JPH03291959A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03291959A
JPH03291959A JP9477390A JP9477390A JPH03291959A JP H03291959 A JPH03291959 A JP H03291959A JP 9477390 A JP9477390 A JP 9477390A JP 9477390 A JP9477390 A JP 9477390A JP H03291959 A JPH03291959 A JP H03291959A
Authority
JP
Japan
Prior art keywords
element isolation
layer
isolation layer
difference
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9477390A
Other languages
Japanese (ja)
Inventor
Takashi Hosaka
俊 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9477390A priority Critical patent/JPH03291959A/en
Priority to TW80102677A priority patent/TW198766B/zh
Publication of JPH03291959A publication Critical patent/JPH03291959A/en
Priority to US07/978,461 priority patent/US5293061A/en
Priority to US08/153,906 priority patent/US5352626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To realize that a semiconductor device becomes fine and is integrated highly by a method wherein a difference in level is formed on the surface of a semiconductor device and an element isolation region is formed in the difference in level in order to reduce the width and the area of an element isolation layer and to form the element isolation region in a self-aligned manner. CONSTITUTION:An element isolation layer 3 formed in a difference in level on the surface of a semiconductor substrate 1 is provided. For example, a difference in level is formed in the thickness direction inside a semiconductor substrate 1; the difference is level is used as an element isolation layer 3; impurity diffusion layers 4 are formed so as to sandwich the element isolation layer 3. An inversion-preventing layer 2 is formed on the lower-part sidewall of the element isolation layer 3. The element isolation layer 3 is used to insulate the impurity diffusion layers 4 physically and electrically; generally, it is formed of an insulating film such as an oxide film, a nitride film or the like; its thickness is decided by a dielectric breakdown strength. The inversion-preventing layer 2 is a layer which prevents the semiconductor substrate 1 from becoming a belt of an opposite conductivity type along the element isolation layer 3; generally, it is a layer whose conductivity type is the same as that of the semiconductor substrate 1 and whose concentration is larger than that of the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、トランジスタ、抵抗等の半導体素子を物理
的および電気的に分離する素子分離を有する半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having element isolation that physically and electrically isolates semiconductor elements such as transistors and resistors.

[本発明の概要] 複数個の半導体素子を有する半導体装置において、半導
体基板の表面に段差を形成し、その段差部を含む領域に
素子分離層を形成した半導体装置。
[Summary of the Invention] A semiconductor device having a plurality of semiconductor elements, in which a step is formed on the surface of a semiconductor substrate, and an element isolation layer is formed in a region including the step.

[従来の技術] 従来の素子分離層は平坦な領域に平面的に形成されてい
た。すなわち第6図に示す様に素子分離層63および不
純物拡散層64は半導体表面に平面的に形成されており
、素子分離領域として一定の距離・面積を有していた。
[Prior Art] A conventional element isolation layer is formed two-dimensionally in a flat region. That is, as shown in FIG. 6, the element isolation layer 63 and the impurity diffusion layer 64 were formed planarly on the semiconductor surface, and had a fixed distance and area as an element isolation region.

[発明が解決しようとする課題1 素子分離領域として一定の距離・面積を有しているため
、半導体装置の微細化・高集積化の妨げとなっていた。
[Problem to be Solved by the Invention 1] Since the device isolation region has a certain distance and area, it has been an obstacle to miniaturization and high integration of semiconductor devices.

[課題を解決するための手段] 半導体基板表面に段差を形成し、その段差に素子分離領
域を形成する。
[Means for Solving the Problem] A step is formed on the surface of a semiconductor substrate, and an element isolation region is formed in the step.

[作用] 段差を素子分離領域として利用するので、平面的(マス
ク上)には素子分離領域を小さくできる。また、自己整
合的に素子分離領域を形成する事ち可能となり、素子分
離層の厚みまで素子分離領域を小さくできる。
[Operation] Since the step is used as an element isolation region, the element isolation region can be made smaller in plan view (on the mask). Furthermore, it becomes possible to form the element isolation region in a self-aligned manner, and the element isolation region can be made as small as the thickness of the element isolation layer.

【実施例] 第1実施例を示す半導体装置の断面図を第1図に示す。【Example] A cross-sectional view of a semiconductor device showing a first embodiment is shown in FIG.

第1図に示す様に半導体基板1内の厚み方向に段差(ス
テップ)が形成され、そのステップが素子分離層3とな
る。この素子分離層3をはさんで不純物拡散層4が存在
する。また素子分離層3の下部側壁には反転防止層2が
存在する。素子分離層3は不純物拡散層4同士を物理的
・電気的に絶縁している。素子分離層3は一般に酸化膜
あるいは窒化膜等の絶縁膜である。この素子分離層3が
絶縁膜である時、その厚みは絶縁耐圧によって決定され
る1反転防止層2は半導体基板1が素子分離層に沿って
逆導電帯となる事を防止する層であり、一般には半導体
基板1と同一の導電型で基板の濃度より濃い層である。
As shown in FIG. 1, a step is formed in the thickness direction within the semiconductor substrate 1, and the step becomes the element isolation layer 3. An impurity diffusion layer 4 is present across the element isolation layer 3. Further, an anti-inversion layer 2 is present on the lower sidewall of the element isolation layer 3. The element isolation layer 3 physically and electrically insulates the impurity diffusion layers 4 from each other. The element isolation layer 3 is generally an insulating film such as an oxide film or a nitride film. When the element isolation layer 3 is an insulating film, its thickness is determined by the dielectric strength voltage.1 The inversion prevention layer 2 is a layer that prevents the semiconductor substrate 1 from becoming a reverse conductive band along the element isolation layer. Generally, it is a layer having the same conductivity type as the semiconductor substrate 1 and having a higher concentration than the substrate.

この反転防止層2は、もちろん反転する危険性がなけれ
ば不要である。第1図では素子として不純物拡散層4の
みを示しているが、トランジスタあるいは低抗体および
容量等の素子も含まれている事は言うまでもない6さて
、第1図では垂直な段差を示しており、この段差の深さ
が素子分離の長さとなる。しかし簡単に分るように、平
面的には素子分離の長さは素子分離層3の厚みほどでし
かない1選択酸化法であれば1μm以上の素子分離の長
さが必要であるが、本発明の素子分離の平面的長さは1
um以下も可能である。マスク上は素子分離の長さを考
える必要もない、さらに、不純物拡散層4も自己整合的
に形成される。
Of course, this anti-inversion layer 2 is unnecessary if there is no risk of inversion. Although FIG. 1 shows only the impurity diffusion layer 4 as an element, it goes without saying that elements such as transistors, low-voltage antibodies, and capacitors are also included. 6 Now, FIG. 1 shows vertical steps, The depth of this step becomes the length of element isolation. However, as can be easily seen, the length of element isolation in plan view is only about the thickness of the element isolation layer 3. If the single selective oxidation method is used, a length of element isolation of 1 μm or more is required. The planar length of the element separation of the invention is 1
um or less is also possible. There is no need to consider the length of element isolation on the mask, and the impurity diffusion layer 4 is also formed in a self-aligned manner.

第1図は垂直ステップを考えているが、斜面型段差でも
事情は同じである。第2図に第2実施例を示す半導体装
置の断面図を示す、すなわち第2図に示す様に斜面型段
差部に素子分離層13が形成される。第2図に示す斜面
型段差の場合、実質的な素子分離の長さは斜面の段差の
長さに相当し、平面的にはそれよりも短くなる。斜面の
段差の長さを4とし斜面の水平面に対する傾斜角をθと
すると平面的な素子分離の長さはβCOSθとなる。従
って第1図に示す垂直段差の場合よりも素子分離の長さ
(巾)は長くなるが、実質的な素子分離の長さより短い
ばかりでなく、マスク上は素子分離の長さを考える必要
はなく自己整合的に素子分離の長さは決定される。すな
わち、斜面の長さまたは段差によって素子分離の長さは
決定される。
Although Figure 1 considers vertical steps, the situation is the same for slope-type steps. FIG. 2 shows a cross-sectional view of a semiconductor device according to a second embodiment. That is, as shown in FIG. 2, an element isolation layer 13 is formed in a sloped step portion. In the case of the slope-type step shown in FIG. 2, the actual length of element separation corresponds to the length of the slope step, and is shorter in plan. When the length of the step on the slope is 4 and the angle of inclination of the slope with respect to the horizontal plane is θ, the length of planar element separation is βCOSθ. Therefore, although the length (width) of element isolation is longer than in the case of the vertical step shown in Figure 1, it is not only shorter than the actual element isolation length, but also there is no need to consider the element isolation length on the mask. The length of element isolation is determined in a self-aligned manner. That is, the length of element isolation is determined by the length of the slope or the difference in level.

さて本発明の素子分離層の特徴は、素子分離層の長さ(
巾)を小さくできるだけでなく、自己整合的に長さが決
定されるためマスク上で素子分離層の長さ(巾)を考え
なくてちよい事である1本発明による素子分離層の長さ
(巾)は、第2図において、斜面の長さをβ、斜面の平
面に対する傾きをθ、素子分離層の厚みなtとすると、
平面的(上から見ると)には、はぼrt2cosθ十t
/sinθ」となる、この式よりθ=90°の時が素子
分離層の長さ(巾)は最も小さくなり素子分離層の厚み
tと等しくなる。
Now, the feature of the element isolation layer of the present invention is that the length of the element isolation layer (
Not only can the length (width) be made smaller, but there is no need to consider the length (width) of the element isolation layer on the mask because the length is determined in a self-aligned manner.1. (width) is, in FIG. 2, where β is the length of the slope, θ is the inclination of the slope with respect to the plane, and t is the thickness of the element isolation layer.
In a plane (viewed from above), habo rt2 cos θ ten t
/sin θ'' From this equation, when θ=90°, the length (width) of the element isolation layer is the smallest and equal to the thickness t of the element isolation layer.

第1図および第2図においては、半導体基板表面の段差
に素子分離層を形成したちのについて説明したが、段差
を含む段差周辺領域に素子分離層を形成しても良い、第
3図に第3実施例を示す半導体装置の断面図を示す、す
なわち第3図における33および第4図における43の
素子分離層は段差部のみではなく平坦部(平面部)にも
素子分離層が形成されている。これらの場合には、素子
分離用の特別なマスクが必要となる事は言うまでちない
、しかし、平坦部のみに素子分離層を形成する場合に比
較し、平面的(上から見た状態として)には素子分離層
を小さくできる。また、従来の平坦部のみに形成する素
子分離層と組合せて用いる事ができる事も言うまでもな
い。
In FIGS. 1 and 2, the case where the element isolation layer is formed on the step on the surface of the semiconductor substrate is explained, but the element isolation layer may also be formed in the region around the step including the step. The device isolation layers 33 in FIG. 3 and 43 in FIG. 4 are shown in cross-sectional views of the semiconductor device showing the third embodiment. ing. In these cases, it goes without saying that a special mask for element isolation is required, but compared to the case where an element isolation layer is formed only on flat areas, ), the device isolation layer can be made smaller. It goes without saying that it can also be used in combination with a conventional element isolation layer formed only on flat areas.

第4図に第4の実施例を示す半導体装置の断面図を示す
FIG. 4 shows a sectional view of a semiconductor device showing a fourth embodiment.

第3図は垂直段差を含む場合について図示しているが、
第4図に示す様に斜面型段差においても第3図で述べた
事を適用できる事は言うまでちない。
Figure 3 illustrates the case where vertical steps are included.
It goes without saying that what is described in FIG. 3 can also be applied to the slope type step shown in FIG. 4.

さらにもう一つの実施例として、電気的に素子分離を行
う素子分離法にも本発明を用いる事ができる。第5図に
第5の実施例を示す半導体装置の断面図を示す。すなわ
ち第5図に示すように、素子分離領域となる所に段差を
形成し、その段差部分に絶縁膜53と素子分離用の電極
55を形成する。これらの絶縁膜53と素子分離用の電
極55が第1図〜第4図で述べた素子分離層にあたる。
As yet another embodiment, the present invention can be applied to an element isolation method that electrically isolates elements. FIG. 5 shows a sectional view of a semiconductor device showing a fifth embodiment. That is, as shown in FIG. 5, a step is formed at a location that will become an element isolation region, and an insulating film 53 and an electrode 55 for element isolation are formed on the step. These insulating film 53 and electrode 55 for element isolation correspond to the element isolation layer described in FIGS. 1 to 4.

素子分離用の1i極55に印加される電圧を調整する事
により不純物拡散層54(素子領域)同士の素子分離を
行う事ができる。また、斜面型段差の場合にも第5図で
示した事と同じ事を言える事は言うまでもない。
By adjusting the voltage applied to the 1i pole 55 for element isolation, the impurity diffusion layers 54 (element regions) can be isolated from each other. Moreover, it goes without saying that the same thing as shown in FIG. 5 can be said in the case of a slope type step.

第1図〜第5図は素子分離領域を中心とした簡単な構造
を示したが、上記の図で示した構造以外に配線層や眉間
絶縁膜や保護膜層が形成されて。
Although FIGS. 1 to 5 show a simple structure centered on the element isolation region, a wiring layer, an insulating film between the eyebrows, and a protective film layer are formed in addition to the structure shown in the above figures.

製品が完成する事は言うまでもない5 【発明の効果1 以上説明した様に、本発明の半導体装置は半導体基板の
表面に形成された段差に素子分離領域を形成しているの
で、素子分離層の巾および面積を小さくできる。特に平
面的には素子分離層の巾は素子分離層の厚みまで小さく
できる。さらに自己整合的に段差部分に素子分離領域を
形成できる。
Needless to say, the product is completed.5 [Effect of the invention 1] As explained above, in the semiconductor device of the present invention, the element isolation region is formed in the step formed on the surface of the semiconductor substrate. Width and area can be reduced. Particularly in plan view, the width of the element isolation layer can be made as small as the thickness of the element isolation layer. Furthermore, element isolation regions can be formed in the stepped portions in a self-aligned manner.

従って、半導体装置の微細化、高集積化には最高の効果
がある。
Therefore, it has the greatest effect on miniaturization and high integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例を示す半導体装置の断面図、第2図
は第2実施例を示す半導体装置の断面図、第3図は第3
実施例を示す半導体装置の断面図、第4図は第4実施例
を示す半導体装置の断面図、第5図は第5実施例を示す
半導体装置の断面図、第6図は従来の半導体装置を示す
断面図である。 1、11. 2、 l 2. 3、13. 4、14. 53 ・ ・ ・ 55 ・ ・ ・ β ・ ・ ・ θ ・ ・ ・ 31、4 32、4 33、4 34、4 1、51、61 ・半導体基板 2.52.62 ・反転防止層 3.63 ・素子分&ii(絶縁)層 4.54.64 ・不純物拡散層 ・絶縁膜 ・素子分離用電極 ・斜面の段差−の長さ ・斜面と平坦部の傾斜角 t・・・・・・・・・素子分離層の厚み以上
1 is a sectional view of a semiconductor device showing a first embodiment, FIG. 2 is a sectional view of a semiconductor device showing a second embodiment, and FIG. 3 is a sectional view of a semiconductor device showing a third embodiment.
4 is a sectional view of a semiconductor device showing a fourth embodiment, FIG. 5 is a sectional view of a semiconductor device showing a fifth embodiment, and FIG. 6 is a conventional semiconductor device. FIG. 1, 11. 2, l 2. 3, 13. 4, 14. 53 ・ ・ ・ 55 ・ ・ ・ β ・ ・ ・ θ ・ ・ 31, 4 32, 4 33, 4 34, 4 1, 51, 61 ・Semiconductor substrate 2.52.62 ・Inversion prevention layer 3.63 ・Element Min&ii (insulating) layer 4.54.64 ・Impurity diffusion layer ・Insulating film ・Element isolation electrode ・Length of the step on the slope ・Inclination angle t between the slope and the flat part・・・・・・・Element At least the thickness of the separation layer

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の表面の段差に形成された素子分離層を有
する半導体装置。
A semiconductor device having an element isolation layer formed on a step on the surface of a semiconductor substrate.
JP9477390A 1990-04-09 1990-04-09 Semiconductor device Pending JPH03291959A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9477390A JPH03291959A (en) 1990-04-09 1990-04-09 Semiconductor device
TW80102677A TW198766B (en) 1990-04-09 1991-04-09
US07/978,461 US5293061A (en) 1990-04-09 1992-11-19 Semiconductor device having an isolation layer region on the side wall of a groove
US08/153,906 US5352626A (en) 1990-04-09 1993-11-17 Method for making a semiconductor device having an isolated layer region on the side wall of a groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9477390A JPH03291959A (en) 1990-04-09 1990-04-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03291959A true JPH03291959A (en) 1991-12-24

Family

ID=14119418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9477390A Pending JPH03291959A (en) 1990-04-09 1990-04-09 Semiconductor device

Country Status (2)

Country Link
JP (1) JPH03291959A (en)
TW (1) TW198766B (en)

Also Published As

Publication number Publication date
TW198766B (en) 1993-01-21

Similar Documents

Publication Publication Date Title
US5233207A (en) MOS semiconductor device formed on insulator
US5293512A (en) Semiconductor device having a groove type isolation region
US5969401A (en) Silicon on insulator substrate with improved insulation patterns
JPH03291959A (en) Semiconductor device
JP3013628B2 (en) Semiconductor device
JPH079972B2 (en) Semiconductor device
JPH098291A (en) Semiconductor device
US5270566A (en) Insulated gate semiconductor device
JPH09289305A (en) Semiconductor device
JPH0590579A (en) Power field-effect transistor
JPS6079748A (en) Multilayer interconnection structure for semiconductor integrated circuit
JP2695812B2 (en) Semiconductor device
JPS58116763A (en) Mos type rom
JPH05206472A (en) Nonvolatile semiconductor device and its manufacture
JPH0268964A (en) Insulation gate type field effect transistor
JPS60144951A (en) Semiconductor device
JPS6113383B2 (en)
JPH05198802A (en) Semiconductor device
JPS5935450A (en) Semiconductor device
JPH03236281A (en) Power semiconductor device
JPH0221649A (en) Semiconductor device
JPH05136124A (en) Semiconductor device
JPH0671050B2 (en) Semiconductor integrated circuit device
JPH02309679A (en) Insulated-gate fieid-effect transistor
JPS594051A (en) Semiconductor element