JPH03280312A - Optical fiber compound insulator - Google Patents

Optical fiber compound insulator

Info

Publication number
JPH03280312A
JPH03280312A JP2076711A JP7671190A JPH03280312A JP H03280312 A JPH03280312 A JP H03280312A JP 2076711 A JP2076711 A JP 2076711A JP 7671190 A JP7671190 A JP 7671190A JP H03280312 A JPH03280312 A JP H03280312A
Authority
JP
Japan
Prior art keywords
silicone rubber
optical fiber
hole
insulator
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2076711A
Other languages
Japanese (ja)
Other versions
JP2713796B2 (en
Inventor
Koji Ikeda
光司 池田
Tadashi Sugiura
忠司 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2076711A priority Critical patent/JP2713796B2/en
Publication of JPH03280312A publication Critical patent/JPH03280312A/en
Application granted granted Critical
Publication of JP2713796B2 publication Critical patent/JP2713796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4417High voltage aspects, e.g. in cladding
    • G02B6/442Insulators

Abstract

PURPOSE:To eliminate the generation of crack in a rubber by forming the inside of the through-hole of an insulator out of double layers of silicone rubber, e.g. one layer of silicone rubber of high elongation and low modulus, and the other of high elongation and high intensity, and by sealing them. CONSTITUTION:Optical fibers 3-1, 3-2 are prepared by applying a silane coupling agent and the like on the surface of a coated part, and by carrying out primer process. The optical fibers 3-1, 3-2 manufactured in a cylindrical form smaller than the diameter of a through-hole 2, are inserted into the through-hole and positioned, after primer process, and a silicone rubber of high elongation and low modulus, for forming a first silicone rubber layer 4-1, is filled therein and is hardened. After it is hardened, the silicone rubber drum in which the optical fibers 3-1, 3-2 are fixed, is positioned and is inserted into the through-hole 2, while the silicone rubber of high elongation and high intensity, for forming a second silicone rubber layer 4-2, is filled and hardened in between the outer periphery of the drum and an inner wall 2-1 of the through-hole 2, and an optical fiber compound insulator is thus obtained. A crack is not generated in the rubber, and insulating function of the insulator is ensured for a long time thereby.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、送配電線網および変電所等における故障点検
出システムを形成する場合に主として用いられる光ファ
イバ複合碍子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical fiber composite insulator that is mainly used when forming a fault detection system in power transmission and distribution lines, substations, and the like.

(従来の技術) 送配電線あるいは電力変電所では落雷事故等により送配
電線路あるいは変電所内に発生した故障点を速やかに検
知し、復旧するシステムの開発が望まれている。このた
め、従来、ファラデー効果、ポッケルス効果を持つ光セ
ンサーを利用した異常電流、異常電圧検出装置が使用さ
れている。
(Prior Art) There is a desire to develop a system for quickly detecting and restoring failure points that occur in power transmission and distribution lines or substations due to lightning accidents or the like. For this reason, conventionally, abnormal current and abnormal voltage detection devices have been used that utilize optical sensors having Faraday effect and Pockels effect.

これらの装置では、配電線に付けたセンサーと故障点検
出器は送電電圧、送電電流を絶縁する必要があるため、
碍子を仲介とした絶縁を実施する必要がある。従って、
光信号のみを電送し、電気的に絶縁性を保つために、光
ファイバを内蔵した光ファイバ複合碍子を使用する必要
がある。
In these devices, the sensors and fault point detectors attached to the distribution lines must be insulated from the transmission voltage and current.
It is necessary to perform insulation using an insulator as an intermediary. Therefore,
In order to transmit only optical signals and maintain electrical insulation, it is necessary to use an optical fiber composite insulator with built-in optical fibers.

この目的で使用される光ファイバ複合碍子としては、種
々のものが知られており、例えば、特開昭60−158
402号公報とか実開昭64−31620号公報におい
て、碍子の中心部に貫通孔を有し、この貫通孔の内部に
光ファイバを挿通したうえでエポキシ樹脂やシリコーン
ゴム等の絶縁物を貫通孔の全体もしくは部分に充填した
ものが知られている。
Various types of optical fiber composite insulators used for this purpose are known, for example,
In Publication No. 402 and Japanese Utility Model Application Publication No. 64-31620, the insulator has a through hole in the center, an optical fiber is inserted into the through hole, and an insulating material such as epoxy resin or silicone rubber is inserted into the through hole. It is known that the whole or part of the

(発明が解決しようとする課H) しかしながら、上述したエポキシ樹脂やシリコーンゴム
等の有機物を封着材に用いた光ファイバ複合碍子の場合
、以下の問題点があった。
(Problem H to be Solved by the Invention) However, in the case of the optical fiber composite insulator using the above-mentioned organic substance such as epoxy resin or silicone rubber as a sealing material, there are the following problems.

エポキシ樹脂もしくは高強度・低伸度シリコーンゴムの
ように、熱膨張が磁器に比べ10〜102倍も大きく、
かつヤング率の高い有機物を封着材に用いた場合、使用
環境中の気温変化に伴いこの封着材が膨脹収縮を繰り返
す際、光ファイバに大きな応力を繰り返しかかるため、
マイクロベンディング等による光ファイバの光伝送性能
の低下および短期間での光ファイバの断線が生じる問題
があった。
Thermal expansion is 10 to 102 times greater than that of porcelain, such as epoxy resin or high strength/low elongation silicone rubber.
When an organic substance with a high Young's modulus is used as a sealing material, large stress is repeatedly applied to the optical fiber when the sealing material repeatedly expands and contracts as the temperature changes in the usage environment.
There has been a problem in that the optical transmission performance of the optical fiber deteriorates due to microbending and the like, and the optical fiber breaks in a short period of time.

さらに、使用環境中の気温変化に伴いこの封着材が膨脹
収縮を繰り返す際、これらの封着材の内部に亀裂が発生
したり、封着材と磁器との接着界面で剥離が生じたりし
、その結果、碍子の絶縁性能が低下する問題があった。
Furthermore, when this sealing material expands and contracts repeatedly due to temperature changes in the usage environment, cracks may occur inside the sealing material or peeling may occur at the adhesive interface between the sealing material and the porcelain. As a result, there was a problem that the insulation performance of the insulator deteriorated.

ゲル状もしくはゲル状に近いゴムのように、熱膨張は磁
器に比べ大きいが、ヤング率の低い有機物を封着材に用
いた場合、使用環境中の気温変化に伴いこの封着材が膨
脹収縮を繰り返す際、光ファイバに大きな応力はかから
ないため、光伝送性能の低下や光ファイバの断線はなか
った。しかしながら、これら封着材は、磁器との接着性
に欠けるため封着材と磁器との接着界面の剥離が生じ、
その結果、碍子の絶縁性能が低下する問題があった。
Like gel-like or gel-like rubber, its thermal expansion is larger than that of porcelain, but when an organic material with a low Young's modulus is used as a sealing material, the sealing material expands and contracts as the temperature changes in the usage environment. When repeating this process, no large stress was applied to the optical fiber, so there was no decrease in optical transmission performance or breakage of the optical fiber. However, these sealing materials lack adhesiveness with porcelain, resulting in peeling of the adhesive interface between the sealing material and the porcelain.
As a result, there was a problem that the insulation performance of the insulator deteriorated.

本発明の目的は上述した課題を解消して、長期間にわた
り絶縁性能に優れ、かつ良好な光伝送性能と光ファイバ
の長寿命化を達成できる光ファイバ複合碍子を提供しよ
うとするものである。
An object of the present invention is to solve the above-mentioned problems and provide an optical fiber composite insulator that has excellent insulation performance over a long period of time, and can achieve good optical transmission performance and a long life of the optical fiber.

(課題を解決するための手段) 本発明の光ファイバ複合碍子は、碍子本体に貫通孔を設
け、その内部に少なくとも一本以上の光ファイバを挿通
してシリコーンゴムにより気密封着した光ファイバ複合
碍子において、前記光ファイバの周囲に、破断時の伸び
が500%以上で50%伸び時の引張応力が2kg/c
ta”以下の高伸度・低モジュラスの第1のシリコーン
ゴム層を設け、この第1のシリコーンゴム層と貫通孔の
内壁との間に、破断時の伸びが300%以上で引張強度
が30kg/ cm ’以上の高伸度・高強度の第2の
シリコーンゴム層を設けたことを特徴とするものである
(Means for Solving the Problems) The optical fiber composite insulator of the present invention is an optical fiber composite insulator in which a through hole is provided in the insulator body, and at least one or more optical fibers are inserted into the insulator body and hermetically sealed with silicone rubber. In the insulator, the elongation at break is 500% or more and the tensile stress at 50% elongation is 2 kg/c around the optical fiber.
A first silicone rubber layer with high elongation and low modulus of less than "ta" is provided, and between this first silicone rubber layer and the inner wall of the through hole, the elongation at break is 300% or more and the tensile strength is 30 kg. The second silicone rubber layer has a high elongation and high strength of 1/cm' or more.

(作 用) 上述した構成において、高伸度・低モジュラスの第1の
シリコーンゴム層を設けることにより、使用環境中の気
温変化に伴いシリコーンゴムが膨脹収縮する際に、光フ
ァイバにかかる応力が軽減される。その結果、光伝送性
能が向上する。加えて、光ファイバの疲労劣化を防ぐこ
とができ、光ファイバの長寿命化を達成することができ
る。
(Function) In the above configuration, by providing the first silicone rubber layer with high elongation and low modulus, stress applied to the optical fiber is reduced when the silicone rubber expands and contracts due to temperature changes in the usage environment. Reduced. As a result, optical transmission performance is improved. In addition, fatigue deterioration of the optical fiber can be prevented, and the life of the optical fiber can be extended.

また、高伸度・高強度の第2のシリコーンゴム層を設け
ることにより、このゴムと磁器が強固に接着し、かつ使
用環境中の気温変化に伴いこのゴムが膨脹収縮を繰り返
す際、ゴム内部に亀裂が発生したり、ゴムと磁器との接
着界面で剥離が生じたりすることがなくなる。その結果
、長期間にわたり、碍子の絶縁性能を維持することがで
きる。
In addition, by providing a second silicone rubber layer with high elongation and high strength, this rubber and porcelain firmly adhere, and when this rubber repeatedly expands and contracts due to temperature changes in the usage environment, the inside of the rubber This eliminates the occurrence of cracks in the rubber and the occurrence of peeling at the adhesive interface between the rubber and the porcelain. As a result, the insulation performance of the insulator can be maintained over a long period of time.

ここで、光ファイバの周囲の第1のシリコーンゴム層を
破断時の伸びが500%以上で50%伸び時の引張応力
が2kg/cu+”以下と限定し、第2のシリコーンゴ
ム層を破断時の伸びが300%以上で引張強度が30 
kg / cm ”以上と限定したのは、後述する実施
例から明らかなように、上述した所定の特性を有する第
1および第2のシリコーンゴム層の組合せでないと、本
発明で目的とする長期間にわたり絶縁性に優れかつ良好
な光伝送性能および長寿命の光ファイバを達成できない
ためである。
Here, the first silicone rubber layer around the optical fiber is limited to have an elongation at break of 500% or more and a tensile stress at 50% elongation of 2 kg/cu+'' or less, and the second silicone rubber layer is The elongation is 300% or more and the tensile strength is 30
kg/cm" or more is because, as is clear from the examples described later, unless the first and second silicone rubber layers have the above-mentioned predetermined characteristics, the long-term This is because it is not possible to achieve an optical fiber with excellent insulation properties, good optical transmission performance, and long life.

なお、高伸度・低モジュラスの第1のシリコーンゴム層
は、光ファイバの被覆部および高伸度・高強度の第2の
シリコーンゴム層と接着性を有することが望ましい。
Note that it is desirable that the first silicone rubber layer with high elongation and low modulus has adhesive properties with the coating portion of the optical fiber and the second silicone rubber layer with high elongation and high strength.

(実施例) 第1図は本発明の光ファイバ複合碍子の一例の構造を示
す図である。第1図に示す例では、碍子1の中心部に貫
通孔2を設け、その内部に2本の光ファイバ3−1.3
−2を挿通して、光ファイバ3−1および3−2の周囲
全体に高伸度・低モジュラスの第1のシリコーンゴム層
4−1を設けるとともに、この第1のシリコーンゴム層
4−1と貫通孔2の内壁2−1との間合体に高伸度・高
強度の第2のシリコーンゴム層4−2を設けた光ファイ
バ複合碍子を示している。この第1のシリコーンゴム層
4−1としては、破断時の伸びが500%以上で50%
伸び時の引張応力が2kg/csa!以下の特性を有す
るシリコーンゴム材料を選択するとともに、第2のシリ
コーンゴム層4−2としては、破断時の伸びが300%
以上で引張強度が30kg / cm ”以上の特性を
有するシリコーンゴム材料を選択する必要がある。
(Example) FIG. 1 is a diagram showing the structure of an example of the optical fiber composite insulator of the present invention. In the example shown in FIG. 1, a through hole 2 is provided in the center of the insulator 1, and two optical fibers 3-1.
-2 is inserted to provide a first silicone rubber layer 4-1 with high elongation and low modulus all around the optical fibers 3-1 and 3-2, and this first silicone rubber layer 4-1 An optical fiber composite insulator is shown in which a second silicone rubber layer 4-2 with high elongation and high strength is provided between the inner wall 2-1 of the through-hole 2 and the inner wall 2-1 of the through-hole 2. This first silicone rubber layer 4-1 has an elongation at break of 500% or more and 50%.
Tensile stress during elongation is 2kg/csa! A silicone rubber material having the following properties is selected, and the elongation at break is 300% for the second silicone rubber layer 4-2.
As described above, it is necessary to select a silicone rubber material having a tensile strength of 30 kg/cm'' or more.

上述した構造の光ファイバ複合碍子の製造方法の一例と
しては、まず、被覆部の表面にシランカップリング剤等
を塗布してプライマー処理を実施した光ファイバ3−1
.3−2を準備する。次に、貫通孔2の直径より小さい
直径を有する筒状の型に、準備したプライマー処理後の
光ファイバ3−1.3−2を位置決めして挿通し、第1
のシリコーンゴム層4−1を形成するための所定の特性
を有する高伸度・低モジュラスのシリコーンゴムを充填
して硬化させる。硬化後、光ファイバ3−1゜3−2を
内部に固定したシリコーンゴムの筒体を型から取り出す
。その後、光ファイバ3−1.3−2を内部に固定した
シリコーンゴムの筒体を貫通孔2内に位置決めして挿入
し、第2のシリコーンゴム層4−2を形成するための所
定の特性を有する高伸度・高強度のシリコーンゴムを、
筒体外周部と貫通孔2の内壁2−1との間に充填して硬
化させることにより、本発明の光ファイバ複合碍子を得
ている。
As an example of a method for manufacturing an optical fiber composite insulator having the above-described structure, first, an optical fiber 3-1 which has been subjected to primer treatment by applying a silane coupling agent or the like to the surface of the coating portion is prepared.
.. Prepare 3-2. Next, the prepared optical fiber 3-1.3-2 after primer treatment is positioned and inserted into a cylindrical mold having a diameter smaller than that of the through hole 2,
High elongation and low modulus silicone rubber having predetermined characteristics for forming the silicone rubber layer 4-1 is filled and cured. After curing, the silicone rubber cylinder with the optical fibers 3-1 and 3-2 fixed therein is removed from the mold. Thereafter, a silicone rubber cylinder with an optical fiber 3-1, 3-2 fixed therein is positioned and inserted into the through hole 2, and predetermined characteristics are determined to form a second silicone rubber layer 4-2. High elongation and high strength silicone rubber with
The optical fiber composite insulator of the present invention is obtained by filling and curing the space between the outer circumference of the cylinder and the inner wall 2-1 of the through hole 2.

以下、実際の例について説明する。An actual example will be explained below.

実施■ 上述した製造方法に従って、第1表に示すように、所定
の特性を有する第1のシリコーンゴム層と第2のシリコ
ーンゴム層とから、本発明の試験No、 1〜8と、比
較例の試験階、9〜12と、従来例の試験k13の光フ
ァイバ複合碍子を準備した。準備した光ファイバ複合碍
子に対し、光伝送損失量変化量と熱衝撃劣化試験後の故
障率を調査した。
Implementation ■ According to the above-mentioned manufacturing method, as shown in Table 1, from the first silicone rubber layer and the second silicone rubber layer having predetermined characteristics, test Nos. 1 to 8 of the present invention and comparative examples were prepared. Optical fiber composite insulators for test floors 9 to 12 and conventional test K13 were prepared. For the prepared optical fiber composite insulators, we investigated the amount of change in optical transmission loss and the failure rate after thermal shock deterioration tests.

光伝送損失量変化量は、−20°C〜80°Cの間の光
伝送損失量の変化量を各水準10個の平均値として求め
た。尚、光伝送損失量は挿入法により光ファイバ伝送損
失の測定により求めた。熱衝撃劣化試験後の故障率とし
て、高温槽80’C1低温槽−20℃との聞咎温度での
保持時間を30分としてヒートザイクル試験を実施し、
各水準10個のうち故障率O%のものを○、故障率lO
〜20%のものを△、故障率が30%以上のものを×と
して第3表中に表記した。なお、故障とは、光ファイバ
の破損もしくは光伝送損失量が50%以上になった場合
、または絶縁貫通破壊が生じた場合のことを示す。光伝
送損失量変化量の結果を第2表に、熱衝撃劣化試験後の
故障率の結果を第3表に示す。
The amount of change in optical transmission loss was determined by averaging the amount of change in optical transmission loss between -20° C. and 80° C. for 10 samples for each level. The amount of optical transmission loss was determined by measuring optical fiber transmission loss using the insertion method. As a failure rate after the thermal shock deterioration test, a heat cycle test was conducted with a holding time of 30 minutes at the temperature of the high temperature tank 80'C1 and the low temperature tank -20°C.
Among the 10 items of each level, those with a failure rate of 0% are ○, failure rate is lO
In Table 3, those with a failure rate of ~20% are marked as △, and those with a failure rate of 30% or more are marked as ×. Note that a failure refers to a case where the optical fiber is damaged or the amount of optical transmission loss becomes 50% or more, or a case where dielectric breakdown occurs. Table 2 shows the results of the amount of change in optical transmission loss, and Table 3 shows the results of the failure rate after the thermal shock deterioration test.

第 表 第 2 表 第 表 第2表および第3表の結果から、本発明の試験NO,1
〜8は比較例の試験Nα9〜12および従来例の試MN
a13と比較して、光伝送損失量変化量も良好で、熱衝
撃劣化試験後の故障率も良好であることがわかる。なお
、試験Nα11のように第1層に高強度・低伸度のゴム
を用いた場合はゴム内部に亀裂が発生するため絶縁貫通
破壊が生じる。また、試験階12のように第2層に低モ
ジュラスのゴムを用いた場合は、碍子との接着界面が弱
くなるため、接着界面での絶縁貫通破壊が生じる。
Table 2 From the results in Tables 2 and 3, test No. 1 of the present invention
-8 are tests Nα9-12 of comparative examples and test MN of conventional examples
It can be seen that compared to a13, the amount of change in optical transmission loss was also good, and the failure rate after the thermal shock deterioration test was also good. In addition, when rubber with high strength and low elongation is used for the first layer as in test Nα11, cracks occur inside the rubber, resulting in dielectric breakdown. Furthermore, when a low modulus rubber is used for the second layer as in test floor 12, the adhesive interface with the insulator becomes weak, resulting in dielectric breakdown at the adhesive interface.

(発明の効果) 上述したところから明らかなように、本発明の光ファイ
バ複合碍子によれば、碍子の貫通孔内をシリコーンゴム
で封着するにあたり、光ファイバの周囲に所定の高伸度
・低モジュラスの第1のシリコーンゴム層を形成し、さ
らにその外側に所定の高伸度・高強度の第2のシリコー
ンゴム層を形成しているため、シリコーンゴムと磁器が
強固に接着し、かつシリコーンゴムが温度変化により膨
張収縮する場合でも接着面のばくり及びゴム内部の亀裂
の発生がなく、碍子の絶縁性能が長期間にわたり保持さ
れる。さらにシリコーンゴムが温度変化により膨張収縮
する場合でも、光ファイバの疲労劣化を防ぐことができ
、その結果光伝送性能の向上、光ファイバの長寿命化を
達成することができる。
(Effects of the Invention) As is clear from the above, according to the optical fiber composite insulator of the present invention, when sealing the inside of the through hole of the insulator with silicone rubber, a predetermined high elongation layer is applied around the optical fiber. Since a first silicone rubber layer with a low modulus is formed, and a second silicone rubber layer with a predetermined high elongation and high strength is formed on the outside thereof, the silicone rubber and the porcelain are strongly bonded and Even when the silicone rubber expands and contracts due to temperature changes, the bonded surface does not peel or cracks occur inside the rubber, and the insulating performance of the insulator is maintained for a long period of time. Furthermore, even when silicone rubber expands and contracts due to temperature changes, fatigue deterioration of the optical fiber can be prevented, and as a result, optical transmission performance can be improved and the life of the optical fiber can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ファイバ複合碍子の一例の構造を示
す図である。 l・・・碍子       2・・・貫通孔3−1.3
−2・・・光ファイバ 4−1・・・第1のシリコーンゴム層 4−2・・・第2のシリコーンゴム層 手
FIG. 1 is a diagram showing the structure of an example of the optical fiber composite insulator of the present invention. l...Insulator 2...Through hole 3-1.3
-2... Optical fiber 4-1... First silicone rubber layer 4-2... Second silicone rubber layer

Claims (1)

【特許請求の範囲】[Claims] 1、碍子本体に貫通孔を設け、その内部に少なくとも一
本以上の光ファイバを挿通してシリコーンゴムにより気
密封着した光ファイバ複合碍子において、前記光ファイ
バの周囲に、破断時の伸びが500%以上で50%伸び
時の引張応力が2kg/cm^2以下の高伸度・低モジ
ュラスの第1のシリコーンゴム層を設け、この第1のシ
リコーンゴム層と貫通孔の内壁との間に、破断時の伸び
が300%以上で引張強度が30kg/cm^2以上の
高伸度・高強度の第2のシリコーンゴム層を設けたこと
を特徴とする光ファイバ複合碍子。
1. An optical fiber composite insulator in which a through hole is provided in the insulator body, at least one optical fiber is inserted into the inside of the insulator body, and hermetically sealed with silicone rubber. % or more and a tensile stress at 50% elongation of 2 kg/cm^2 or less, a high elongation/low modulus first silicone rubber layer is provided between the first silicone rubber layer and the inner wall of the through hole. An optical fiber composite insulator comprising a second silicone rubber layer with high elongation and high strength, which has an elongation at break of 300% or more and a tensile strength of 30 kg/cm^2 or more.
JP2076711A 1990-03-28 1990-03-28 Optical fiber composite insulator Expired - Lifetime JP2713796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076711A JP2713796B2 (en) 1990-03-28 1990-03-28 Optical fiber composite insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076711A JP2713796B2 (en) 1990-03-28 1990-03-28 Optical fiber composite insulator

Publications (2)

Publication Number Publication Date
JPH03280312A true JPH03280312A (en) 1991-12-11
JP2713796B2 JP2713796B2 (en) 1998-02-16

Family

ID=13613129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076711A Expired - Lifetime JP2713796B2 (en) 1990-03-28 1990-03-28 Optical fiber composite insulator

Country Status (1)

Country Link
JP (1) JP2713796B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334621A (en) * 2001-05-08 2002-11-22 Furukawa Electric Co Ltd:The Insulator incorporating optical fiber
CN103219108A (en) * 2013-04-19 2013-07-24 江苏神马电力股份有限公司 Manufacturing method of insulator
CN103247398A (en) * 2013-04-19 2013-08-14 江苏神马电力股份有限公司 Insulator
CN105047331A (en) * 2015-06-29 2015-11-11 浙江华高科技有限公司 Intelligent fiberglass pipe and preparation method thereof and insulator using fiber pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334621A (en) * 2001-05-08 2002-11-22 Furukawa Electric Co Ltd:The Insulator incorporating optical fiber
CN103219108A (en) * 2013-04-19 2013-07-24 江苏神马电力股份有限公司 Manufacturing method of insulator
CN103247398A (en) * 2013-04-19 2013-08-14 江苏神马电力股份有限公司 Insulator
CN103219108B (en) * 2013-04-19 2016-02-24 江苏神马电力股份有限公司 Insulator manufacture method
CN105047331A (en) * 2015-06-29 2015-11-11 浙江华高科技有限公司 Intelligent fiberglass pipe and preparation method thereof and insulator using fiber pipe

Also Published As

Publication number Publication date
JP2713796B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US4212696A (en) Method of making an organic composite electrical insulator system
US4267403A (en) Electric line insulator made of organic material and having an inner semi-conductive part extending between end anchor fittings
US4246696A (en) Process for manufacturing open-air compound insulators
KR970004559B1 (en) Optical fiber composite insulator and method of producing the same
US10680420B2 (en) Joint for electric cables with thermoplastic insulation and method for manufacturing the same
KR960015429B1 (en) Optical fiber-containing insulators and process for producing the same
JPH03280312A (en) Optical fiber compound insulator
US2945776A (en) Potting composition and process
JPH03280311A (en) Optical fiber compound insulator
JPH0312411B2 (en)
JP3004803B2 (en) Optical fiber composite insulator and manufacturing method thereof
JPH03276522A (en) Optical fiber composite insulator and its manufacture
JPH02158018A (en) Optical fiber composite insulator
CN112505504A (en) Method for manufacturing main insulation layer cavity defect model of distribution cable body
JPH0378728B2 (en)
JPH02256004A (en) Optical fiber-combined insulator and production thereof
JPH0456410B2 (en)
CN210777985U (en) Flexible high-temperature-resistant transmission signal cable
CN114284982A (en) Device for mounting dislocation defect of stress cone in 10kV distribution cable intermediate joint
RU6595U1 (en) ELECTRIC INSULATION FITTING
JPH0159561B2 (en)
JPH05258629A (en) Non-ceramic insulator
JPH07192929A (en) Molding material for electrical equipment, molding method and molded electrical equipment utilizing molding method
JP3037815B2 (en) Optical fiber composite insulator and its manufacturing method
JPH0673252B2 (en) Bushing