あるいは不純物の活性化処理等においてアニー
ル処理すなわち熱処理を多(伴う。
[Prior Art] In the manufacturing process of various semiconductor devices, various heat treatments such as thermal oxidation or impurity activation treatment are often accompanied by annealing treatment, that is, heat treatment.

この種の熱処理において、昨今とみに半導体ウェファに
直接的にハロゲンランプ等の光を直接的に照射する加熱
態様による電気炉を用いた加熱装置に比して急速加熱処
理を行うことのできる加熱装置RT P (Rapid
 Thermal  Process)装置が広く用い
られる。
In this type of heat treatment, there is a heating device RT that can perform rapid heat treatment compared to heating devices that use an electric furnace that directly irradiates the semiconductor wafer with light from a halogen lamp or the like. P (Rapid
Thermal Process) devices are widely used.

このようなRTP装置としては種々のものが提案されて
おり、その被加熱体に対する均一な温度分布を得るため
の工夫も種々なされている(例えば特開昭59−201
410号あるいは特開昭62−250633号参照)。
Various types of such RTP devices have been proposed, and various devices have been devised to obtain a uniform temperature distribution for the heated object (for example, Japanese Patent Laid-Open No. 59-201
410 or Japanese Patent Application Laid-Open No. 62-250633).

この種RTP装置は、電気炉による加熱装置とは異り、
その炉体が基本的にコールドウオール(Cold Wa
ll)であり、被加熱試料すなわち例えば半導体ウェハ
ーでの光の吸収壇によってその昇温かなされる。したが
って、この種RTP装置においては、ウェハーに対する
実質的光の照射量すなわち光源(ランプ)からの光の照
射量と周囲からの光の反射して到来する光景、逆に半導
体ウェハーからの熱の他部への放散、例えばこれに接す
る支持部からの熱伝導による放散あるいはこれに近接す
る炉壁への輻射熱としての放散等によって実質的温度が
変化するものであって、これらのごとが考慮されること
によってはじめて被加熱試料における温度の均一性がは
かられることになる。つまり、被加熱試料に対して仮に
均一な光を照射したとしても上述した諸条件によって例
えばウェハーの中央部と周辺部とでその放熱の度合が相
違してくるとためにウェハー面内の温度が各部均一にな
るとは限らない。さらに通常の熱処理においては、その
加熱プロファイルがウェハーを所定の温度までに加熱す
る加熱過程と、所定の1温度に力11熱された状態で一
定の温度に保持する工程と、冷却過程とをとり、例えば
加熱状態の光照射用を100%とするとき、一定/詰度
に保持する状態ではその光量を例えば50%に落とし、
冷却状態で例えば徐冷を行おうとすれば10〜20%程
度とするなどの方法がとられている。この場合、特にそ
の昇温時と、所定温度の保持時と、降温時では、さらに
そのウェハーに対する周囲からの反射量、他部への放散
等のバランスが変動し、各昇温時、保メ晶時及び降温時
でそれぞれ被加熱試料すなわちウェハーの周辺部と中央
部とで光の照射量を制御する必要が生じてくる。
This type of RTP device is different from a heating device using an electric furnace,
The furnace body is basically a cold wall.
ll), and its temperature is raised by a light absorption stage of a heated sample, for example a semiconductor wafer. Therefore, in this type of RTP device, the actual amount of light irradiated onto the wafer, that is, the amount of light irradiated from the light source (lamp) and the scene that comes from the reflection of light from the surroundings, conversely, the amount of light irradiated from the semiconductor wafer, The actual temperature changes due to heat conduction from the support part in contact with the support part, or radiation heat to the furnace wall adjacent to the support part, and these factors are taken into account. Only then can the temperature uniformity of the heated sample be measured. In other words, even if the sample to be heated is irradiated with uniform light, the degree of heat dissipation will differ between the center and the periphery of the wafer due to the various conditions mentioned above, and the temperature within the wafer surface will change. It is not guaranteed that each part will be uniform. Furthermore, in normal heat treatment, the heating profile consists of a heating process in which the wafer is heated to a predetermined temperature, a process in which the wafer is heated to a predetermined temperature and held at a constant temperature, and a cooling process. For example, when the light irradiation in the heating state is set to 100%, the light intensity is reduced to, for example, 50% in the state of maintaining a constant/closedness,
If, for example, slow cooling is to be performed in the cooled state, a method is used in which the temperature is reduced to about 10 to 20%. In this case, the balance between the amount of reflection from the surroundings to the wafer and the radiation to other parts changes, especially when the temperature is raised, when the predetermined temperature is maintained, and when the temperature is lowered. It becomes necessary to control the amount of light irradiated at the periphery and center of the sample to be heated, that is, the wafer, during crystallization and during temperature cooling, respectively.

このように、被加熱試料の中央と周辺の加熱温度の均一
化をはかるものとして被加熱試料の周辺部に対向するラ
ンプと中央の部に対向するランプの強度を個別に制御す
るようにした装置の提案もなされているが、この場合装
置の複雑化を招来すると共に、微妙な調整がしにくいと
いう問題がある。
In this way, in order to equalize the heating temperature at the center and periphery of the sample to be heated, a device that individually controls the intensity of the lamps facing the periphery and the lamps facing the center of the sample to be heated. has also been proposed, but in this case there are problems in that it complicates the device and makes it difficult to make delicate adjustments.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、ランプ加熱装置において、簡単な構成をとっ
て例えばその昇温時、保温時、降温時の各状態で任意に
被加熱試料に対する特に周辺部と中心部との光の照射量
を選定することができるようにして、それぞれ実質的加
熱状態の均一化をはかることができるようにしたランプ
加熱装置を提供することを目的とする。
The present invention provides a lamp heating device that has a simple configuration and arbitrarily selects the amount of light irradiated on the sample to be heated, especially at the periphery and center, in each state, for example, when the temperature is rising, when keeping the temperature, and when the temperature is falling. It is an object of the present invention to provide a lamp heating device that can substantially uniformize the heating state of each lamp.

[課題を解決するための手段] 本発明は、例えば第1図にその一例の一部を断面とした
路線的平面図を示し、第2図にその一部を断面とした側
面図を示すように、ランプ(1)と被加熱試料(2)と
の間に、互いに平行状態を保持して互いに相対的に回動
する少くとも2枚の耐熱性光透過基板(3)及び(4)
を設ける。これら耐熱性光透過基板(3)及び(4)は
例えば第3図及び第4図にそれぞれ平面図を示すように
、その各互いの相対的回動方向に関して光散乱度が変化
する光散乱パターン(5)及び(6)が形成される。
[Means for Solving the Problems] The present invention is such that, for example, FIG. 1 shows a partially cross-sectional plan view of the route, and FIG. 2 shows a partially cross-sectional side view. Between the lamp (1) and the sample to be heated (2), there are at least two heat-resistant light-transmitting substrates (3) and (4) that rotate relative to each other while maintaining a parallel state.
will be established. These heat-resistant light-transmitting substrates (3) and (4) have a light scattering pattern in which the degree of light scattering changes with respect to the direction of relative rotation thereof, as shown in plan views in FIGS. 3 and 4, respectively. (5) and (6) are formed.

〔作用] このような構成において、耐熱性光透過基板(3)及び
(4)を相対的に回動させることによってそれぞれの光
散乱度が変化する光散乱パターン(5)及び(6)を互
いに一部させるかallWさせるかで、両光透過基板(
3)及び(4)の全体的光の散乱度すなわら光透過量を
調整することができることによって、被加熱試料(2)
の実質的光照射量したがって光吸収量の調整を行うこと
ができる。すなわち、これら光散乱パターン(5)及び
(6)を基板(3)及び(4)の周辺部で、回動方向に
関して光散乱度が変化するパターンとすることによって
例えば周辺部での両光透過基板(3)及び(4)を透過
する光透過量を調整するごとができ、ウェハー(2)の
中心部と周辺部との相対的照射−晴を調整でき、昇温時
2保温時、降温時等においてそれぞれその中心部と周辺
部とで実質的光照射壇を変えることによって常に最適の
状態で均一な昇温保温、降’t14を行うことができる
[Function] In such a configuration, by relatively rotating the heat-resistant light-transmitting substrates (3) and (4), the light scattering patterns (5) and (6) whose respective light scattering degrees change are mutually rotated. Both light transmitting substrates (
By being able to adjust the overall degree of scattering of light in (3) and (4), that is, the amount of light transmission, the sample to be heated (2)
The effective amount of light irradiation and therefore the amount of light absorbed can be adjusted. That is, by making these light scattering patterns (5) and (6) patterns in which the degree of light scattering changes with respect to the rotating direction in the peripheral areas of the substrates (3) and (4), for example, both light transmission in the peripheral areas can be achieved. The amount of light transmitted through the substrates (3) and (4) can be adjusted, and the relative irradiation between the center and peripheral parts of the wafer (2) can be adjusted. By changing the actual light irradiation stage between the center and the periphery at different times, it is possible to uniformly raise and retain the temperature and lower the temperature at all times in an optimal state.

〔実施例] 図面を参照して本発明によるランプ加熱装置の一例を詳
細に説明する。(力はランプ加熱装置の加熱室すなわち
いわゆるコールドウオール型のが体を示し、加熱室(7
)の上部にはランプ(1)が配置される。このランプ(
1)は例えばハロゲンランプより成り、一方向に?!数
本平行配列して例えば、−平面に配置される。これらラ
ンプ(1)は、これに対向して配置される被加熱試料(
2)例えば半導体ウェハーに対してその全面に充分光照
射がなされるような本数及び位置関係に選定される。
[Example] An example of a lamp heating device according to the present invention will be described in detail with reference to the drawings. (The power indicates the heating chamber of the lamp heating device, that is, the so-called cold wall type body, and the heating chamber (7
) is placed above the lamp (1). This lamp (
1) consists of a halogen lamp, for example, and is directed in one direction? ! Several of them are arranged in parallel, for example, on a - plane. These lamps (1) are connected to the sample to be heated (
2) For example, the number and position of the semiconductor wafers are selected so that the entire surface of the semiconductor wafer is sufficiently irradiated with light.

そして、ランプ(1)と被加熱試料(2)との間には互
いに平行状態を保持して相対的に回動する2枚の光透過
性基体(3)及び(4)を各ランプ(1)の配置面と被
加熱試料(2)の試料面とに平行配置する。これら耐熱
性光透過基板(3)及び(4)は、光透過性、特にラン
プ(1)よりの熱線に対して透過性の耐熱性の石英ガラ
ス板あるいはサファイア等によってそれぞれ形成された
例えば円板体よりなり、それぞれ第3図及び第4図に示
すように、光散乱パターン(5)及び(6)が形成され
る。これら光散乱パターン(5)及び(6)は、例えば
各耐熱性光透過基板(3)及び(4)のランプ(1)と
対向する側の主面に、n械的加工、或いは(及び)化学
的エツチング等によって、例えば各中心部においては−
様な光散乱度を有する粗面化された中央光散乱部(5c
)及び(6c)が形成され、その外周には、円周方向す
なわち相対的回動方向に沿って同一ピッチに配列された
例えば中心部から外方に向って幅広をなす旋回扇状の同
様の粗面化による外周光散乱部(5p)及び(6p)と
非光散乱部(5n)及び(6n)とが交互に繰り返され
て光散乱度が変化するようになされたパターンとされる
。これらパターン(5)及び(6)は、互いに例えば同
一パターンに形成してそれぞれの光散乱部(5p)及び
(6ρ)が重なり合うように一致するときに最も透過量
が大であり、光散乱部(5ρ)及び(6p)が互いにM
Mして互いに一方の非光散乱部(5n)または(6n)
と、光散乱部(6p)または(5p)とが合致するとき
には全体として最も光散乱度が高く、被加熱試料(2)
の外周部に対する光照射量が最も低い状態になされる。
Between the lamp (1) and the sample to be heated (2), two light-transmitting substrates (3) and (4) are placed between each lamp (1) and the sample to be heated (2), which rotate relative to each other while maintaining a parallel state. ) and the sample surface of the heated sample (2). These heat-resistant, light-transmitting substrates (3) and (4) are each made of a heat-resistant quartz glass plate or sapphire that is transparent to light, particularly heat rays from the lamp (1), for example, a circular plate. As shown in FIGS. 3 and 4, light scattering patterns (5) and (6) are formed. These light scattering patterns (5) and (6) can be formed by, for example, mechanical processing or (and) By chemical etching etc., for example, in each center -
A roughened central light scattering part (5c) with various light scattering degrees
) and (6c) are formed, and on its outer periphery, similar roughnesses in the shape of a swirling fan, for example, widening outward from the center, are arranged at the same pitch along the circumferential direction, that is, the direction of relative rotation. The pattern is such that the peripheral light scattering portions (5p) and (6p) and the non-light scattering portions (5n) and (6n) are alternately repeated to change the degree of light scattering. When these patterns (5) and (6) are formed into the same pattern, for example, and the respective light scattering parts (5p) and (6ρ) match so as to overlap, the amount of transmission is the largest, and the light scattering part (5ρ) and (6p) are mutually M
M and one non-light scattering part (5n) or (6n)
When the light scattering part (6p) or (5p) matches, the degree of light scattering is the highest overall, and the sample to be heated (2)
The amount of light irradiated to the outer periphery of the area is set to the lowest level.

これら耐熱性光透過基板(3)及び(4)は、例えば−
方の:ti、板例えば基板(3)が固定され、他方の基
板例えば基板(4)のみを回動するように構成すること
もできるし、両者が相対的に共に回動できるように、更
に必要に応じて側基板(3)及び(4)が一体に所要の
回転速度をもって回転するようにして被加熱体(2)の
中心部と周辺部との相対的光照射量を変化させるものの
その全体的回転によって光散乱パターン(5)及び(6
)による光照射むらの回避をはかることもできる。この
場合例えば側基板(3)及び(4)をモータ等によって
回動駆動される共通の回転軸(9)上に配置して全体的
に回転するように構成すると共に外部から相対的に一方
の基板例えは基板(4)を回動させて相対曲回V〕位置
を変え得るようにする。この外部からの相対的回動は、
例えば基板(4)を平歯車とし、これに歯合するラック
(11)を外部から操作できるようにして基板(4)の
みを回転軸(9)を中心に摺動回動させるようになし得
る。
These heat-resistant light-transmitting substrates (3) and (4) are, for example, -
One plate, for example, the substrate (3), may be fixed, and only the other substrate, for example, the substrate (4), may be configured to rotate, or it may be possible to configure a structure in which the two plates, for example, the substrate (4), are fixed. If necessary, the side substrates (3) and (4) may be rotated together at a required rotational speed to change the relative amount of light irradiation between the center and peripheral areas of the heated object (2). Light scattering patterns (5) and (6) by global rotation
) can also be used to avoid uneven light irradiation. In this case, for example, the side substrates (3) and (4) are arranged on a common rotating shaft (9) rotationally driven by a motor or the like so that they rotate as a whole, and one side is relatively rotated from the outside. For example, the substrate (4) can be rotated to change its position. This relative rotation from the outside is
For example, the base plate (4) may be a spur gear, and the rack (11) that meshes with the spur gear may be operated from the outside, so that only the base plate (4) can be slid and rotated about the rotation axis (9). .

また、光散乱パターン(5)及び(6)は、上述したよ
うに1円周線上に沿って光散乱部(5ρ)及び(6p)
と非光散乱部(5n)及び(6n)とを交互に配置した
場合であるが、このパターンを各基板(3)及び(4)
の中心に対して同心的に複数の円周線上に、かつ隣り合
う円周線上のパターンが互いに+tl1Mするように交
互に設けるなどして、より光のむらの防止をはかるよう
にすることができる。また、上述の例では、光散乱部(
5p)と非光散乱部(5n)とが交互に配列するように
した場合であるが、このように明4′僅に区分されたパ
ターンとするに1唄らず、各基板(3)及び(4)の相
対的回動方向に漸次光散乱度が変化するパターンとする
こともできる。
In addition, the light scattering patterns (5) and (6) include light scattering parts (5ρ) and (6p) along one circumferential line as described above.
This is a case where the non-light scattering parts (5n) and (6n) are arranged alternately, and this pattern is applied to each substrate (3) and (4).
It is possible to further prevent unevenness of light by providing patterns concentrically on a plurality of circumferential lines with respect to the center thereof and alternately so that patterns on adjacent circumferential lines are +tl1M apart from each other. In addition, in the above example, the light scattering part (
5p) and non-light-scattering parts (5n) are arranged alternately, but with such a slightly divided pattern, each substrate (3) and (4) A pattern in which the degree of light scattering gradually changes in the direction of relative rotation can also be used.

尚、上述した例においては2枚の耐熱性光透過基板(3
)及び(4)を用いた場合であるが、2枚以上のそれぞ
れ光散乱度が変化するパターンを有する耐熱性光透過基
板を重ね合わせた構造とすることもできるなど上述した
例に限らず種々の変形変更をなし得る。
In the above example, two heat-resistant light-transmitting substrates (3
) and (4), but it is also possible to have a structure in which two or more heat-resistant light-transmitting substrates each having a pattern in which the degree of light scattering changes is stacked. Deformation changes can be made.

〔発明の効果〕〔Effect of the invention〕

本発明装置によれば、耐熱性光透過基板(3)及び(4
)を相対的に回動させることによってそれぞれの光散乱
度が変化する光散乱パターン(5)及び(6)を互いに
一致させるかM!させるかで、両光通過基板(3)及び
(4)の全体的光の散乱度すなわち光透過量を調整する
。ことができることによって、被加熱試料(2)の実質
的光照射量したがって光吸収量の調整を行うことができ
る。すなわち、これら光散乱パターン(5)及び(6)
を基板(3)及び(4)の周辺部で、回動方向に関して
光散乱度が変化するパターンとすることによって例えば
周辺部での両光透過基板(3)及び(4)を透過する光
透i!IIを調整することができ、ウェハー(2)の中
心部と周辺部との相対的照射量を調整でき、昇温時2保
温時、降温時等においてそれぞれの中心部と周辺部とで
実質的光照射量を変えることによって常に最適の状態で
均一な昇温、保温、降温を行うことができる。
According to the device of the present invention, the heat-resistant light-transmitting substrates (3) and (4)
), the light scattering patterns (5) and (6) whose degree of light scattering changes by relatively rotating the M! The overall light scattering degree, that is, the amount of light transmission, of both light passing substrates (3) and (4) is adjusted by adjusting the amount of light passing through the substrates (3) and (4). By being able to do this, it is possible to adjust the substantial amount of light irradiation and therefore the amount of light absorption of the sample to be heated (2). That is, these light scattering patterns (5) and (6)
For example, by forming a pattern in which the degree of light scattering changes with respect to the rotating direction at the peripheral portions of the substrates (3) and (4), for example, the light transmission that passes through both the light transmitting substrates (3) and (4) at the peripheral portions can be reduced. i! II can be adjusted, and the relative irradiation amount between the center and the periphery of the wafer (2) can be adjusted, and it is possible to adjust the relative irradiation amount between the center and the periphery of the wafer (2). By changing the amount of light irradiation, it is possible to uniformly raise, retain, and lower the temperature in an optimal state at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例の一部を断面とした路線的平
面図、第2図はその一部を断面とした側面図、第:3図
及び第4図はその耐熱性光透過基(反の光散乱部パター
ン図である。 (1)はランプ、(2)は被加熱試料、(3)及び(4
)は耐り、り外光透過基板である。
Fig. 1 is a partially cross-sectional plan view of an example of the device of the present invention, Fig. 2 is a partially cross-sectional side view, and Figs. (This is a diagram of the opposite light scattering part pattern. (1) is the lamp, (2) is the sample to be heated, (3) and (4)
) is a durable, external light transmitting substrate.

Claims (1)

【特許請求の範囲】  ランプと被加熱試料との間に、平行状態を保持して相
対的に回動する少くとも2枚の耐熱性光透過基板を有し
、 上記少くとも2枚の耐熱性光透過基板に、その相対的回
動方向に光散乱度が変化するパターンが形成されてなる
ことを特徴とするランプ加熱装置。
[Scope of Claims] At least two heat-resistant, light-transmitting substrates are provided between the lamp and the sample to be heated and rotated relative to each other while maintaining a parallel state; A lamp heating device characterized in that a light transmitting substrate is formed with a pattern in which the degree of light scattering changes in the direction of relative rotation thereof.
JP16511189A 1989-06-27 1989-06-27 Lamp heating apparatus Pending JPH0330323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16511189A JPH0330323A (en) 1989-06-27 1989-06-27 Lamp heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16511189A JPH0330323A (en) 1989-06-27 1989-06-27 Lamp heating apparatus

Publications (1)

Publication Number Publication Date
JPH0330323A true JPH0330323A (en) 1991-02-08

Family

ID=15806114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16511189A Pending JPH0330323A (en) 1989-06-27 1989-06-27 Lamp heating apparatus

Country Status (1)

Country Link
JP (1) JPH0330323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249589A (en) * 1994-03-10 1995-09-26 Tokyo Electron Ltd Heat treatment device
JP2008020448A (en) * 2006-07-07 2008-01-31 Mettler-Toledo Ag Measuring device for gravimetric moisture determination
JP2008026315A (en) * 2006-07-07 2008-02-07 Mettler-Toledo Ag Weight measurement type moisture content measuring apparatus
JP2014534424A (en) * 2011-10-17 2014-12-18 セントロターム・サーマル・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Equipment for measuring substrate temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249589A (en) * 1994-03-10 1995-09-26 Tokyo Electron Ltd Heat treatment device
JP2008020448A (en) * 2006-07-07 2008-01-31 Mettler-Toledo Ag Measuring device for gravimetric moisture determination
JP2008026315A (en) * 2006-07-07 2008-02-07 Mettler-Toledo Ag Weight measurement type moisture content measuring apparatus
JP2014534424A (en) * 2011-10-17 2014-12-18 セントロターム・サーマル・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Equipment for measuring substrate temperature

Similar Documents

Publication Publication Date Title
US8658945B2 (en) Backside rapid thermal processing of patterned wafers
US4755654A (en) Semiconductor wafer heating chamber
JP3659863B2 (en) Heat treatment equipment
JP3296300B2 (en) Light irradiation type heating device
TWI692012B (en) Rotating substrate laser anneal
JPH0845863A (en) Single wafer semiconductor substrate heat treatment device
JP2009123807A (en) Heat treatment apparatus
TWI793283B (en) Support plate for localized heating in thermal processing systems
JPH0330323A (en) Lamp heating apparatus
JP2002261036A (en) Heat treatment device
JPS63188940A (en) System for heating by light
JP3195678B2 (en) Energy beam heating device
JPH06318558A (en) Lamp annealing equipment
TW483070B (en) Method to thermally process substrate and the device thereof
JP2003031517A (en) Heat treatment apparatus for substrate
JPH1097999A (en) Heating device, processing device, heating method and processing method
JPH0729843A (en) Heat treatment system
JP2002151427A (en) Heat treatment apparatus
JPH01238116A (en) Heating apparatus
JPH04713A (en) Heating apparatus for substrate
JP4215881B2 (en) Substrate heat treatment equipment
JPH036018A (en) Lamp annealing apparatus for semiconductor device manufacture
JP5274846B2 (en) Heat treatment equipment
JP2009164388A (en) Heat treatment equipment
JPH07249589A (en) Heat treatment device