JPH03285869A - Grain boundary insulation type semiconductor porcelain composition and production thereof - Google Patents

Grain boundary insulation type semiconductor porcelain composition and production thereof

Info

Publication number
JPH03285869A
JPH03285869A JP2085248A JP8524890A JPH03285869A JP H03285869 A JPH03285869 A JP H03285869A JP 2085248 A JP2085248 A JP 2085248A JP 8524890 A JP8524890 A JP 8524890A JP H03285869 A JPH03285869 A JP H03285869A
Authority
JP
Japan
Prior art keywords
grain boundary
semiconductor porcelain
composition
present
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2085248A
Other languages
Japanese (ja)
Other versions
JPH0761895B2 (en
Inventor
Yasushi Takada
高田 靖
Toshiaki Murakami
俊昭 村上
Junichi Yamagishi
淳一 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2085248A priority Critical patent/JPH0761895B2/en
Publication of JPH03285869A publication Critical patent/JPH03285869A/en
Publication of JPH0761895B2 publication Critical patent/JPH0761895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To control the maximum particle diameter and to increase the product of dielectric constant and dielectric breakdown voltage per thickness by roasting the blended material of metallic oxides having specified composition and forming semiconductor porcelain and insulating its grain boundary by a specified compd. CONSTITUTION:Raw materials are blended so that the title composition is shown by the general formula (Sr1-x-zBaxCazMy) TiO3+mN+nZ wherein M is at least one kind from Nb, Ta, W and rare earth elements, N is at least one kind from Mn, Al and Si, Z is one or both of Ge and Fe. The range of this composition is shown in the following expressions. 0.0001<=x<=0.05, 0.001<=y<=0.03, 0<=z<=0.30, 0.990<=l<=1.010, 0.0001<=m<=0.01, 0.001<=n<=0.03 Semiconductor porcelain is obtained by calcining and grinding this blended material and molding the ground material and roasting the molded body. The surface of this semiconductor porcelain is applied with paste of a compd. contg. at least one kind from Cu, Bi, Pb, B and Si. The grain boundary is insulated by thermally diffusing this paste. Thereby the maximum particle diameter is controlled to 40-70-mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁器コンデンサ等に用いるための粒界絶縁型
半導体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a grain boundary insulated semiconductor ceramic composition for use in ceramic capacitors and the like.

[従来の技術] 従来、小型で容量の大きいコンデンサとして、粒界絶縁
型半導体磁器コンデンサが知られている。
[Prior Art] Grain-boundary insulated semiconductor ceramic capacitors have been known as small-sized, large-capacity capacitors.

粒界絶縁型半導体磁器コンデンサは、結晶粒界を絶縁化
することにより実効誘電率を大きくしたものである。
A grain boundary insulated semiconductor ceramic capacitor has a large effective dielectric constant by insulating the grain boundaries.

粒界絶縁型半導体磁器コンデンサに用いられる磁器組成
物としては、主成分に、チタン酸ストロンチウムまたは
チタン酸バリウムを用い、原子価制御用助剤として、N
b2o3、Y2O5、Dy20、等を添加し、さらに、
焼結助剤として、Mnoi 、Bi20i 、Cub、
5i02等が用いられる。
The ceramic composition used in grain boundary insulated semiconductor ceramic capacitors uses strontium titanate or barium titanate as the main component, and N as an auxiliary agent for valence control.
b2o3, Y2O5, Dy20, etc. are added, and further,
As a sintering aid, Mnoi, Bi20i, Cub,
5i02 etc. are used.

例えば、特開昭56−54026には、(Sr1−x 
Bax)Tilt  (x=0.30〜0.50)を主
体とし、その他にチタン酸塩、ジルコン酸塩を含んだ主
成分に対してLa、Yなどの希土類元素、Nb、Ta、
Wなどのような半導体化剤とMnを含有し、結晶粒界が
Mn、B i 、Cu、Pb、BおよびSLのうちの少
なくとも1種(ただし、B、Biのいづれか1種のみは
除く)により絶縁体化されてなる最大粒径が100JJ
、m以上の粒界絶縁型半導体磁器組成物である。
For example, in JP-A-56-54026, (Sr1-x
Bax) Tilt (x = 0.30 to 0.50), and other main components including titanate and zirconate, rare earth elements such as La and Y, Nb, Ta,
Contains a semiconducting agent such as W and Mn, and has crystal grain boundaries of at least one of Mn, B i , Cu, Pb, B, and SL (excluding only one of B and Bi) The maximum particle size made into an insulator is 100JJ.
, m or more is a grain boundary insulated semiconductor ceramic composition.

近年、磁器コンデンサの小型化の要求に伴い、粒界絶縁
型半導体磁器コンデンサにおいても、より小型化、薄形
化の要求が高まっている。
In recent years, with the demand for smaller ceramic capacitors, there has also been an increasing demand for smaller and thinner grain boundary insulated semiconductor ceramic capacitors.

[発明が解決しようとする課題] 従来の粒界絶縁型半導体磁器では、見掛は誘電率を大き
くする必要から粒径を比較的大きくしていた。しかしな
がら、近年の要求に従い、磁器組成物の層を薄くした場
合には、厚み当りの結晶粒子の数が少なくなってしまう
。そのため、単位厚さ当りの絶縁破壊電圧が小さくなり
、その結果、誘電率と絶縁破壊電圧との積が小さくなっ
てしまっていた。その結果、粒界絶縁型半導体磁器コン
デンサの薄型化、小型化が困難であった。
[Problems to be Solved by the Invention] In conventional grain boundary insulated semiconductor porcelain, the grain size has been made relatively large because it is necessary to increase the apparent dielectric constant. However, when the layer of the ceramic composition is made thinner in accordance with recent demands, the number of crystal grains per thickness becomes smaller. Therefore, the dielectric breakdown voltage per unit thickness becomes small, and as a result, the product of dielectric constant and dielectric breakdown voltage becomes small. As a result, it has been difficult to reduce the thickness and size of grain boundary insulated semiconductor ceramic capacitors.

本発明は、最大粒径を40〜70μmに制御可能であり
、かつ、厚み当りの誘電率と絶縁破壊電圧との積が大き
い粒界絶縁型半導体磁器組成物およびその製造方法を提
供することを目的とする。
The present invention aims to provide a grain-boundary insulated semiconductor ceramic composition whose maximum grain size can be controlled to 40 to 70 μm and which has a large product of dielectric constant per thickness and dielectric breakdown voltage, and a method for producing the same. purpose.

[課題を解決するための手段] 本発明は、上記目的を達成するために、以下の組成゛の
粒界絶縁型半導体磁器組成物を提供する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a grain boundary insulated semiconductor ceramic composition having the following composition.

すなわち、一般式(Srl−x−s Ba、CasMy
 ) T 1 s O3+m N + n Z (但、
Mは、Nb、Ta、W、及び希土類元素のうち少なくと
も1種類、Nは、Mn、Al、及びSiのうち少なくと
も1種類、2は、Ge、Feの一方又は両方)で表され
、x、y、z、j 、m、nがそれぞれ、0゜0001
≦x≦0.05.0.001≦y≦0゜03、O<z≦
0.30.0.990≦1≦1゜010.0.0001
≦m≦0.01.0.001≦n≦0.03、の範囲に
ある半導体磁器の結晶粒界が、Cu、Bi、、Pb、B
、及びSiのうち少なくともINを含む化合物により絶
縁された粒界絶縁型半導体磁器組成物である。
That is, the general formula (Srl-x-s Ba, CasMy
) T 1 s O3+m N + n Z (However,
M is at least one of Nb, Ta, W, and a rare earth element, N is at least one of Mn, Al, and Si, and 2 is one or both of Ge and Fe; y, z, j, m, n are each 0°0001
≦x≦0.05.0.001≦y≦0゜03, O<z≦
0.30.0.990≦1≦1゜010.0.0001
The crystal grain boundaries of semiconductor porcelain in the range of ≦m≦0.01.0.001≦n≦0.03 are Cu, Bi, Pb, B
, and a grain boundary insulated semiconductor ceramic composition insulated by a compound containing at least IN among Si.

また、一般式(Sri−x−* Ba、Ca、My )
T i s○、+mN+nZ (但、Mは、Nb、Ta
、W、及び希土類元素のうち少なくとも1種類、Nは、
Mn、Al、及びSiのうち少なくとも1種類、Zは、
Ge、Feの一方又は両方)で表され、x、y、z、j
 、m、nがそれぞれ、o、oo。
In addition, the general formula (Sri-x-*Ba, Ca, My)
T i s○, +mN+nZ (However, M is Nb, Ta
, W, and at least one rare earth element, N is
At least one of Mn, Al, and Si, Z is
Ge, Fe, or both), x, y, z, j
, m, and n are o and oo, respectively.

l≦x≦0,05.0.001≦y≦0.03.0<z
≦0.30.0.990≦p≦1.010.0.000
1≦m≦0.01.0.001≦n≦0.03、の範囲
になるように配合した後、焼成することによって半導体
磁器を得る工程と、前記工程によって得られた半導体磁
器の結晶粒界をCu、Bi、Pb、B、及びSiのうち
少なくとも1種を含む化合物を用いて絶縁化する工程と
を有する粒界絶縁型半導体磁器組成物の製造方法である
l≦x≦0, 05.0.001≦y≦0.03.0<z
≦0.30.0.990≦p≦1.010.0.000
1≦m≦0.01.0.001≦n≦0.03, and then firing the mixture to obtain semiconductor porcelain, and crystal grains of the semiconductor porcelain obtained by the step. A method for producing a grain boundary insulated semiconductor ceramic composition comprising the step of insulating the grain boundary using a compound containing at least one of Cu, Bi, Pb, B, and Si.

以下、本発明の数値範囲の限定理由について説明する。The reason for limiting the numerical range of the present invention will be explained below.

本発明のXの範囲は、0.0001≦x≦0゜05であ
る。すなわち、0.0001未満では、原材料の精製が
困難であり実用上問題がある。また、0.05よりも大
きいと、見掛は誘電率が低下してしまい、本発明の目的
を達成することができない。
The range of X in the present invention is 0.0001≦x≦0°05. That is, if it is less than 0.0001, it is difficult to purify the raw material and there is a practical problem. On the other hand, if it is larger than 0.05, the apparent dielectric constant will decrease, making it impossible to achieve the object of the present invention.

本発明のZの範囲は、O<z≦0.30である。The range of Z in the present invention is O<z≦0.30.

すなわち、Caを含ませることにより、静電容量の温度
変化率を制御することが可能になる。しかし、0.30
よりも大きいと、見掛は誘電率が低下してしまい、本発
明の目的を達成することができない。
That is, by including Ca, it becomes possible to control the rate of change in capacitance with temperature. However, 0.30
If it is larger than , the apparent dielectric constant will decrease and the object of the present invention cannot be achieved.

一般式中Mとして用いられるNb、Ta、W、及び希土
類元素のうち少なくとも1種類の含有範囲を示すyの範
囲は、0.001≦y≦0.03である。0.001未
満であっても、0,03よりも大きくても、結晶の半導
体化が困難になり本発明の目的を達成することができな
い。
The range of y, which indicates the content range of at least one of Nb, Ta, W, and rare earth elements used as M in the general formula, is 0.001≦y≦0.03. Even if it is less than 0.001 or larger than 0.03, it becomes difficult to convert the crystal into a semiconductor, and the object of the present invention cannot be achieved.

一般式中のTiの含有範囲を示す1の範囲は、0.99
0≦1≦1.010である。0.990未満では、粒径
70μmよりも大きい結晶粒子が生じてしまう。また、
1.010よりも太きくなると、結晶粒子の平均粒径が
40μm以下になってしまい、十分な見掛は誘電率を得
ることができなくなり、本発明の目的を達成することが
できない 一般式中Nとして用いられるMn、Al、及びSiのう
ち少なくとも1種類の含有範囲を示すmの範囲は、0.
0001≦m≦0.01である。
The range of 1 indicating the content range of Ti in the general formula is 0.99
0≦1≦1.010. If it is less than 0.990, crystal grains with a grain size larger than 70 μm will be produced. Also,
If it becomes thicker than 1.010, the average grain size of the crystal grains becomes 40 μm or less, making it impossible to obtain a sufficient apparent dielectric constant, and the purpose of the present invention cannot be achieved. The range of m indicating the content range of at least one of Mn, Al, and Si used as N is 0.
0001≦m≦0.01.

0.0001未満では、見掛は誘電率が低くなり、本発
明の目的を達成することができない。また、0.01よ
りも大きいと、見掛は誘電率が低下してしまい、また、
誘電体損失(tanδ)も悪くなり、本発明の目的を達
成することができない。
If it is less than 0.0001, the apparent dielectric constant becomes low and the object of the present invention cannot be achieved. Moreover, if it is larger than 0.01, the apparent dielectric constant will decrease, and
The dielectric loss (tan δ) also deteriorates, making it impossible to achieve the object of the present invention.

一般式中2として用いられるGe、Feの一方又は両方
を含有させることにより、結晶粒子の制御が可能になる
。その範囲を示すnの範囲は、0゜001≦n≦0.0
3である。O,001未満では、70μmよりも大きい
結晶粒子が生じ、絶縁破壊電圧が低くなる。味な、0.
03よりも大きいと、焼成温度が高くなり、また絶縁破
壊電圧も低くなり、本発明の目的を達成することができ
ない。
By containing one or both of Ge and Fe used as 2 in the general formula, it becomes possible to control crystal grains. The range of n that indicates the range is 0°001≦n≦0.0
It is 3. If it is less than O,001, crystal grains larger than 70 μm are produced and the dielectric breakdown voltage becomes low. The taste is 0.
If it is larger than 03, the firing temperature will be high and the dielectric breakdown voltage will also be low, making it impossible to achieve the object of the present invention.

なお、本発明の一般式中、m及びnは、酸化物の形で含
まれる場合には、例えば一般式Xa Obとして示され
るものをX Ob/aの形に直したときのXの元素の量
で表される。
In addition, in the general formula of the present invention, when m and n are included in the form of an oxide, for example, when the general formula XaOb is changed to the form XOb/a, the element of X is expressed in quantity.

また、本発明に用いられている数値は、すべてモル(l
Ro l )で示した値である。
Furthermore, all numerical values used in the present invention are in moles (l
This is the value indicated by Ro l ).

E実施例コ 以下、実施例により本発明を具体的に説明する。E Example Hereinafter, the present invention will be specifically explained with reference to Examples.

まず、第1表の試料番号1の調製方法とその電気的特性
について説明する。
First, the preparation method of sample number 1 in Table 1 and its electrical properties will be explained.

5rco) 、BaCC)3 、CaC0,、Ti 0
2 、Y203、MnO2、GeOxの化合物を第1表
に示す組成比になるように配合し、x50℃で2時間仮
焼を行った。
5rco), BaCC)3, CaC0,, Ti0
2, Y203, MnO2, and GeOx were mixed in the composition ratio shown in Table 1, and calcined at 50°C for 2 hours.

これを粉砕し、アクリル系バインダを10wt%加え、
攪拌した後、50メツシユのふるいで造粒し、成形圧力
1 ton/C1、直径12.5mm、肉厚0.3mm
の円板に成形した。
Grind this, add 10wt% of acrylic binder,
After stirring, the mixture was granulated using a 50-mesh sieve, with a molding pressure of 1 ton/C1, a diameter of 12.5 mm, and a wall thickness of 0.3 mm.
It was formed into a disc.

得られた円板状成形体を、窒素98vo1%、水素2V
OHからなる還元雰囲気にて1400℃で3時間焼成し
、半導体磁器を得た。
The obtained disk-shaped molded body was heated with 98 vol. of nitrogen and 2 V of hydrogen.
It was fired at 1400° C. for 3 hours in a reducing atmosphere consisting of OH to obtain semiconductor porcelain.

得られた半導体磁器の表面に金属酸化物ペースト、具体
的には、Bi2O,を40wt%、pb304を46 
w t%、B20.を7 w t%、CuOを6 w 
t%、Sin、を1wt%および樹脂を溶剤に添加した
ペーストを塗布し、x50℃で2時間熱拡散させ、結晶
粒界を絶縁化した。
A metal oxide paste, specifically 40wt% Bi2O and 46% pb304, was applied to the surface of the obtained semiconductor ceramic.
wt%, B20. 7 wt%, CuO 6 wt%
A paste containing 1 wt % of t%, Sin, and a resin added to a solvent was applied and thermally diffused at x50° C. for 2 hours to insulate the grain boundaries.

さらに、この粒界絶縁型半導体磁器の表面に銀ペースト
を印刷することによって塗布し、800℃で1時間焼き
付けることによってコンデンサを作成した。
Furthermore, a capacitor was fabricated by applying a silver paste to the surface of this grain boundary insulated semiconductor porcelain by printing and baking it at 800° C. for 1 hour.

(以下余白) 第1表 第2表 得られたコンデンサの電気的特性を測定したところ、第
2表の試料番号1に示す結果を得ることができた。
(Left below) Table 1 Table 2 The electrical characteristics of the obtained capacitors were measured, and the results shown in sample number 1 in Table 2 were obtained.

試料番号2以降の組成物についても、同様の条件にてコ
ンデンサを作成し、同様の条件にて電気的特性を測定し
た。
Concerning the compositions of Sample No. 2 and subsequent samples, capacitors were also produced under the same conditions, and the electrical characteristics were measured under the same conditions.

表中、見掛は誘電率(ε)、誘電体損失(tanδ)は
、温度25℃にて周波数1 kHz、電圧1V71sで
測定した値であり、絶縁抵抗(IR>は、温度25℃に
て25Vの直流電圧を印加した15秒後の値であり、温
度特性(TC)は、温度20℃を基準とし、−25℃〜
85℃の温度範囲における最大容量変化率の値であり、
表中、上段は、最大容量増加率を示し、下段は、最大容
量減少率を示す。また、誘電率と絶縁破壊電圧との積(
gXBDV)は、1mm当りの誘電率と絶縁破壊電圧と
の積を示す。
In the table, the apparent dielectric constant (ε), the dielectric loss (tan δ) are the values measured at a temperature of 25°C, a frequency of 1 kHz, and a voltage of 1 V for 71 seconds, and the insulation resistance (IR>) is a value measured at a temperature of 25°C. This is the value 15 seconds after applying a DC voltage of 25V, and the temperature characteristics (TC) are based on a temperature of 20°C, and range from -25°C to
It is the value of the maximum capacity change rate in the temperature range of 85 ° C.
In the table, the upper row shows the maximum capacity increase rate, and the lower row shows the maximum capacity decrease rate. Also, the product of permittivity and dielectric breakdown voltage (
gXBDV) indicates the product of dielectric constant and dielectric breakdown voltage per mm.

なお、表中、試料番号の右上に示される*は、本発明の
範囲外の試料、すなわち、比較例であることを示す。
In addition, in the table, * shown in the upper right corner of the sample number indicates that it is a sample outside the scope of the present invention, that is, a comparative example.

本実施例の試料番号1〜4.6〜9.12〜14.17
〜19.22〜24及び27〜2つに示されるように、
本発明によれば、最大粒径が40〜70μmであり、誘
電体損失が0.5%以下であり、絶縁抵抗が1500M
Ω以上であり、温度特性が土15%の範囲内であり、か
つ、厚み当りの誘を率と絶縁破壊電圧との積が7.0X
IO’以上の粒界絶縁型半導体磁器組成物を得ることが
できる。
Sample numbers 1-4.6-9.12-14.17 of this example
~19. As shown in 22-24 and 27-2,
According to the present invention, the maximum grain size is 40 to 70 μm, the dielectric loss is 0.5% or less, and the insulation resistance is 1500 M.
Ω or more, the temperature characteristics are within the range of 15% of soil, and the product of dielectric constant per thickness and dielectric breakdown voltage is 7.0X
It is possible to obtain a grain boundary insulated semiconductor ceramic composition of IO' or higher.

一方、本発明の範囲外の試料番号5.10.x.15.
16.20.21.25.26.30においては、本発
明の目的を達成することができない。
On the other hand, sample number 5.10. outside the scope of the present invention. x. 15.
16.20.21.25.26.30, the object of the present invention cannot be achieved.

なお、本発明者らは、表中に示される実施例の組成に限
られず、特許請求の範囲に記載された組成範囲であれば
、本発明の範囲内の他の物質であっても本発明の効果を
得ることができることがわかっている。
The present inventors believe that the present invention is not limited to the compositions of the examples shown in the table, and even other substances within the scope of the present invention can be used as long as they are within the composition range described in the claims. It is known that this effect can be obtained.

[効果コ 本発明によれば、最大粒径を40〜70Jimに制御可
能であり、かつ、厚み当りの誘電率と絶縁破壊電圧との
積が大きい粒界絶縁型半導体磁器組成物およびその製造
方法を提供することができる。
[Effects] According to the present invention, a grain boundary insulated semiconductor ceramic composition in which the maximum grain size can be controlled to 40 to 70Jim and a product of the dielectric constant per thickness and the dielectric breakdown voltage is large, and a method for producing the same can be provided.

Claims (1)

【特許請求の範囲】 (1)一般式(Sr_1_−_x_−_zBa_xCa
_zM_y)Ti_lO_3+mN+nZ(但、Mは、
Nb、Ta、W、及び希土類元素のうち少なくとも1種
類、Nは、Mn、Al、及びSiのうち少なくとも1種
類、Zは、Ge、Feの一方又は両方)で表され、x、
y、z、l、m、nがそれぞれ 0.0001≦x≦0.05 0.001≦y≦0.03 0<z≦0.30 0.990≦l≦1.010 0.0001≦m≦0.01 0.001≦n≦0.03 の範囲にある半導体磁器の結晶粒界が、Cu、Bi、P
b、B、及びSiのうち少なくとも1種を含む化合物に
より絶縁された粒界絶縁型半導体磁器組成物。 (2)一般式(Sr_1_−_x_−_zBa_xCa
_zM_y)Ti_lO_3+mN+nZ(但、Mは、
Nb、Ta、W、及び希土類元素のうち少なくとも1種
類、Nは、Mn、Al、及びSiのうち少なくとも1種
類、Zは、Ge、Feの一方又は両方)で表され、x、
y、z、l、m、nがそれぞれ 0.0001≦x≦0.05 0.001≦y≦0.03 0<z≦0.30 0.990≦l≦1.010 0.0001≦m≦0.01 0.001≦n≦0.03 の範囲になるように配合した後、焼成することによって
半導体磁器を得る工程と、 前記工程によって得られた半導体磁器の結晶粒界をCu
、Bi、Pb、B、及びSiのうち少なくとも1種を含
む化合物を用いて絶縁化する工程とを有する粒界絶縁型
半導体磁器組成物の製造方法。
[Claims] (1) General formula (Sr_1_-_x_-_zBa_xCa
_zM_y) Ti_lO_3+mN+nZ (However, M is
Nb, Ta, W, and at least one of rare earth elements, N is at least one of Mn, Al, and Si, Z is one or both of Ge and Fe, x,
y, z, l, m, n are each 0.0001≦x≦0.05 0.001≦y≦0.03 0<z≦0.30 0.990≦l≦1.010 0.0001≦m The grain boundaries of semiconductor ceramics in the range of ≦0.01 0.001≦n≦0.03 are Cu, Bi, P
A grain boundary insulated semiconductor ceramic composition insulated by a compound containing at least one of B, B, and Si. (2) General formula (Sr_1_-_x_-_zBa_xCa
_zM_y) Ti_lO_3+mN+nZ (However, M is
Nb, Ta, W, and at least one of rare earth elements, N is at least one of Mn, Al, and Si, Z is one or both of Ge and Fe, x,
y, z, l, m, n are each 0.0001≦x≦0.05 0.001≦y≦0.03 0<z≦0.30 0.990≦l≦1.010 0.0001≦m ≦0.01 0.001≦n≦0.03 and then firing to obtain semiconductor porcelain; and Cu
, a step of insulating using a compound containing at least one of Bi, Pb, B, and Si.
JP2085248A 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same Expired - Fee Related JPH0761895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085248A JPH0761895B2 (en) 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085248A JPH0761895B2 (en) 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03285869A true JPH03285869A (en) 1991-12-17
JPH0761895B2 JPH0761895B2 (en) 1995-07-05

Family

ID=13853271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085248A Expired - Fee Related JPH0761895B2 (en) 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0761895B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147800A (en) * 1976-06-03 1977-12-08 Matsushita Electric Ind Co Ltd Semiconductor ceramic capacitor composite and its method of manufacturing
JPS5654026A (en) * 1979-10-09 1981-05-13 Murata Manufacturing Co Grain boundary insulating type semiconductor porcelain composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147800A (en) * 1976-06-03 1977-12-08 Matsushita Electric Ind Co Ltd Semiconductor ceramic capacitor composite and its method of manufacturing
JPS5654026A (en) * 1979-10-09 1981-05-13 Murata Manufacturing Co Grain boundary insulating type semiconductor porcelain composition

Also Published As

Publication number Publication date
JPH0761895B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JPS597665B2 (en) High dielectric constant porcelain composition
JPS6249977B2 (en)
JPS623569B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPH058524B2 (en)
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH03285869A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS6126208B2 (en)
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS5815078A (en) High dielectric constant ceramic dielectric composition
JPH03285871A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPH0571538B2 (en)
JPH03285872A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPH03285868A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPH03285867A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPS6342849B2 (en)
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH03274606A (en) Dielectric cramic composite
JPH09183651A (en) Dielectric ceramic composition and condenser using the same and production of the dielectric ceramic composition
JPS6133250B2 (en)
JPS6129531B2 (en)
JPH05345663A (en) Semiconductor ceramic and its production
JPS633442B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees