JPH04713A - Heating apparatus for substrate - Google Patents
Heating apparatus for substrateInfo
- Publication number
- JPH04713A JPH04713A JP33927189A JP33927189A JPH04713A JP H04713 A JPH04713 A JP H04713A JP 33927189 A JP33927189 A JP 33927189A JP 33927189 A JP33927189 A JP 33927189A JP H04713 A JPH04713 A JP H04713A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- sample stage
- infrared
- infrared lamps
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 71
- 238000010438 heat treatment Methods 0.000 title claims abstract description 39
- 238000001947 vapour-phase growth Methods 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
り墓上公■土云1
本発明は基板の加熱装置に関し、より詳しくは半導体製
造分野において、シリコンウェハ等の基板の熱処理、又
は基板上へのエピタキシャル成長等に使用される基板の
加熱装置に関する。[Detailed Description of the Invention] The present invention relates to a substrate heating device, and more specifically, in the field of semiconductor manufacturing, it is used for heat treatment of a substrate such as a silicon wafer, or for epitaxial growth on a substrate. The present invention relates to a heating device for a substrate.
炙米立肢蓋
集積回路の製造工程には、エピタキシャル成長あるいは
、イオン注入等によって発生した欠陥を低減するための
アニール処理のように、シリコンウェハ等からなる基板
を高温に加熱する工程がある。従来この工程においては
、基板の加熱の不均一から熱応力が発生し、高温による
基板の機械的強度の低下と相まって、基板にスリップと
いう欠陥を発生させ、基板上に作られた回路の性能を大
きく低下させることがあった。The manufacturing process of the broiled limb lid integrated circuit includes a process of heating a substrate made of a silicon wafer or the like to a high temperature, such as an annealing treatment to reduce defects caused by epitaxial growth, ion implantation, or the like. Conventionally, in this process, thermal stress occurs due to uneven heating of the board, which, combined with a decrease in the mechanical strength of the board due to high temperatures, causes defects called slipping on the board, which impairs the performance of the circuits made on the board. There was a significant decrease.
例えばシリコンのエピタキシャル装置では、装置内に導
入した原料ガスの反応を引き起こしたり、エピタキシャ
ル成長した膜の欠陥を低減するために、赤外線等の加熱
ランプを用いて基板を1ooo〜1200℃の高温に加
熱するが、このとき、基板を保持する試料台が周囲へ放
熱するため、試料台の周縁に向かって温度が低下して基
板の温度が不均一となり、これが熱応力発生の原因にな
っていた。For example, in silicon epitaxial equipment, a heating lamp such as an infrared ray is used to heat the substrate to a high temperature of 100°C to 1200°C in order to cause a reaction in the raw material gas introduced into the equipment and to reduce defects in the epitaxially grown film. However, at this time, the sample stage that holds the substrate radiates heat to the surroundings, so the temperature decreases toward the periphery of the sample stage, making the temperature of the substrate uneven, which causes thermal stress.
この問題を解決するために、近年では赤外線ランプの輻
射強度を調節し、加熱中の基板温度を均一にして熱応力
の発生を抑制する装置の開発検討が種々行なわれている
。In order to solve this problem, in recent years, various studies have been conducted to develop devices that control the radiation intensity of infrared lamps, uniformize the temperature of the substrate during heating, and suppress the occurrence of thermal stress.
例えば、特開昭62−154616号公報では、第7図
及び第8図に示したようなエピタキシャル装置が提案さ
れている。すなわち、第7図及び第8図において51は
略直方体の形状をなす反応室であり、その側壁には原料
ガスの排出孔52、導入孔53がそれぞれ形成されてい
る。反応室51内には、基板54を保持する回転可能な
試料台55が設けられており、この反応室51の上部に
は試料台55の中心位置に対応する仕切り桟51bを挟
んで2つの開口部51a、51aが対称的に形成されて
いる。さらに開口部51a、51a上にはそれぞれ透明
石英板56が押え枠57により圧設されており、透明石
英板56の上方には、試料台55上の基板54を透明石
英板56を透して加熱する複数の棒状の赤外線ランプ5
8が等間隔に並設されている。また、赤外線ランプ58
の背後には反射鏡58 aが配設されているにの装置で
は、試料台55を回転させつつ赤外線ランプ58から基
板54に赤外線を照射すると、開口部51a間の仕切り
桟51bや押え枠57の仕切り桟57aにより、基板5
4の中心部は赤外線の照射が制限される一方、基板54
の周縁は中心部より多く照射され、結果的に基板54の
温度の均一化が図られることとなる。For example, Japanese Unexamined Patent Publication No. 154616/1983 proposes an epitaxial device as shown in FIGS. 7 and 8. That is, in FIGS. 7 and 8, 51 is a reaction chamber having a substantially rectangular parallelepiped shape, and a discharge hole 52 and an introduction hole 53 for raw material gas are formed in the side wall of the reaction chamber, respectively. A rotatable sample stand 55 that holds a substrate 54 is provided in the reaction chamber 51, and two openings are provided in the upper part of the reaction chamber 51 with a partition bar 51b corresponding to the center position of the sample stand 55 in between. The portions 51a, 51a are formed symmetrically. Further, a transparent quartz plate 56 is pressed by a holding frame 57 on the openings 51a and 51a, and above the transparent quartz plate 56, the substrate 54 on the sample stage 55 is inserted through the transparent quartz plate 56. Multiple rod-shaped infrared lamps 5 for heating
8 are arranged in parallel at equal intervals. In addition, the infrared lamp 58
In the apparatus described above, in which a reflecting mirror 58a is disposed behind the substrate 54, when the infrared rays are irradiated from the infrared lamp 58 to the substrate 54 while rotating the sample stage 55, the partition bars 51b between the openings 51a and the presser frame 57 are exposed. The board 5 is separated by the partition bar 57a.
4, the irradiation of infrared rays is restricted, while the center part of the substrate 54
The periphery of the substrate 54 is irradiated more than the center, and as a result, the temperature of the substrate 54 can be made uniform.
また、特開昭62−93378号公報では、第9図に示
したようなエピタキシャル装置の提案がなされている。Furthermore, Japanese Patent Laid-Open No. 62-93378 proposes an epitaxial device as shown in FIG. 9.
すなわち、第9図において61は円筒形状をなす反応室
であり、その側壁には原料ガスの排出孔52、導入孔5
3がそれぞれ形成されている。反応室61内には、基板
54を保持する回転可能な試料台55が配設されており
、基板54上方には、複数の棒状の赤外線ランプ69a
が等間隔に並設され、その両端はそれぞれ反応室61の
側壁を貫通している。また、試料台55の下方には、赤
外線ランプ69aに対して直交する複数の棒状の赤外線
ランプ69bが等間隔に並設されており、やはりその両
端はそれぞれ反応室61の側壁を貫通している。そして
、反応室61の内面は拡散反射を生じる材料、又は鏡面
反射を生じる材料で被覆されている。この装置では、上
記した赤外線ランプ69a、69bをゾーン毎に分割し
、試料台55を回転させつつ赤外線ランプ69a、69
bの赤外線の輻射強度を各ゾーン毎に調節することによ
り、基板54の温度の均一化を図っている。That is, in FIG. 9, reference numeral 61 is a cylindrical reaction chamber, and its side wall has a raw material gas discharge hole 52 and an introduction hole 5.
3 are formed respectively. A rotatable sample stage 55 that holds a substrate 54 is disposed inside the reaction chamber 61, and above the substrate 54, a plurality of rod-shaped infrared lamps 69a are installed.
are arranged in parallel at equal intervals, and both ends thereof penetrate the side wall of the reaction chamber 61, respectively. Further, below the sample stage 55, a plurality of rod-shaped infrared lamps 69b are arranged in parallel at equal intervals, perpendicular to the infrared lamp 69a, and both ends thereof each penetrate the side wall of the reaction chamber 61. . The inner surface of the reaction chamber 61 is coated with a material that causes diffuse reflection or a material that causes specular reflection. In this device, the infrared lamps 69a, 69b described above are divided into zones, and the infrared lamps 69a, 69b are rotated while the sample stage 55 is rotated.
By adjusting the radiation intensity of the infrared rays b for each zone, the temperature of the substrate 54 is made uniform.
が ゛しよ゛とする課
しかしながら、上記した前者の特開昭62−15461
6号公報に提案された装置では、基板54の加熱を制御
すべく、開口部51a間の仕切り桟51bや押え枠57
の仕切り桟57aにより赤外線の輻射を一部遮光してい
るため、赤外線ランプ58から輻射される熱エネルギの
効率が低下するという課題があった。However, the former problem mentioned above, JP-A-62-15461,
In the device proposed in Publication No. 6, in order to control the heating of the substrate 54, a partition bar 51b between the openings 51a and a presser frame 57 are used.
Since a part of the infrared radiation is blocked by the partition bar 57a, there is a problem that the efficiency of the thermal energy radiated from the infrared lamp 58 is reduced.
また、前者のこの装置及び後者の特開昭62−9337
8号公報に提案された装置とも、基板54の円周方向の
加熱を均一にすべく、試料台55を回転させつつ赤外線
を照射しているが、温度の均一化を十分に図るためには
試料台55を高速で回転させる必要があり、そのための
技術的検討も必要であるという課題があった。しかも、
高速回転可能な試料台55を備えた加熱系の製作には多
大な費用を要し、使用時のエネルギコストも高くつくと
いう課題を有していた。Also, this device of the former and Japanese Patent Application Laid-Open No. 62-9337 of the latter
In both the devices proposed in Publication No. 8, infrared rays are irradiated while rotating the sample stage 55 in order to uniformly heat the substrate 54 in the circumferential direction. There was a problem in that it was necessary to rotate the sample stage 55 at high speed, and technical considerations were also required for this purpose. Moreover,
Manufacturing a heating system equipped with a sample stage 55 that can rotate at high speed requires a large amount of cost, and the energy cost during use is also high.
さらに、上記両者の装置では、試料台55を回転させつ
つ基板54の上下に並設された棒状の赤外線ランプ58
・・・あるいは69a、69bから赤外線を照射してい
るので、たとえゾーン毎に赤外線の輻射強度を調節した
としても、円運動する基板54に対して赤外線ランプ5
8・・・、69a、69bは直線状であるため、赤外線
ランプ58・・・、69a、69bによる基板54の加
熱状況は時々刻々と変化することとなり、一定化されな
い、このため、基板54の温度の均一化が十分に図れな
いという課題もあった。Furthermore, in both of the above devices, rod-shaped infrared lamps 58 are arranged in parallel above and below the substrate 54 while the sample stage 55 is rotated.
...Alternatively, since infrared rays are emitted from 69a and 69b, even if the intensity of infrared rays is adjusted for each zone, the infrared lamps 5
8..., 69a, 69b are linear, the heating status of the substrate 54 by the infrared lamps 58..., 69a, 69b changes from moment to moment and is not constant. There was also the problem that temperature uniformity could not be achieved sufficiently.
本発明は上記した課題に鑑みなされたものであり、エネ
ルギ効率良く基板の温度の均一化が図れ、しかも加熱系
の製作費及びエネルギコストが削減できる基板の加熱装
置を提供することを目的としている。The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a substrate heating device that can uniformize the temperature of the substrate with energy efficiency and reduce the production cost and energy cost of the heating system. .
課 を”する71.の
上記した目的を達成するために本発明に係る基板の加熱
装置は、赤外線ランプに対向する面が赤外線透過性材料
で形成された容器と、その内部に基板を載置するための
円板状試料台とを備えた基板の加熱装置において、前記
赤外線ランプが前記円板状試料台の回転軸を中心として
同心円状に複数列配列されていることを特徴としく1)
、また上記(1)の装置において、各列の赤外線ランプ
に対応する試料台の各ゾーン毎に試料台の温度を測定す
る手段を備え、かつその測定値に従って前記赤外線ラン
プの発熱量を制御する手段を具備していることを特徴と
している(2)。In order to achieve the above object of Section 71, the substrate heating device according to the present invention includes a container whose surface facing the infrared lamp is formed of an infrared transparent material, and a substrate placed inside the container. 1) A substrate heating device equipped with a disc-shaped sample stage for heating the substrate, characterized in that the infrared lamps are arranged in a plurality of rows concentrically around the rotation axis of the disc-shaped specimen stage.
Further, in the apparatus of (1) above, the apparatus comprises means for measuring the temperature of the sample stage for each zone of the sample stage corresponding to each row of infrared lamps, and controls the amount of heat generated by the infrared lamps according to the measured value. It is characterized by having the means (2).
さらに、上記(1)又は(2)の装置において、基板に
エピタキシャル気相成長させるためのガス導入孔及びガ
ス排出孔を備えていることを特徴としている(3)。Furthermore, the apparatus of (1) or (2) above is characterized in that it is provided with a gas introduction hole and a gas exhaust hole for epitaxial vapor phase growth on the substrate (3).
■
上記(1)記載の装置によれば、試料台の形状が円板状
であるため、同心円状に複数列配列された前記赤外線ラ
ンプに通流せしめる電流を各列毎に制御すると、各列の
赤外線ランプに対応する試料台の各ゾーン毎に、赤外線
ランプによる加熱がエネルギ効率良く効果的に、また前
記円板状試料台に載置される基板の均一的加熱が行なわ
れる。■ According to the apparatus described in (1) above, since the shape of the sample stage is a disk, if the current flowing through the infrared lamps arranged concentrically in multiple rows is controlled for each row, each row Heating by the infrared lamps is energy efficient and effective for each zone of the sample stage corresponding to the infrared lamps, and the substrate placed on the disc-shaped sample stage is heated uniformly.
また上記(2)記載の装置によれば、各列の赤外線ラン
プに対応する試料台の各ゾーン毎に試料台の温度が測定
され、その測定値に従い赤外線ランプの発熱量がフィー
ドバック制御されることとなり、試料台に載置された基
板の温度はより均一となる。Further, according to the apparatus described in (2) above, the temperature of the sample stage is measured for each zone of the sample stage corresponding to each row of infrared lamps, and the heat generation amount of the infrared lamps is feedback-controlled according to the measured value. Therefore, the temperature of the substrate placed on the sample stage becomes more uniform.
さらに上記(3)記載の装置によれば、容器内の基板に
エピタキシャル気相成長による均質な薄膜が形成でき、
しかも基板のスリップも少ない。Furthermore, according to the apparatus described in (3) above, a homogeneous thin film can be formed on the substrate in the container by epitaxial vapor phase growth,
Moreover, there is less slippage of the board.
夫亘困
以下、本発明に係る基板の加熱装置の一実施例を図面に
基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a substrate heating device according to the present invention will be described below with reference to the drawings.
第1図及び第2図はそれぞれ本発明に係る基板の加熱装
置(横型炉)の模式的平面図、模式的断面図であり、図
中11はその上面が石英等の赤外線透過材料で形成され
ている略直方体形状の容器を示している。容器11の下
面の略中心位置には、これを直交する方向に貫通する回
転軸12が気密にかつ回動自在に設けられており、回転
軸12の上端には、複数の基板14を載置するための円
板状の試料台13が、その細心を回転軸12のそれと同
一にして配設されている。また、容器11の試料台13
側方の両側壁11aはステンレスにより形成され、一方
の側壁11aには、基板14にエピタキシャル気相成長
させるためのガス導入孔15が形成され、他方の側壁1
1aには、試料台13を挟んでガス導入孔15に対向す
る位置にガス排出孔16が形成されている。1 and 2 are a schematic plan view and a schematic cross-sectional view, respectively, of a substrate heating device (horizontal furnace) according to the present invention, and numeral 11 in the figure shows an upper surface formed of an infrared transmitting material such as quartz. The figure shows a substantially rectangular parallelepiped-shaped container. A rotary shaft 12 is airtightly and rotatably provided approximately at the center of the lower surface of the container 11 and passes through the container in a direction perpendicular to the container 11. A plurality of substrates 14 are mounted on the upper end of the rotary shaft 12. A disk-shaped sample stage 13 is arranged so that its fineness is the same as that of the rotating shaft 12. In addition, the sample stage 13 of the container 11
Both side walls 11a are made of stainless steel, one side wall 11a is formed with a gas introduction hole 15 for epitaxial vapor growth on the substrate 14, and the other side wall 1
A gas discharge hole 16 is formed in 1a at a position opposite to the gas introduction hole 15 with the sample stage 13 in between.
容器11の上方には、長さの短い棒状の赤外線ランプ1
7が複数個、試料台13の回転軸12を中心として同心
円状に複数列配列されており、その中心部には球状の赤
外線ランプ17が配設されている。ここで棒状の赤外線
ランプ17としては1例えば−本の長さが100mmで
あり、最外周の多数の赤外線ランプ17により形成され
る円の直径が500mmであるものが用いられる。これ
ら赤外線ランプ17は、第3図に示した如く、同一円内
においてそれぞれ導線17aによって接続されており、
第4図に示した各列の赤外線ランプ17の導線導入部1
7bは図示しないPIDコントローラとそれぞれ接続さ
れている。Above the container 11 is a short rod-shaped infrared lamp 1.
7 are arranged in a plurality of rows concentrically around the rotation axis 12 of the sample stage 13, and a spherical infrared lamp 17 is disposed at the center thereof. Here, the rod-shaped infrared lamp 17 used has a length of, for example, 100 mm, and a circle formed by a large number of the outermost infrared lamps 17 has a diameter of 500 mm. As shown in FIG. 3, these infrared lamps 17 are connected within the same circle by conductive wires 17a,
Conductor introduction portion 1 of each row of infrared lamps 17 shown in FIG.
7b are each connected to a PID controller (not shown).
赤外線ランプ17の上方にはステンレス製の支持板18
が配設されており、赤外線ランプ17は、第5図に示し
た如く、その両端が支持板18の電極支持部18aに挿
嵌されることよって、所定寸法隔てて支持板18にそれ
ぞれ支持されている。また、支持板18下面の赤外線ラ
ンプ17に面した部分には、放物面状の金メツキからな
る反射面21aを有した反射板21が配設されておリ、
この反射板21により赤外線ランプ17がらの赤外線輻
射の指向性が向上し、各列の赤外線ランプ17直下の基
板14の各ゾーンが特に強く加熱されるようになってい
る。反射板21内部の反射面21aと反射面21aとの
間に対応する位置、すなわち赤外線ランプ17間に対応
する位置には、反射面21a保護のために水冷管19が
形成されており、また支持板18上部には、導線17a
、17bの保護のために赤外線ランプ17間に冷却用の
圧縮空気を送る圧縮空気導入口2゜が形成されている。Above the infrared lamp 17 is a support plate 18 made of stainless steel.
As shown in FIG. 5, the infrared lamps 17 are supported by the support plate 18 at a predetermined distance apart by having both ends thereof inserted into the electrode support portions 18a of the support plate 18. ing. Further, a reflecting plate 21 having a reflecting surface 21a made of parabolic gold plating is disposed on the lower surface of the support plate 18 in a portion facing the infrared lamp 17.
The reflector plate 21 improves the directivity of the infrared radiation from the infrared lamps 17, so that each zone of the substrate 14 directly under the infrared lamps 17 in each row is particularly strongly heated. A water-cooled pipe 19 is formed in the reflection plate 21 at a position corresponding to the reflection surface 21a and the reflection surface 21a, that is, at a position corresponding to between the infrared lamps 17, in order to protect the reflection surface 21a. At the top of the plate 18, there is a conducting wire 17a.
, 17b, a compressed air inlet 2° is formed for feeding compressed air for cooling between the infrared lamps 17.
一方、容器11の下方には、各列の赤外線ランプ17に
対応する試料台13の各ゾーン毎に放射温度計23が配
設されており、また試料台13の下面中央位置には、回
転軸12より挿入された熱電対22が埋設されている。On the other hand, below the container 11, a radiation thermometer 23 is arranged for each zone of the sample stage 13 corresponding to each row of infrared lamps 17, and at the center of the lower surface of the sample stage 13 is a rotation axis. A thermocouple 22 inserted from 12 is buried.
そして、これら熱電対22及び放射温度計23により試
料台13の温度は各ゾーン毎に測定されるようになって
いる。The temperature of the sample stage 13 is measured for each zone using these thermocouples 22 and radiation thermometers 23.
このように構成された加熱装置を用いて試料台13に載
置された基板14を加熱する場合は、試料台13を回転
軸12を中心にして回転させつつ赤外線ランプ17から
赤外線を照射する。このことにより基板14は加熱され
、その温度は試料台13を介して熱電対22及び放射温
度計23により各ゾーン毎に測定される。測定された温
度情報は、それぞれ温度コントローラに送られ、温度コ
ントローラはこの温度情報と温度プログラマから入力さ
れた目標温度とを比較して、試料台13の各ゾーンの温
度が目標温度となるように各PIDコントローラに制御
信号を出力する。そして各PIDコントローラは、送ら
れてきた制御信号に基づいてサイリスタによる制御を行
ない、赤外線ランプ17に通流させる電流を増減する。When heating the substrate 14 placed on the sample stage 13 using the heating device configured as described above, infrared rays are irradiated from the infrared lamp 17 while the sample stage 13 is rotated about the rotating shaft 12. As a result, the substrate 14 is heated, and its temperature is measured for each zone via the sample stage 13 using the thermocouple 22 and the radiation thermometer 23. The measured temperature information is sent to each temperature controller, and the temperature controller compares this temperature information with the target temperature input from the temperature programmer so that the temperature of each zone of the sample stage 13 becomes the target temperature. Outputs control signals to each PID controller. Then, each PID controller performs control using a thyristor based on the sent control signal to increase or decrease the current flowing through the infrared lamp 17.
従って、赤外線ランプ17が基板14の動きに合わせた
形状、すなわち回転軸12を軸とした円形に複数列配列
されているので、基板14に対する赤外線ランプ17の
相対的位置に変化が生じず、安定した加熱が可能となる
。しかも、赤外線ランプ17は各列毎にその輻射強度が
、すなわち発熱量がフィードバック制御されるので、急
速加熱を行なっても試料台13に載置された基板14の
温度は常に均一となり、温度の不均一による基板のスリ
ップの発生が防止される。Therefore, since the infrared lamps 17 are arranged in multiple rows in a shape that matches the movement of the substrate 14, that is, in a circle around the rotation axis 12, the relative position of the infrared lamps 17 with respect to the substrate 14 does not change and is stable. This makes it possible to achieve high-temperature heating. Furthermore, since the radiation intensity of the infrared lamps 17 is feedback-controlled for each row, that is, the amount of heat generated, the temperature of the substrate 14 placed on the sample stage 13 is always uniform even when rapid heating is performed. The occurrence of substrate slippage due to non-uniformity is prevented.
また、容器11の側壁11aには、ガス導入孔15及び
ガス排出孔16が形成されていることから、容器11内
の基板14にエピタキシャル成長による均質な薄膜を形
成させることが可能である。Further, since the gas introduction hole 15 and the gas discharge hole 16 are formed in the side wall 11a of the container 11, it is possible to form a homogeneous thin film on the substrate 14 in the container 11 by epitaxial growth.
本発明に係る基板の加熱装置の他の実施例を第6図に示
す。Another embodiment of the substrate heating device according to the present invention is shown in FIG.
第6図の装置は、基板にエピタキシャル膜を形成するの
に用いられる平面視円形の縦型炉である。装置の各部の
名称が第1図及び第2図と同じ部位については、第6図
に第1図及び第2図と同じ番号を付し説明を省略する。The apparatus shown in FIG. 6 is a vertical furnace that is circular in plan view and is used to form an epitaxial film on a substrate. The same parts of the apparatus having the same names as in FIGS. 1 and 2 are given the same numbers in FIG. 6 as in FIGS. 1 and 2, and their explanations are omitted.
縦型炉の場合にも、赤外線ランプ17と試料台13の位
置関係、試料台13の温度を測定する手段とその測定値
に従って赤外線ランプ17の発熱量を制御する手段等、
第1図及び第2図に示す模型炉とほぼ同様である。ただ
し、基板14にエピタキシャル膜を成長させるためのガ
スを導入するガス導入孔15は、試料台13の回転軸内
に設け、ガス排出孔16は容器11の底部の外周部近傍
に設けるのが望ましい。その方が、基板上に均質な薄膜
を形成させるのに適しているからである。In the case of a vertical furnace as well, the positional relationship between the infrared lamp 17 and the sample stage 13, the means for measuring the temperature of the sample stage 13, the means for controlling the calorific value of the infrared lamp 17 according to the measured value, etc.
It is almost the same as the model furnace shown in FIGS. 1 and 2. However, it is preferable that the gas introduction hole 15 for introducing gas for growing an epitaxial film onto the substrate 14 be provided in the rotation axis of the sample stage 13, and the gas discharge hole 16 be provided near the outer periphery of the bottom of the container 11. . This is because it is more suitable for forming a homogeneous thin film on the substrate.
なお、上記実施例では赤外線を照射する際に試料台13
を回転させでいるが、同心円状に複数列配列させた赤外
線ランプ17を各列毎に制御しているので、赤外線を照
射する際に試料台13を回転させな(でも、基板14の
温度の均一化を図ることができる。In addition, in the above embodiment, when irradiating infrared rays, the sample stage 13
However, since the infrared lamps 17 arranged concentrically in multiple rows are controlled for each row, the sample stage 13 must not be rotated when irradiating the infrared rays (but the temperature of the substrate 14 may vary). Uniformity can be achieved.
また上記実施例では、赤外線ランプ17として棒状の赤
外線ランプ17を複数個、同心円状に複数列配列させた
が、これに限定されるものではなく、各列毎に円形又は
半円形の赤外線ランプを用いても良い。Further, in the above embodiment, a plurality of rod-shaped infrared lamps 17 are arranged concentrically in a plurality of rows as the infrared lamps 17, but the invention is not limited to this, and circular or semicircular infrared lamps are arranged in each row. May be used.
1更二四玉
以上の説明により明らがなように、本発明に係る基板の
加熱装置によれば、赤外線ランプが前記円板状試料台の
回転軸を中心として同心円状に複数列配列されているの
で、試料台を回転させなくても、赤外線ランプに対応す
る試料台の所要のゾーンをエネルギ効率良く加熱できる
。この場合には、回転可能な試料台の作製に伴う加熱系
の費用が削減できる。As is clear from the above description, according to the substrate heating device of the present invention, infrared lamps are arranged in multiple rows concentrically around the rotation axis of the disk-shaped sample stage. Therefore, the required zone of the sample stage corresponding to the infrared lamp can be heated with energy efficiency without rotating the sample stage. In this case, the cost of the heating system associated with manufacturing the rotatable sample stage can be reduced.
また、赤外線ランプの各列毎の輻射強度が、すなわち各
列毎の発熱量がフィードバック制御される場合には、急
速加熱を行なっても試料台に載置された基板を常に均一
にしかもエネルギ効率良く加熱でき、温度の不均一によ
るスリップの発生が防止できる。In addition, if the radiation intensity of each row of infrared lamps, that is, the amount of heat generated from each row, is feedback-controlled, even if rapid heating is performed, the substrate placed on the sample stage will always be uniform and energy efficient. It can be heated well and prevents slippage due to uneven temperature.
さらに容器にガス導入孔及びガス排出孔が形成されてい
る場合には、容器内の基板上にエピタキシャル成長によ
る均質な薄膜を形成でき、しかも基板のスリップも少な
い。Furthermore, if the container has gas inlet holes and gas exhaust holes, a homogeneous thin film can be formed on the substrate in the container by epitaxial growth, and there is less slippage of the substrate.
第1図は本発明に係る基板の加熱装置(横型炉)の模式
的平面図、第2図は基板の加熱装置の模式的断面図9第
3図は同一円内の赤外線ランプの接続部分を示す部分拡
大断面図、第4図は同一円内の赤外線ランプの電線導入
部を示す部分拡大断面図、第5図は赤外線ランプが支持
板に支持された状態を示す部分拡大斜視図、第6図は本
発明に係る基板の他の加熱装置(縦型炉)の模式的断面
図、第7図は従来の加熱装置を示す模式的断面図、第8
図は第7図の模式的平面図、第9図は従来の別の加熱装
置を示す模式的断面図である。
11・・・容器 12・・・回転軸 13・・・試
料台14・・・基板 15・・・ガス導入孔 16
・・・ガス排出孔 17・・・赤外線ランプ 22
・・・熱電対23・・・放射温度計FIG. 1 is a schematic plan view of a substrate heating device (horizontal furnace) according to the present invention, and FIG. 2 is a schematic cross-sectional view of the substrate heating device. FIG. 4 is a partially enlarged sectional view showing the wire introduction part of the infrared lamp in the same circle; FIG. 5 is a partially enlarged perspective view showing the infrared lamp supported on the support plate; FIG. The figures are a schematic cross-sectional view of another substrate heating device (vertical furnace) according to the present invention, FIG. 7 is a schematic cross-sectional view showing a conventional heating device, and FIG.
The figure is a schematic plan view of FIG. 7, and FIG. 9 is a schematic cross-sectional view showing another conventional heating device. 11... Container 12... Rotating shaft 13... Sample stage 14... Substrate 15... Gas introduction hole 16
...Gas exhaust hole 17...Infrared lamp 22
... Thermocouple 23 ... Radiation thermometer
Claims (3)
形成された容器と、その内部に基板を載置するための円
板状試料台とを備えた基板の加熱装置において、前記赤
外線ランプが前記円板状試料台の回転軸を中心として同
心円状に複数列配列されていることを特徴とする基板の
加熱装置。(1) In a substrate heating device comprising a container whose surface facing the infrared lamp is formed of an infrared transparent material and a disk-shaped sample stage for placing the substrate inside the container, the infrared lamp is A heating device for a substrate, characterized in that a plurality of rows are arranged concentrically around the rotation axis of the disk-shaped sample stage.
毎に試料台の温度を測定する手段を備え、かつその測定
値に従って前記赤外線ランプの発熱量を制御する手段を
具備した請求項1記載の基板の加熱装置。(2) Claim 1, further comprising means for measuring the temperature of the sample stage for each zone of the sample stage corresponding to each different infrared lamp, and means for controlling the amount of heat generated by the infrared lamp according to the measured value. A heating device for the described substrate.
導入孔及びガス排出孔を備えた請求項1又は請求項2記
載の基板の加熱装置。(3) The substrate heating device according to claim 1 or 2, further comprising a gas introduction hole and a gas discharge hole for epitaxial vapor phase growth on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33927189A JPH04713A (en) | 1989-12-26 | 1989-12-26 | Heating apparatus for substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33927189A JPH04713A (en) | 1989-12-26 | 1989-12-26 | Heating apparatus for substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04713A true JPH04713A (en) | 1992-01-06 |
Family
ID=18325873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33927189A Pending JPH04713A (en) | 1989-12-26 | 1989-12-26 | Heating apparatus for substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04713A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06208959A (en) * | 1992-06-24 | 1994-07-26 | Anelva Corp | Cvd device, multi-chamber type cvd device and its substrate processing method |
WO1997034318A1 (en) * | 1996-03-12 | 1997-09-18 | Shin-Etsu Handotai Co., Ltd. | Heat-treating method and radiant heating device |
US6151447A (en) * | 1993-01-21 | 2000-11-21 | Moore Technologies | Rapid thermal processing apparatus for processing semiconductor wafers |
JP2009212185A (en) * | 2008-03-03 | 2009-09-17 | Denso Corp | Semiconductor manufacturing apparatus |
JP2017017104A (en) * | 2015-06-29 | 2017-01-19 | 東京エレクトロン株式会社 | Thermal treatment apparatus and temperature control method |
-
1989
- 1989-12-26 JP JP33927189A patent/JPH04713A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06208959A (en) * | 1992-06-24 | 1994-07-26 | Anelva Corp | Cvd device, multi-chamber type cvd device and its substrate processing method |
US6151447A (en) * | 1993-01-21 | 2000-11-21 | Moore Technologies | Rapid thermal processing apparatus for processing semiconductor wafers |
US6310327B1 (en) | 1993-01-21 | 2001-10-30 | Moore Epitaxial Inc. | Rapid thermal processing apparatus for processing semiconductor wafers |
WO1997034318A1 (en) * | 1996-03-12 | 1997-09-18 | Shin-Etsu Handotai Co., Ltd. | Heat-treating method and radiant heating device |
US6072164A (en) * | 1996-03-12 | 2000-06-06 | Shin-Estu Handotai Co., Ltd. | Heat-treating method and radiant heating device |
JP2009212185A (en) * | 2008-03-03 | 2009-09-17 | Denso Corp | Semiconductor manufacturing apparatus |
JP2017017104A (en) * | 2015-06-29 | 2017-01-19 | 東京エレクトロン株式会社 | Thermal treatment apparatus and temperature control method |
US10533896B2 (en) | 2015-06-29 | 2020-01-14 | Tokyo Electron Limited | Heat treatment apparatus and temperature control method |
US11656126B2 (en) | 2015-06-29 | 2023-05-23 | Tokyo Electron Limited | Heat treatment apparatus and temperature control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3659863B2 (en) | Heat treatment equipment | |
US5418885A (en) | Three-zone rapid thermal processing system utilizing wafer edge heating means | |
US6507007B2 (en) | System of controlling the temperature of a processing chamber | |
JP2961123B2 (en) | Rapid heat treatment of semiconductor disks by electromagnetic radiation. | |
US20140263268A1 (en) | Susceptor support shaft with uniformity tuning lenses for epi process | |
JP5191373B2 (en) | Epitaxial wafer manufacturing method and manufacturing apparatus | |
CN105493231B (en) | Circular lamp arrays | |
TWI816805B (en) | Wafer spot heating with beam width modulation | |
JPS6293378A (en) | Method and apparatus for heating substrate in axially symmetric epitaxial growing apparatus | |
JPH0845863A (en) | Single wafer semiconductor substrate heat treatment device | |
US5856652A (en) | Radiant heating apparatus and method | |
JP2781616B2 (en) | Semiconductor wafer heat treatment equipment | |
JP3068914B2 (en) | Vapor phase growth equipment | |
JPH04713A (en) | Heating apparatus for substrate | |
JP2002050583A (en) | Substrate-heating method and substrate-heating device | |
JP2002261036A (en) | Heat treatment device | |
JPH06318558A (en) | Lamp annealing equipment | |
JP3195678B2 (en) | Energy beam heating device | |
JP3074312B2 (en) | Vapor growth method | |
JPH06151322A (en) | Heating device for thin-film manufacturing apparatus | |
JPH0542135B2 (en) | ||
JPH07201753A (en) | Manufacture of thin film and its device | |
JPH0729843A (en) | Heat treatment system | |
JP3443779B2 (en) | Heat treatment equipment for semiconductor substrates | |
JPH0620950A (en) | Heater for substrate and using method of the heater |