JPH0329204B2 - - Google Patents

Info

Publication number
JPH0329204B2
JPH0329204B2 JP58173388A JP17338883A JPH0329204B2 JP H0329204 B2 JPH0329204 B2 JP H0329204B2 JP 58173388 A JP58173388 A JP 58173388A JP 17338883 A JP17338883 A JP 17338883A JP H0329204 B2 JPH0329204 B2 JP H0329204B2
Authority
JP
Japan
Prior art keywords
crystal resonator
cut angle
tuning fork
mode
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58173388A
Other languages
Japanese (ja)
Other versions
JPS6064516A (en
Inventor
Hirofumi Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17338883A priority Critical patent/JPS6064516A/en
Publication of JPS6064516A publication Critical patent/JPS6064516A/en
Publication of JPH0329204B2 publication Critical patent/JPH0329204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は屈曲モードと捩りモード振動が結合し
た結合水晶振動子の切断角度に関する。本発明は
屈曲、捩り水晶振動子の周波数温度特性に優れた
新カツト角を提案するものである。腕時計用振動
子として音叉型屈曲水晶振動子が一般的に使用さ
れている。しかし、このタイプの振動子は周波数
温度特性が2次曲線で表わされるため広い温度範
囲に互つて零温度係数を与えることが出来ず、時
間精度に限界があつた。そこで、最近は特開昭55
−75326で見られるように、屈曲モードに捩りモ
ードを結合させ、屈曲モードの周波数温度特性を
改善し、優れた周波数温度特性を得ている。そし
て、この優れた周波数温度特性を与えるカツト角
は音叉の辺比によつて若干異なるが約−10゜付近
が使用されている。本発明はこれら従来の屈曲、
捩れ振動子の研究する中で、上記カツト角以外に
も周波数温度特性に優れた新カツト角が存在する
ことを見い出した。以下、本発明について詳細に
説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cutting angle of a coupled crystal resonator in which bending mode and torsional mode vibration are coupled. The present invention proposes a new cut angle that has excellent frequency-temperature characteristics for bent and torsion crystal resonators. A tuning fork type bent crystal resonator is generally used as a resonator for a wristwatch. However, since the frequency-temperature characteristic of this type of vibrator is represented by a quadratic curve, it is not possible to provide a zero temperature coefficient over a wide temperature range, and there is a limit to the time accuracy. Therefore, recently, JP-A-55
As seen in -75326, the torsional mode is combined with the bending mode to improve the frequency-temperature characteristics of the bending mode, resulting in excellent frequency-temperature characteristics. The cut angle that provides this excellent frequency-temperature characteristic varies slightly depending on the side ratio of the tuning fork, but a cut angle of around -10° is used. The present invention is directed to these conventional bending methods.
While researching torsional oscillators, we discovered that there is a new cut angle other than the above cut angle that has excellent frequency-temperature characteristics. The present invention will be explained in detail below.

水晶振動子、特に、屈曲モードに捩りモードを
結合させ、この周波数温度特性の挙動を理論的に
解析する試みは未だ行なわれていない。そこで、
本発明は屈曲モードと捩りモードの結合した屈
曲、捩り水晶振動子について理論解析を行ない、
特に、振動子の寸法、カツト角に対する周波数温
度特性の関係を調査した。今、屈曲モードの共振
周波数をF、捩りモードの共振周波数をTとする
と屈曲モードに捩りモード振動が結合して得られ
る共振周波数は次式のようになる。2 =1/2y(2 F2 T±√(2 F2 T2 −4c2 F 2 T) −(1) 但し、yは無次元の値、cは弾性結合因子 本発明は(1)式より、共振周波数のテイラー展
開により、一次、二次、三次温度係数を求めてい
る。第1図は本発明の音叉型屈曲捩りモード水晶
振動子の結晶軸との関係を示し、音叉型形状はZ
板から形成され、同図に示すように音叉腕の長さ
lはy軸方向からなり、X軸と一致した腕幅W、
板厚tとからなつている。又、X軸のまわりの回
転は反時計方向を正とし、時計方向を負とする。
第2図は理論解析によつて得られた結果で、W=
0.35mm、l=0.95mmで厚みtを最適値にしたとき
の一次温度係数αが零となる、カツト角θによる
二次温度係数βの関係を示し、カツト角−10゜付
近でα、βともに零になり、これが従来見い出さ
れ使用されているカツト角であり、第2図から明
らかなように、カツト角が−50゜付近にもα、β
が同時に零となるカツト角が存在することが分か
る。又、このカツト角は振動子の寸法等によつて
若干変化するが、本発明では、たとえ寸法を変え
ても、カツト角が−40゜〜−60゜の範囲内であれば
α、βを常に零にすることが出来る。以上、述べ
たように、本発明は屈曲モードと捩りモード振動
の結合した結合水晶振動子について理論解析を行
ない。その結果、周波数温度特性に優れた水晶振
動子を提供できる、新カツト角を見い出した。
No attempt has yet been made to theoretically analyze the behavior of the frequency-temperature characteristics of a crystal resonator, especially by coupling the torsional mode to the bending mode. Therefore,
The present invention performs a theoretical analysis of a bent and torsion crystal resonator in which a bending mode and a torsion mode are combined.
In particular, we investigated the relationship between frequency and temperature characteristics with respect to the dimensions of the vibrator and the cut angle. Now, if the resonant frequency of the bending mode is F and the resonant frequency of the torsional mode is T , then the resonant frequency obtained by coupling the torsional mode vibration to the bending mode is as follows. 2 = 1/2y( 2 F + 2 T ±√( 2 F2 T ) 2 −4c 2 F 2 T ) −(1) However, y is a dimensionless value and c is an elastic coupling factor. From equation 1), the first-order, second-order, and third-order temperature coefficients are obtained by Taylor expansion of the resonance frequency. Figure 1 shows the relationship between the crystal axis and the tuning fork type bending torsion mode crystal resonator of the present invention, and the tuning fork type shape is Z.
It is formed from a plate, and as shown in the figure, the length l of the tuning fork arm is in the y-axis direction, and the arm width W, which coincides with the x-axis, is
It consists of plate thickness t. Further, regarding rotation around the X axis, counterclockwise direction is positive and clockwise direction is negative.
Figure 2 shows the results obtained by theoretical analysis, where W=
The relationship between the secondary temperature coefficient β depending on the cut angle θ is shown, where the first temperature coefficient α becomes zero when the thickness t is set to the optimum value at 0.35 mm and l = 0.95 mm. Both become zero, and this is the cut angle that has been found and used in the past.As is clear from Figure 2, even when the cut angle is around -50°, α and β
It can be seen that there exists a cut angle for which both are zero at the same time. Also, this cut angle varies slightly depending on the dimensions of the vibrator, etc., but in the present invention, even if the dimensions are changed, α and β can be maintained as long as the cut angle is within the range of -40° to -60°. It can always be set to zero. As described above, the present invention performs a theoretical analysis of a coupled crystal resonator in which bending mode and torsional mode vibrations are coupled. As a result, we discovered a new cut angle that can provide a crystal resonator with excellent frequency-temperature characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は音叉型水晶振動子と結晶軸との関係を
示す。第2図は一次温度係数αが零のときのカツ
ト角θと二次温度係数βとの関係を示す。 l=音叉腕長さ、W=音叉腕幅、t=音叉板
厚。
FIG. 1 shows the relationship between a tuning fork type crystal resonator and the crystal axis. FIG. 2 shows the relationship between the cut angle θ and the secondary temperature coefficient β when the primary temperature coefficient α is zero. l = tuning fork arm length, W = tuning fork arm width, t = tuning fork plate thickness.

Claims (1)

【特許請求の範囲】[Claims] 1 屈曲モードと捩りモード振動が結合した音叉
型の結合水晶振動子に於いて、前記水晶振動子は
z板をX軸を回転軸として−40゜〜−60゜回転した
板より前記音叉型の長手方向がY軸方向をなして
加工されていることを特徴とする結合水晶振動
子。
1. In a tuning fork type coupled crystal resonator in which bending mode and torsional mode vibrations are combined, the crystal resonator has a Z plate rotated by -40° to -60° with the X axis as the rotation axis. A coupled crystal resonator characterized in that the longitudinal direction is processed in the Y-axis direction.
JP17338883A 1983-09-20 1983-09-20 Combined crystal resonator Granted JPS6064516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17338883A JPS6064516A (en) 1983-09-20 1983-09-20 Combined crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17338883A JPS6064516A (en) 1983-09-20 1983-09-20 Combined crystal resonator

Publications (2)

Publication Number Publication Date
JPS6064516A JPS6064516A (en) 1985-04-13
JPH0329204B2 true JPH0329204B2 (en) 1991-04-23

Family

ID=15959472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17338883A Granted JPS6064516A (en) 1983-09-20 1983-09-20 Combined crystal resonator

Country Status (1)

Country Link
JP (1) JPS6064516A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202112A (en) * 1987-02-17 1988-08-22 Seiko Electronic Components Ltd Coupling crystal vibrator
JPS63202113A (en) * 1987-02-17 1988-08-22 Seiko Electronic Components Ltd Coupling crystal vibrator
JP2015080013A (en) 2013-10-15 2015-04-23 セイコーエプソン株式会社 Vibrator, oscillator, electronic apparatus and movable body
CN107005223B (en) * 2014-10-03 2021-06-04 芬兰国家技术研究中心股份公司 Temperature compensation beam resonator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123116A (en) * 1980-03-04 1981-09-28 Citizen Watch Co Ltd Tuning fork type quartz oscillator
JPS57203313A (en) * 1981-06-09 1982-12-13 Seiko Instr & Electronics Ltd Tuning fork type quartz oscillator
JPS5857812A (en) * 1981-10-02 1983-04-06 Seiko Instr & Electronics Ltd Tuning fork type bending crystal oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123116A (en) * 1980-03-04 1981-09-28 Citizen Watch Co Ltd Tuning fork type quartz oscillator
JPS57203313A (en) * 1981-06-09 1982-12-13 Seiko Instr & Electronics Ltd Tuning fork type quartz oscillator
JPS5857812A (en) * 1981-10-02 1983-04-06 Seiko Instr & Electronics Ltd Tuning fork type bending crystal oscillator

Also Published As

Publication number Publication date
JPS6064516A (en) 1985-04-13

Similar Documents

Publication Publication Date Title
JPH027207B2 (en)
US4076987A (en) Multiple resonator or filter vibrating in a coupled mode
JP3096472B2 (en) SC-cut crystal unit
JP2620085B2 (en) 2-port SAW resonator
JPH0329204B2 (en)
Grouzinenko et al. Piezoelectric resonators from La/sub 3/Ga/sub 5/SiO/sub 14/(langasite)-single crystals
JPH0746079A (en) Highly stable surface acoustic wave element
JPS6357967B2 (en)
JP3194442B2 (en) SC-cut crystal unit
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JPS6246089B2 (en)
JP2813996B2 (en) 3rd overtone AT-cut crystal unit
JPS5912810Y2 (en) piezoelectric vibrator
JP3550796B2 (en) Crystal oscillator
JP2884569B2 (en) Method of manufacturing rectangular AT-cut quartz resonator for overtone
JPH033514A (en) Litao3 piezoelectric resonator
JPH0344451B2 (en)
JPS63202113A (en) Coupling crystal vibrator
JPH0213007A (en) Litao3 thickness-share vibrator
JPS6313364B2 (en)
JPS5912805Y2 (en) Width shear oscillator
JPS5827549Y2 (en) Crystal oscillator support structure
JPS59148421A (en) Piezoelectric resonator
JPH0117857Y2 (en)
JP2822647B2 (en) Energy confined thickness shear oscillator