JP2713796B2 - Optical fiber composite insulator - Google Patents
Optical fiber composite insulatorInfo
- Publication number
- JP2713796B2 JP2713796B2 JP2076711A JP7671190A JP2713796B2 JP 2713796 B2 JP2713796 B2 JP 2713796B2 JP 2076711 A JP2076711 A JP 2076711A JP 7671190 A JP7671190 A JP 7671190A JP 2713796 B2 JP2713796 B2 JP 2713796B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- silicone rubber
- elongation
- rubber layer
- fiber composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4416—Heterogeneous cables
- G02B6/4417—High voltage aspects, e.g. in cladding
- G02B6/442—Insulators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Insulators (AREA)
- Light Guides In General And Applications Therefor (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、送配電線網および変電所等における故障点
検出システムを形成する場合に主として用いられる光フ
ァイバ複合碍子に関するものである。Description: TECHNICAL FIELD The present invention relates to an optical fiber composite insulator mainly used for forming a fault point detection system in a transmission and distribution network, a substation, and the like.
(従来の技術) 送配電線あるいは電力変電所は落雷事故等により送配
電線路あるいは変電所内に発生した故障点を速やかに検
知し、復旧するシステムの開発が望まれている。このた
め、従来、ファラデー効果、ポッケルス効果を持つ光セ
ンサーを利用した異常電流、異常電圧検出装置が使用さ
れている。(Prior Art) It is desired to develop a system for quickly detecting and recovering from a fault in a transmission / distribution line or a substation due to a lightning strike or the like in a transmission / distribution line or a power substation. For this reason, conventionally, an abnormal current and abnormal voltage detecting device using an optical sensor having a Faraday effect and a Pockels effect has been used.
これらの装置では、配電線に付けたセンサーと故障点
検出器は送電電圧、送電電流を絶縁する必要があるた
め、碍子を仲介とした絶縁を実施する必要がある。従っ
て、光信号のみを伝送し、電気的に絶縁性を保つため
に、光ファイバを内蔵した光ファイバ複合碍子を使用す
る必要がある。In these devices, the sensor attached to the distribution line and the fault point detector need to insulate the transmission voltage and transmission current, and therefore, it is necessary to perform insulation via an insulator. Therefore, it is necessary to use an optical fiber composite insulator having a built-in optical fiber in order to transmit only an optical signal and maintain electrical insulation.
この目的で使用される光ファイバ複合碍子としては、
種々のものが知られており、例えば、特開昭60-158402
号公報とか実開昭64-31620号公報において、碍子の中心
部に貫通孔を有し、この貫通孔の内部に光ファイバを挿
通したうえでエポキシ樹脂やシリコーンゴム等の絶縁物
を貫通孔の全体もしくは部分に充填したものが知られて
いる。Optical fiber composite insulators used for this purpose include:
Various things are known, for example, JP-A-60-158402
In the gazette of Japanese Unexamined Patent Application Publication No. 64-31620, there is a through hole in the center of the insulator, and an optical fiber is inserted inside the through hole, and an insulator such as epoxy resin or silicone rubber is passed through the through hole. It is known to fill the whole or part.
(発明が解決しようとする課題) しかしながら、上述したエポキシ樹脂やシリコーンゴ
ム等の有機物を封着材に用いた光ファイバ複合碍子の場
合、以下の問題点があった。(Problems to be Solved by the Invention) However, in the case of the optical fiber composite insulator using the above-described organic material such as epoxy resin or silicone rubber as a sealing material, there are the following problems.
エポキシ樹脂もしくは高強度・低伸度シリコーンゴム
のように、熱膨脹が磁器に比べ10〜102倍も大きく、か
つヤング率の高い有機物を封着材に用いた場合、使用環
境中の気温変化に伴いこの封着材が膨脹収縮を繰り返す
際、光ファイバに大きな応力が繰り返しかかるため、マ
イクロベンディング等による光ファイバの光伝送性能の
低下および短期間での光ファイバの断線が生じる問題が
あった。As the epoxy resin or high-strength and low elongation silicone rubber, 10 to 10 2 times the thermal expansion is compared with the porcelain is large, and the case of using a high Young's modulus organic material sealing material, the temperature change of use environment In addition, when the sealing material repeatedly expands and contracts, a large stress is repeatedly applied to the optical fiber, so that the optical transmission performance of the optical fiber is deteriorated due to microbending or the like, and the optical fiber is disconnected in a short period of time.
さらに、使用環境中の気温変化に伴いこの封着材が膨
脹収縮を繰り返す際、これらの封着材の内部に亀裂が発
生したり、封着材と磁器との接着界面で剥離が生じたり
し、その結果、碍子の絶縁性能が低下する問題があっ
た。Furthermore, when the sealing material repeatedly expands and contracts due to a change in temperature in the use environment, cracks may occur inside the sealing material, or peeling may occur at the bonding interface between the sealing material and the porcelain. As a result, there is a problem that the insulation performance of the insulator is reduced.
ゲル状もしくはゲル状に近いゴムのように、熱膨脹は
磁器に比べ大きいが、ヤング率の低い有機物を封着材に
用いた場合、使用環境中の気温変化に伴いこの封着材が
膨脹収縮を繰り返す際、光ファイバに大きな応力はかか
らないため、光伝送性能の低下や光ファイバの断線はな
かった。しかしながら、これら封着材は、磁器との接着
性に欠けるため封着材と磁器との接着界面の剥離が生
じ、その結果、碍子の絶縁性能が低下する問題があっ
た。Although thermal expansion is larger than that of porcelain, such as rubber in the form of gel or near gel, the use of organic materials with a low Young's modulus as a sealing material causes the sealing material to expand and contract due to temperature changes in the usage environment. At the time of repetition, no large stress was applied to the optical fiber, so that there was no decrease in optical transmission performance and no disconnection of the optical fiber. However, since these sealing materials lack adhesion to porcelain, the adhesion interface between the sealing material and porcelain is peeled off, and as a result, there has been a problem that the insulation performance of the insulator is reduced.
本発明の目的は上述した課題を解消して、長期間にわ
たり絶縁性能に優れ、かつ良好な光伝送性能と光ファイ
バの長寿命化を達成できる光ファイバ複合碍子を提供し
ようとするものである。An object of the present invention is to solve the above-mentioned problems and to provide an optical fiber composite insulator which is excellent in insulation performance over a long period of time, and which can achieve good optical transmission performance and long life of an optical fiber.
(課題を解決するための手段) 本発明の光ファイバ複合碍子は、碍子本体に貫通孔を
設け、その内部に少なくとも一本以上の光ファイバを挿
通してシリコーンゴムにより気密封着した光ファイバ複
数碍子において、前記光ファイバの周囲に、破断時の伸
びが500%以上で50%伸び時の引張応力が2kg/cm2以下の
高伸度・低モジュラスの第1のシリコーンゴム層を設
け、この第1のシリコーンゴム層と貫通孔の内壁との間
に、破断時の伸びが300%以上で引張強度が30kg/cm2以
上の高伸度・高強度の第2のシリコーンゴム層を設けた
ことを特徴とするものである。(Means for Solving the Problems) An optical fiber composite insulator according to the present invention comprises a plurality of optical fibers which are provided with a through hole in an insulator main body, at least one or more optical fibers are inserted therein, and hermetically sealed with silicone rubber. In the insulator, a first silicone rubber layer having a high elongation and a low modulus and having an elongation at break of 500% or more and a tensile stress at 50% elongation of 2 kg / cm 2 or less is provided around the optical fiber. Between the first silicone rubber layer and the inner wall of the through hole, a second silicone rubber layer having a high elongation and a high strength having an elongation at break of 300% or more and a tensile strength of 30 kg / cm 2 or more was provided. It is characterized by the following.
(作用) 上述した構成において、高伸度・低モジュラスの第1
のシリコーンゴム層を設けることにより、使用環境中の
気温変化に伴いシリコーンゴムが膨脹収縮する際に、光
ファイバにかかる応力が軽減される。その結果、光伝送
性能が向上する。加えて、光ファイバの疲労劣化を防ぐ
ことができ、光ファイバの長寿命化を達成することがで
きる。(Operation) In the configuration described above, the first material having high elongation and low modulus may be used.
By providing the silicone rubber layer, the stress applied to the optical fiber when the silicone rubber expands and contracts due to a temperature change in the use environment is reduced. As a result, optical transmission performance is improved. In addition, fatigue deterioration of the optical fiber can be prevented, and the life of the optical fiber can be extended.
また、高伸度・高強度の第2のシリコーンゴム層を設
けることにより、このゴムと磁器が強固に接着し、かつ
使用環境中の気温変化に伴いこのゴムが膨脹収縮を繰り
返す際、ゴム内部に亀裂が発生したり、ゴムと磁器との
接着界面で剥離が生じたりすることがなくなる。その結
果、長期間にわたり、碍子の絶縁性能を維持することが
できる。In addition, by providing a second silicone rubber layer having high elongation and high strength, the rubber and the porcelain are firmly adhered to each other. Cracks or peeling off at the bonding interface between rubber and porcelain. As a result, the insulation performance of the insulator can be maintained for a long time.
ここで、光ファイバの周囲の第1のシリコーンゴム層
を破断時の伸びが500%以上で50%伸び時の引張応力が2
kg/cm2以下と限定し、第2のシリコーンゴム層を破断時
の伸びが300%以上で引張強度が30kg/cm2以上と限定し
たのは、後述する実施例から明らかなように、上述した
所定の特性を有する第1および第2のシリコーンゴム層
の組合せでないと、本発明で目的とする長期間にわたり
絶縁性に優れかつ良好な光伝送性能および長寿命の光フ
ァイバを達成できないためである。Here, the first silicone rubber layer around the optical fiber has an elongation at break of 500% or more and a tensile stress at 50% elongation of 2%.
kg / cm 2 or less, and the elongation at break of the second silicone rubber layer was limited to 300% or more and the tensile strength was limited to 30 kg / cm 2 or more. Without the combination of the first and second silicone rubber layers having the predetermined characteristics described above, it is impossible to achieve an optical fiber having excellent insulation properties over a long period of time, good optical transmission performance, and long life as intended in the present invention. is there.
なお、高伸度・低モジュラスの第1のシリコーンゴム
層は、光ファイバの被覆部および高伸度・高強度の第2
シリコーンゴム層と接着性を有することが望ましい。The first silicone rubber layer having high elongation and low modulus is formed of a coating portion of the optical fiber and a second silicone rubber layer having high elongation and high strength.
It is desirable to have adhesiveness with the silicone rubber layer.
(実施例) 第1図は本発明の光ファイバ複合碍子の一例の構造を
示す図である。第1図に示す例では、碍子1の中心部に
貫通孔2を設け、その内部に2本の光ファイバ3−1,3
−2を挿通して、光ファイバ3−1および3−2の周囲
全体に高伸度・低モジュラスの第1のシリコーンゴム層
4−1を設けるとともに、この第1のシリコーンゴム層
4−1と貫通孔2の内壁2−1との間全体に高伸度・高
強度の第2のシリコーンゴム層4−2を設けた光ファイ
バ複合碍子を示している。この第1のシリコーンゴム層
4−1としては、破断時の伸びが500%以上で50%伸び
時の引張応力が2kg/cm2以下の特性を有するシリコーン
ゴム材料を選択するとともに、第2のシリコーンゴム層
4−2としては、破断時の伸びが300%以上で引張強度
が30kg/cm2以上の特性を有するシリコーンゴム材料を選
択する必要がある。(Embodiment) FIG. 1 is a view showing a structure of an example of an optical fiber composite insulator of the present invention. In the example shown in FIG. 1, a through hole 2 is provided at the center of the insulator 1 and two optical fibers 3-1 and 3 are provided therein.
-2, the first silicone rubber layer 4-1 having high elongation and low modulus is provided all around the optical fibers 3-1 and 3-2, and the first silicone rubber layer 4-1 is provided. 2 shows an optical fiber composite insulator in which a high elongation and high strength second silicone rubber layer 4-2 is provided entirely between the inner wall 2-1 of the through hole 2 and the inner wall 2-1. As the first silicone rubber layer 4-1, a silicone rubber material having a property of elongation at break of 500% or more and a tensile stress at 50% elongation of 2 kg / cm 2 or less is selected. As the silicone rubber layer 4-2, it is necessary to select a silicone rubber material having an elongation at break of 300% or more and a tensile strength of 30 kg / cm 2 or more.
上述した構造の光ファイバ複合碍子の製造方法に一例
としては、まず、被覆部の表面にシランカップリング剤
等を塗布してプライマー処理を実施した光ファイバ3−
1,3−2を準備する。次に、貫通孔2の直径より小さい
直径を有する筒状の型に、準備したプライマー処理後の
光ファイバ3−1,3−2を位置決めして挿通し、第1の
シリコーンゴム層4−1を形成するための所定の特性を
有する高伸度・低モジュラスのシリコーンゴムを充填し
て硬化させる。硬化後、光ファイバ3−1,3−2を内部
に固定したシリコーンゴムの筒体を型から取り出す。そ
の後、光ファイバ3−1,3−2を内部に固定したシリコ
ーンゴムの筒体を貫通孔2内に位置決めして挿入し、第
2のシリコーンゴム層4−2を形成するための所定の特
性を有する高伸度・高強度のシリコーンゴムを、筒体外
周部と貫通孔2の内壁2−1との間に充填して硬化させ
ることにより、本発明の光ファイバ複合碍子を得てい
る。As an example of a method of manufacturing the optical fiber composite insulator having the above-described structure, first, a silane coupling agent or the like is applied to the surface of the coated portion and a primer treatment is performed on the optical fiber.
Prepare 1,3-2. Next, the prepared primer-treated optical fibers 3-1 and 3-2 are positioned and inserted into a cylindrical mold having a diameter smaller than the diameter of the through-hole 2, thereby forming the first silicone rubber layer 4-1. Is filled and cured with a high elongation, low modulus silicone rubber having predetermined properties. After curing, the silicone rubber cylinder in which the optical fibers 3-1 and 3-2 are fixed is taken out of the mold. Then, a predetermined characteristic for forming the second silicone rubber layer 4-2 by inserting and positioning the silicone rubber cylinder in which the optical fibers 3-1 and 3-2 are fixed inside the through hole 2 is inserted. The optical fiber composite insulator of the present invention is obtained by filling and curing silicone rubber having high elongation and high strength between the outer peripheral portion of the cylindrical body and the inner wall 2-1 of the through hole 2.
以下、実際の例について説明する。 Hereinafter, an actual example will be described.
実施例 上述した製造方法に従って、第1表に示すように、所
定の特性を有する第1のシリコーンゴム層と第2のシリ
コーンゴム層とから、本発明の試験No.1〜8と、比較例
の試験No.9〜12と、従来例の試験No.13の光ファイバ複
合碍子を準備した。準備した光ファイバ複合碍子に対
し、光伝送損失量変化量と熱衝撃劣化試験後の故障率を
調査した。Examples According to the above-described manufacturing method, as shown in Table 1, a first silicone rubber layer and a second silicone rubber layer having predetermined characteristics were used to prepare Test Nos. 1 to 8 of the present invention and Comparative Examples. Test Nos. 9 to 12 and the optical fiber composite insulator of Test No. 13 of the conventional example were prepared. For the prepared optical fiber composite insulator, the amount of change in optical transmission loss and the failure rate after thermal shock deterioration test were investigated.
光伝送損失量変化量は、−20℃〜80℃の間の光伝送損
失量の変化量を各水準10個の平均値として求めた。尚、
光伝送損失量は挿入法により光ファイバ伝送損失の測定
により求めた。熱衝撃劣化試験後の故障率として、高温
槽80℃、低温槽−20℃との間各温度での保持時間を30分
としてヒートサイクル試験を実施し、各水準10個のうち
故障率0%のものを○、故障率10〜20%のものを△、故
障率が30%以上のものを×として第3表中に表記した。
なお、故障とは、光ファイバの破損もしくは光伝送損失
量が50%以上になった場合、または絶縁貫通破壊が生じ
た場合のことを示す。光伝送損失量変化量の結果を第2
表に、熱衝撃劣化試験後の故障率の結果を第3表に示
す。The amount of change in the amount of optical transmission loss was obtained by averaging the amount of change in the amount of optical transmission loss between −20 ° C. and 80 ° C. for 10 levels. still,
The optical transmission loss was obtained by measuring the optical fiber transmission loss by the insertion method. As a failure rate after the thermal shock deterioration test, a heat cycle test was performed with the holding time at each temperature between the high temperature chamber 80 ° C and the low temperature chamber -20 ° C being 30 minutes. In Table 3, ○ indicates that the failure rate was 10% to 20%, and X indicates that the failure rate was 30% or more.
Note that a failure indicates that the optical fiber is damaged or the optical transmission loss is 50% or more, or that a dielectric breakdown occurs. The result of the optical transmission loss change is
Table 3 shows the results of the failure rate after the thermal shock deterioration test.
第2表および第3表の結果から、本発明の試験No.1〜
8は比較例の試験No.9〜12および従来例の試験No.13と
比較して、光伝送損失量変化量も良好で、熱衝撃劣化試
験後の故障率も良好であることがわかる。なお、試験N
o.11のように第2層に高強度・低伸度のゴムを用いた場
合はゴム内部に亀裂が発生するため絶縁貫通破壊が生じ
る。また、試験No.12のように第2層に低モジュラスの
ゴムを用いた場合は、碍子との接着界面が弱くなるた
め、接着界面での絶縁貫通破壊が生じる。 From the results in Tables 2 and 3, the test Nos. 1 to
As compared with Test Nos. 9 to 12 of the comparative example and Test No. 13 of the conventional example, Sample No. 8 has a good change amount of the optical transmission loss and a good failure rate after the thermal shock deterioration test. Test N
When high-strength, low-elongation rubber is used for the second layer as shown in o.11, cracks are generated inside the rubber, causing insulation penetration breakdown. When low-modulus rubber is used for the second layer as in Test No. 12, the bonding interface with the insulator is weakened, and dielectric breakdown occurs at the bonding interface.
(発明の効果) 上述したところから明らかなように、本発明の光ファ
イバ複合碍子によれば、碍子の貫通孔内をシリコーンゴ
ムで封着するにあたり、光ファイバの周囲に所定の高伸
度・低モジュラスの第1のシリコーンゴム層を形成し、
さらにその外側に所定の高伸度・高強度の第2のシリコ
ーンゴム層を形成しているため、シリコーンゴムと磁器
が強固に接着し、かつシリコーンゴムが温度変化により
膨脹収縮する場合でも接着面のはくり及びゴム内部の亀
裂の発生がなく、碍子の絶縁性能が長期間にわたり保持
される。さらにシリコーンゴムが温度変化により膨張収
縮する場合でも、光ファイバの疲労劣化を防ぐことがで
き、その結果光伝送性能の向上、光ファイバの長寿命化
を達成することができる。(Effects of the Invention) As is clear from the above description, according to the optical fiber composite insulator of the present invention, when sealing the inside of the through hole of the insulator with silicone rubber, a predetermined high elongation around the optical fiber is obtained. Forming a first silicone rubber layer of low modulus;
Further, since the second silicone rubber layer having a predetermined high elongation and high strength is formed on the outer side, the silicone rubber and the porcelain are firmly adhered to each other, and even when the silicone rubber expands and contracts due to a temperature change, the adhesive surface is formed. There is no peeling and no cracks inside the rubber, and the insulation performance of the insulator is maintained for a long time. Further, even when the silicone rubber expands and contracts due to a change in temperature, fatigue deterioration of the optical fiber can be prevented, and as a result, the optical transmission performance can be improved and the life of the optical fiber can be extended.
第1図は本発明の光ファイバ複合碍子の一例の構造を示
す図である。 1……碍子、2……貫通孔 3−1,3−2……光ファイバ 4−1……第1のシリコーンゴム層 4−2……第2のシリコーンゴム層FIG. 1 is a view showing the structure of an example of the optical fiber composite insulator of the present invention. DESCRIPTION OF SYMBOLS 1 ... Insulator 2 ... Through-hole 3-1 and 3-2 ... Optical fiber 4-1 ... 1st silicone rubber layer 4-2 ... 2nd silicone rubber layer
Claims (1)
くとも一本以上の光ファイバを挿通してシリコーンゴム
により気密封着した光ファイバ複合碍子において、前記
光ファイバの周囲に、破断時の伸びが500%以上で50%
伸び時の引張応力が2kg/cm2以下の高伸度・低モジュラ
スの第1のシリコーンゴム層を設け、この第1のシリコ
ーンゴム層と貫通孔の内壁との間に、破断時の伸びが30
0%以上で引張強度が30kg/cm2以上の高伸度・高強度の
第2のシリコーンゴム層を設けたことを特徴とする光フ
ァイバ複合碍子。An optical fiber composite insulator in which a through hole is provided in an insulator body, at least one or more optical fibers are inserted therein, and hermetically sealed with silicone rubber, is provided around the optical fiber at the time of breakage. 50% when elongation is 500% or more
A high elongation / low modulus first silicone rubber layer having a tensile stress of 2 kg / cm 2 or less at the time of elongation is provided, and the elongation at break between the first silicone rubber layer and the inner wall of the through hole is provided. 30
An optical fiber composite insulator provided with a high elongation and high strength second silicone rubber layer having a tensile strength of 30 kg / cm 2 or more at 0% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2076711A JP2713796B2 (en) | 1990-03-28 | 1990-03-28 | Optical fiber composite insulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2076711A JP2713796B2 (en) | 1990-03-28 | 1990-03-28 | Optical fiber composite insulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03280312A JPH03280312A (en) | 1991-12-11 |
JP2713796B2 true JP2713796B2 (en) | 1998-02-16 |
Family
ID=13613129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2076711A Expired - Lifetime JP2713796B2 (en) | 1990-03-28 | 1990-03-28 | Optical fiber composite insulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2713796B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3802776B2 (en) * | 2001-05-08 | 2006-07-26 | 古河電気工業株式会社 | Optical fiber built-in insulator |
CN103219108B (en) * | 2013-04-19 | 2016-02-24 | 江苏神马电力股份有限公司 | Insulator manufacture method |
CN103247398B (en) * | 2013-04-19 | 2016-04-27 | 江苏神马电力股份有限公司 | Insulator |
CN105047331A (en) * | 2015-06-29 | 2015-11-11 | 浙江华高科技有限公司 | Intelligent fiberglass pipe and preparation method thereof and insulator using fiber pipe |
-
1990
- 1990-03-28 JP JP2076711A patent/JP2713796B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03280312A (en) | 1991-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7683262B2 (en) | Power transmission conductor for an overhead line | |
US4246696A (en) | Process for manufacturing open-air compound insulators | |
CA2000711C (en) | Optical fiber composite insulator and method of producing the same | |
US3672712A (en) | Structure for connecting attachments to fiberglass rods | |
US4984860A (en) | Optical fiber-containing insulators and producing process thereof | |
JP2713796B2 (en) | Optical fiber composite insulator | |
US4757159A (en) | High-voltage electric cable termination | |
WO1999063377A1 (en) | High voltage insulator for optical fibers | |
US3878321A (en) | High voltage electric insulator termination constructions | |
CN111580229B (en) | Lightning protection optical cable | |
JPH0664955B2 (en) | Optical fiber composite insulator | |
CN108899659B (en) | Sealed electric connector and manufacturing method thereof | |
CN115472334A (en) | Flexible anti-fracture intelligent patrol photoelectric composite cable | |
JP3004803B2 (en) | Optical fiber composite insulator and manufacturing method thereof | |
JPH0628123B2 (en) | Optical fiber composite insulator and method of manufacturing the same | |
JP2002538506A (en) | Optical fiber equipment | |
KR100337699B1 (en) | Optical fiber composite ground wire | |
JPH0378728B2 (en) | ||
JP3004801B2 (en) | Manufacturing method of optical fiber composite insulator | |
JPH05258629A (en) | Non-ceramic insulator | |
CN212570485U (en) | Photoelectric hybrid cable with high tensile resistance and capability of monitoring water seepage | |
JPH02158018A (en) | Optical fiber composite insulator | |
JP3037815B2 (en) | Optical fiber composite insulator and its manufacturing method | |
JPH02256004A (en) | Optical fiber-combined insulator and production thereof | |
US6680439B2 (en) | Composite electrical insulator having an outer coating and at least one optical fiber compatible therewith |