JPH03297158A - Interlayer insulating film material and forming method for contact hole - Google Patents

Interlayer insulating film material and forming method for contact hole

Info

Publication number
JPH03297158A
JPH03297158A JP10061390A JP10061390A JPH03297158A JP H03297158 A JPH03297158 A JP H03297158A JP 10061390 A JP10061390 A JP 10061390A JP 10061390 A JP10061390 A JP 10061390A JP H03297158 A JPH03297158 A JP H03297158A
Authority
JP
Japan
Prior art keywords
interlayer insulating
insulating film
contact hole
silanol
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10061390A
Other languages
Japanese (ja)
Inventor
Toshimi Yamazaki
山崎 聡美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10061390A priority Critical patent/JPH03297158A/en
Publication of JPH03297158A publication Critical patent/JPH03297158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Silicon Polymers (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain an interlayer insulating material capable of simplifying a process by specifying molecular weight, concentration of a polymer material containing silanol soluble in organic solvent as a main ingredient and having an alkyl group at the end and a far ultraviolet ray sensitive functional group in a molecule. CONSTITUTION:An interlayer insulating film 2 made of a polymer material containing silanol soluble in organic solvent as a main ingredient, partly having an alkyl group at the end of the silanol is formed on a wiring 1 formed on a board. The material has a far ultraviolet ray sensitive functional group in the molecule, and its molecular weight is set to 10000 or more so as to obtain the sensitivity in height not affecting its throughput. The concentration of solution is set to that capable of flattening a wiring layer step to 20wt.% or more. Thus, a thick film can be formed, solely flattened without etching back, and transparency and ultraviolet ray sensitivity are provided. Accordingly, a contact hole can be directly formed to simplify a process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多層配線を有する電子デバイス製造に用いられ
る層間絶縁膜材料及びコンタクトホール形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an interlayer insulating film material and a method for forming contact holes used in manufacturing electronic devices having multilayer wiring.

(従来の技術) 電子デバイスや光デバイス等が高密度、高機能化するに
つれ、デバイス構造は複雑になりつつある。例えば、デ
バイスを構成する多くのトランジスタ間を接続する配線
も同様で、配線層は一層だけでなく、二層、三層と多層
化が進みつつある。
(Prior Art) As electronic devices, optical devices, etc. become denser and more sophisticated, device structures are becoming more complex. For example, the same is true for the wiring that connects the many transistors that make up a device, and the number of wiring layers is increasing from one layer to two and three layers.

更に配線幅も微細化が進みつつあるが、膜厚に関しては
配線抵抗やエレクトロマイグレーション等の関係から、
依然として0.5pmがらlpm程度で使用されている
。従って配線層の段差の影響はますます厳しくなってい
る。このため層間絶縁膜を形成するときはその上のメタ
ル配線が下層メタル配線層の凹凸の影響を受けて、短絡
または断線をひきおこさない様、平坦化されるような材
料及び手法を用いなければならない。従来では、第3図
、aからdに示す様に、形成した基板20上にメタル配
線7上に化学気相成長法(CVD法)らによりシリコン
酸化膜8を7000A程度成膜し、この上に塗布型シリ
コン酸化膜9をスピン塗布し300°Cから400°C
程度の温度でベーキングを行ない溶媒を蒸発させ、絶縁
膜を形成する(a図)。塗布型酸化膜上にフォトレジス
トまたはポリスチレン系高分子(図示せず)を凹凸を平
坦化する程度に厚く塗布し、フォトレジストまたはポリ
スチレン系高分子と塗布型シリコン酸化膜9のエツチン
グ速度の等しい条件で表面から一定の厚さをエツチング
して平坦化する(b図)エッチバック法が平坦化法とし
て用いられる。さらに絶縁性を向上させるため、この上
に化学気相成長法(CVD法)によってシリコン酸化膜
10を形成する(0図)。最後にレジスト塗布、光また
は電子線等によって露光、現像して得たコンタクトホー
ルのレジストパターンをマスクに、CHF3ガスを用い
てエツチングを行って、多層配線間のコンタクトホール
11を形成する(d図)。塗布型シリコン酸化膜では、
完全無機タイプの塗布型シリコン酸化膜(式(1)a)
の主成分であるシラノールの末端の一部にメチル基等有
機官能基を導入することにより、脱水縮重合を起こしに
くい、低クラックタイプの塗布型シリコン酸化膜(式(
1)b)が開発され、膜厚塗布が可能になっているがこ
の場合も塗布及び焼き締めにより酸化膜を形成した後、
レジスト塗布、露光、現像、エツチングを行ないコンタ
クトホールを形成する。
Furthermore, the wiring width is becoming smaller, but the film thickness is becoming smaller due to factors such as wiring resistance and electromigration.
It is still used at about 0.5 pm to 1 pm. Therefore, the influence of the level difference in the wiring layer is becoming more and more severe. For this reason, when forming an interlayer insulating film, it is necessary to use a material and method that flattens the metal wiring on it so that it will not be affected by the unevenness of the underlying metal wiring layer and cause short circuits or disconnections. It won't happen. Conventionally, as shown in FIG. 3, a to d, a silicon oxide film 8 of about 7000 A is formed on the metal wiring 7 on the formed substrate 20 by a chemical vapor deposition method (CVD method). A coated silicon oxide film 9 is spin-coated on the surface and heated at 300°C to 400°C.
Baking is performed at a certain temperature to evaporate the solvent and form an insulating film (Figure a). A photoresist or a polystyrene-based polymer (not shown) is applied thickly enough to flatten the unevenness on the coated oxide film, and the etching rate of the photoresist or polystyrene-based polymer and the coated silicon oxide film 9 are equal. An etch-back method is used as a planarization method, in which a certain thickness is etched from the surface to planarize it (Figure b). In order to further improve insulation, a silicon oxide film 10 is formed thereon by chemical vapor deposition (CVD) (FIG. 0). Finally, etching is performed using CHF3 gas as a mask using the resist pattern of the contact hole obtained by applying a resist, exposing it to light or an electron beam, and developing it to form a contact hole 11 between the multilayer wiring (Fig. d). ). With coating type silicon oxide film,
Completely inorganic type coated silicon oxide film (Formula (1) a)
By introducing an organic functional group such as a methyl group to a part of the terminal end of silanol, which is the main component of
1) b) has been developed and it is now possible to apply a thick film, but in this case too, after forming an oxide film by coating and baking,
Contact holes are formed by resist coating, exposure, development, and etching.

(発明が解決しようとする課題) 通常は平坦化の工程を経た後にコンタクトホール形成の
ため露光、現像、エツチングを行うが、プロセスが長く
手間がかかることと、通常の光または電子線露光等で形
成されるレジストマスクで層間絶縁膜材料へコンタクト
ホールパターンをエツチングする場合、層間絶縁膜は配
線層を平坦化するために厚く形成されており他の工程よ
りもエツチング時間が長くなりその方寸法シフトが起こ
りやすく、特に開口上部は設計寸法より大きくなってし
まうことがしばしば起きる。
(Problem to be solved by the invention) Normally, exposure, development, and etching are performed to form contact holes after the planarization process, but the process is long and labor-intensive, and it is difficult to use ordinary light or electron beam exposure. When etching a contact hole pattern into the interlayer insulating film material using the formed resist mask, the interlayer insulating film is formed thickly in order to flatten the wiring layer, and the etching time is longer than in other processes, resulting in a dimensional shift. This is likely to occur, and in particular, the upper part of the opening often ends up being larger than the designed dimension.

本発明の目的は、これらの問題点を解決するための層間
絶縁膜材料とコンタクトホール形成方法を提供すること
にある。
An object of the present invention is to provide an interlayer insulating film material and a contact hole forming method for solving these problems.

(課題を解決するための手段) 本発明有機溶媒可溶のシラノールを主成分とし、シラノ
ールの末端に一部アルキル基を持った高分子からなる層
間絶縁膜材料において、分子内に遠紫外線感光性の官能
基を持ち、分子量10000以上、濃度20重量パーセ
ント以上であることを特徴とする層間絶縁膜材料と基板
上に形成された配線上に、上記層間絶縁膜材料を塗布す
る工程、遠紫外線で露光し、現像する工程を含むことを
特徴とするコンタクトホール形成方法である。
(Means for Solving the Problems) In the interlayer insulating film material of the present invention, which is composed of a polymer mainly composed of silanol soluble in an organic solvent and having some alkyl groups at the terminals of the silanol, there is deep ultraviolet light sensitivity in the molecule. A step of applying the above-mentioned interlayer insulating film material onto the wiring formed on the substrate and the interlayer insulating film material having a functional group of 10,000 or more and a concentration of 20% by weight or more, This is a contact hole forming method characterized by including steps of exposure and development.

(作用) 本材料は膜厚形成が可能なとこからエッチバック法を用
いることなく本材料単独で平坦化は可能であり、遠紫外
線感光性を持つので、絶縁膜となる本材料に直接コンタ
クトホールを形成することができる。したがって、寸法
シフトの発生するレジストパターンから層間絶縁膜への
エツチングを行わないため寸法通りパターン形成ができ
る。レジスト塗布及びエツチング、とレジスト除去工程
は必要ない。
(Function) Since this material can be formed into a thick film, it is possible to planarize it alone without using an etch-back method, and since it is sensitive to deep ultraviolet rays, contact holes can be made directly into this material, which will serve as an insulating film. can be formed. Therefore, etching from the resist pattern to the interlayer insulating film, which would cause a dimensional shift, is not performed, so that a pattern can be formed according to the dimensions. There is no need for resist coating, etching, and resist removal steps.

(実施例) 次に本発明の実施例について詳細に説明する。(Example) Next, embodiments of the present invention will be described in detail.

下記の式(2)は本実施例に用いた層間絶縁膜材料であ
る。
The following formula (2) is the interlayer insulating film material used in this example.

式(2)で表される層間絶縁膜材料中のSi含有率は約
30から35重量パーセントである。高分子骨格は5i
02組成が基本である。構造式中1、m及びnの値は、
15から20であり分子量は約15000である。構造
式中のRは、紫外線感光性のある有機官能基を示し、本
実施例ではメタル配線に影響を及ぼさないようハロゲン
元素を含まないものの一例としてメルカプトエチル基を
用いた(以下高分子材料と称する)。分子量は遠紫外線
感度をスループットに影響しない高さで確保するため、
10000以上であることが必要とされる。官能基とし
てこれ以外にも、メルカプトプロピル基、ビニル基、ア
リル基などが料を25パーセントのメチルイソブチルケ
トン溶液とし、0.7pm厚のアルミニウム配線層のの
上に、3000rpmでスピン塗布した後、100°C
11分間、ホットプレート上でベータを行った。このと
きの非段差部の膜厚は1.3μmであった。平坦化の程
度を示すため、平坦化率Rを式(3)のように定義する
The Si content in the interlayer insulating film material expressed by formula (2) is approximately 30 to 35 weight percent. The polymer skeleton is 5i
The basic composition is 02. The values of 1, m and n in the structural formula are:
15 to 20, and the molecular weight is about 15,000. R in the structural formula represents an organic functional group that is sensitive to ultraviolet light, and in this example, a mercaptoethyl group was used as an example of one that does not contain a halogen element so as not to affect the metal wiring (hereinafter referred to as a polymer material). ). The molecular weight is set to ensure far-UV sensitivity at a high level that does not affect throughput.
It is required to be 10,000 or more. In addition to these functional groups, mercaptopropyl groups, vinyl groups, allyl groups, etc. were prepared in a 25% methyl isobutyl ketone solution and spin-coated at 3000 rpm onto a 0.7 pm thick aluminum wiring layer. 100°C
Beta was run on a hot plate for 11 minutes. At this time, the film thickness of the non-stepped portion was 1.3 μm. In order to indicate the degree of flattening, the flattening rate R is defined as in equation (3).

R=100(B−A)/D  (%)      式(
3)ここでDは段差、Aは段差上の膜厚、Bは非段差部
の膜厚であり、その関係を説明するため、第2図に段差
部の概略断面図を示す。図中、5は段差、6は平坦化絶
縁膜である。この式(3)によれば塗布後の平坦化率は
90%であり(第1図−a)、エッチバック法を行った
場合とほぼ同じ程度に平坦化できた。
R=100(B-A)/D (%) Formula (
3) Here, D is the step, A is the film thickness on the step, and B is the film thickness at the non-step portion. In order to explain the relationship, a schematic cross-sectional view of the step portion is shown in FIG. In the figure, 5 is a step, and 6 is a flattening insulating film. According to this formula (3), the flattening rate after coating was 90% (FIG. 1-a), which was approximately the same level as when the etch-back method was performed.

この後、遠紫外線領域である波長248.5nmである
フッ化クリプトンエキシマレーザによるコンタクトホー
ルの露光を行った(第1図−b)。この時用いたエキシ
マレーザは発振周波数200Hz、パワー40mW/c
mでこの時のウェハー面上での露光量は150mJ/a
m2、はこの高分子材料は基本骨格が5i02であるた
め、遠紫外線波長領域における樹脂の光の透過率は非常
に高く、111m以上の膜厚でも入射光の8割から9割
を透過できるため、矩形性のよいパターンを形成できる
。これをメチルイソブチルケトンを用いて現像し、現像
液除去のため、100°C160秒のホットプレートに
よるベークを行った。矩形性のよいコンタクトホールパ
ターンを形成した(第1図−〇)。コンタクトホール形
成後の平坦化率は90%であった。従来技術と本方法に
よるコンタクトホールサイズの寸法シフトを第4図に示
す。これによれば、レジストマスクでエツチングを行う
従来方法で形成したコンタクトホールが設計寸法0.8
pm以下では0.05〜0.1μmの寸法変化を示して
いるのに対し、本発明の方法では0.01〜0.05p
mの変化に抑えられている。
Thereafter, the contact hole was exposed using a krypton fluoride excimer laser having a wavelength of 248.5 nm, which is in the deep ultraviolet region (FIG. 1-b). The excimer laser used at this time had an oscillation frequency of 200Hz and a power of 40mW/c.
m, and the exposure amount on the wafer surface at this time is 150 mJ/a.
m2, because the basic skeleton of this polymer material is 5i02, the light transmittance of the resin in the far ultraviolet wavelength region is extremely high, and even with a film thickness of 111 m or more, 80% to 90% of the incident light can be transmitted. , a pattern with good rectangularity can be formed. This was developed using methyl isobutyl ketone, and baked on a hot plate at 100° C. for 160 seconds to remove the developer. A contact hole pattern with good rectangularity was formed (Figure 1-). The flattening rate after forming the contact hole was 90%. FIG. 4 shows the dimensional shift in contact hole size according to the conventional technique and the present method. According to this, the contact hole formed by the conventional method of etching with a resist mask has a design dimension of 0.8
pm or less shows a dimensional change of 0.05 to 0.1 μm, whereas the method of the present invention shows a dimensional change of 0.01 to 0.05 μm.
The change is suppressed to m.

(発明の効果) 発明の材料及び方法によれば、平坦で厚膜の5i02系
層間絶縁膜を形成でき、その透明性と遠赤外線感光性を
利用し、本材料を直接露光してコンタクトホールパター
ンを形成でき、形成されたコンタクトホールは設計寸法
とのずれを生じにくい。また、従来行っていたマスクに
なる露光現像工程、及びエツチング、レジスト除去工程
は必要としないため、プロセスの簡略化を図ることがで
きる。
(Effects of the Invention) According to the material and method of the invention, a flat and thick 5i02 interlayer insulating film can be formed, and by utilizing its transparency and far-infrared sensitivity, this material can be directly exposed to form a contact hole pattern. can be formed, and the formed contact hole is unlikely to deviate from the designed dimension. Furthermore, the process can be simplified because the conventional mask exposure and development process, etching, and resist removal process are not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−cは本発明による実施例を示す模式的断面図
で、1はメタル配線、2は高分子材料、3はエキシマレ
ーザによって露光されたコンタクトホールパターン、4
は形成されたコンタクトホールである。 第2図は平坦化率を説明するための模式的断面図で、5
は段差、6は平坦化絶縁膜を表す。 第3図のa−dは従来の技術を示す模式的断面図である
。図中、7はメタル配線、8は第1CVDシリコン酸化
膜、9は塗布型シリコン酸化膜、10は第20VDシリ
コン酸化膜、11は通常の露光、現像、エツチングプロ
セスで形成したコンタクトホールである。 第4図は従来技術と本方法による設計と仕上がりコンタ
クトホール寸法の関係を表した図で、−点液線は設計ど
うりに仕上がった場合であり、点線は従来技術、実線が
本方法によるものである。
1a to 1c are schematic cross-sectional views showing an embodiment according to the present invention, in which 1 is a metal wiring, 2 is a polymer material, 3 is a contact hole pattern exposed by excimer laser, and 4
is the formed contact hole. Figure 2 is a schematic cross-sectional view for explaining the flattening rate.
6 represents a step, and 6 represents a flattening insulating film. 3A to 3D are schematic cross-sectional views showing a conventional technique. In the figure, 7 is a metal wiring, 8 is a first CVD silicon oxide film, 9 is a coated silicon oxide film, 10 is a 20th VD silicon oxide film, and 11 is a contact hole formed by normal exposure, development, and etching processes. Figure 4 is a diagram showing the relationship between the design and finished contact hole dimensions using the conventional technology and this method. It is.

Claims (2)

【特許請求の範囲】[Claims] (1)有機溶媒可溶のシラノールを主成分とし、シラノ
ールの末端に一部アルキル基を持った高分子からなる層
間絶縁膜材料において、分子内に遠紫外線感光性の官能
基を持ち、分子量10000以上、濃度20重量パーセ
ント以上であることを特徴とする層間絶縁膜材料。
(1) An interlayer insulating film material consisting of a polymer whose main component is silanol that is soluble in organic solvents, with some alkyl groups at the ends of the silanol, which has deep ultraviolet-sensitive functional groups in the molecule and has a molecular weight of 10,000. An interlayer insulating film material characterized by having a concentration of 20% by weight or more.
(2)基板上に形成された配線上に、有機溶媒可溶のシ
ラノールを主成分とし、シラノールの末端に一部アルキ
ル基を持ち、これ以外に分子内に少なくとも1つの遠紫
外線感光性の官能基を持ち、分子量10000以上、濃
度20重量パーセント以上である層間絶縁膜材料を塗布
する工程と、遠紫外線で露光し、現像する工程とを含む
ことを特徴とするコンタクトホール形成方法。
(2) On the wiring formed on the substrate, the main component is silanol that is soluble in an organic solvent, a portion of the silanol has an alkyl group at the end, and in addition, at least one far-UV-sensitive functional group in the molecule. A method for forming a contact hole, comprising the steps of: applying an interlayer insulating film material having a molecular weight of 10,000 or more and a concentration of 20% by weight or more; and exposing and developing with deep ultraviolet rays.
JP10061390A 1990-04-17 1990-04-17 Interlayer insulating film material and forming method for contact hole Pending JPH03297158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10061390A JPH03297158A (en) 1990-04-17 1990-04-17 Interlayer insulating film material and forming method for contact hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10061390A JPH03297158A (en) 1990-04-17 1990-04-17 Interlayer insulating film material and forming method for contact hole

Publications (1)

Publication Number Publication Date
JPH03297158A true JPH03297158A (en) 1991-12-27

Family

ID=14278696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10061390A Pending JPH03297158A (en) 1990-04-17 1990-04-17 Interlayer insulating film material and forming method for contact hole

Country Status (1)

Country Link
JP (1) JPH03297158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199518A (en) * 2009-02-27 2010-09-09 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199518A (en) * 2009-02-27 2010-09-09 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6720256B1 (en) Method of dual damascene patterning
KR890003264B1 (en) Method for forming resist pattern
US5370969A (en) Trilayer lithographic process
JP2000068268A (en) Manufacture of conductive multilayer device patterned on semiconductor substrate, method for treating wafer substrate in manufacturing semiconductor and treated product
JPS6366939A (en) Manufacture of integrated circuit
JPH0777809A (en) Method for formation of pattern making use of silylation
US8153351B2 (en) Methods for performing photolithography using BARCs having graded optical properties
JP2674589B2 (en) Method of forming resist pattern
JPH03297158A (en) Interlayer insulating film material and forming method for contact hole
JPH05234965A (en) Formation of contact hole
JPH0458167B2 (en)
JP4574976B2 (en) Fine pattern forming method
JPS61256731A (en) Formation of pattern
KR100537182B1 (en) Method for fabricating semiconductor device
TW200421440A (en) Method for increasing adhesion of rework photoresist on oxynitride film
JPH06291273A (en) Manufacture of semiconductor integrated circuit
KR100532737B1 (en) Method for forming a anti reflective coating in a semiconductor manufacturing procedure
JP2853101B2 (en) Method for manufacturing semiconductor device
JP2000040739A (en) Manufacture of semiconductor device
KR0170898B1 (en) Method of manufacturing photosensitive film pattern using liquid sililation
JPS62247523A (en) Manufacture of semiconductor device
JPH01117032A (en) Pattern forming method
JPH0513325A (en) Pattern formation method
JPH03184322A (en) Manufacture of semiconductor integrated circuit device
JP2713061B2 (en) Method of forming resist pattern