JP3037815B2 - Optical fiber composite insulator and its manufacturing method - Google Patents

Optical fiber composite insulator and its manufacturing method

Info

Publication number
JP3037815B2
JP3037815B2 JP4065276A JP6527692A JP3037815B2 JP 3037815 B2 JP3037815 B2 JP 3037815B2 JP 4065276 A JP4065276 A JP 4065276A JP 6527692 A JP6527692 A JP 6527692A JP 3037815 B2 JP3037815 B2 JP 3037815B2
Authority
JP
Japan
Prior art keywords
insulator
optical fiber
hole
organic
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4065276A
Other languages
Japanese (ja)
Other versions
JPH05264823A (en
Inventor
光司 池田
竜一 峯
政行 野崎
忠司 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4065276A priority Critical patent/JP3037815B2/en
Priority to US08/033,751 priority patent/US5339381A/en
Priority to EP93302105A priority patent/EP0562778A2/en
Priority to CA002092170A priority patent/CA2092170A1/en
Publication of JPH05264823A publication Critical patent/JPH05264823A/en
Priority to US08/177,549 priority patent/US5538574A/en
Application granted granted Critical
Publication of JP3037815B2 publication Critical patent/JP3037815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4417High voltage aspects, e.g. in cladding
    • G02B6/442Insulators

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ複合碍子及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber composite insulator and a method for manufacturing the same.

【0002】[0002]

【従来の技術】送配電線あるいは電力変電所では、落雷
事故等により送配電線路や変電所内に発生した故障点を
速やかに検知し、復旧するシステムが必要である。この
ために、ファラディー効果、ポッケルス効果を持つ光セ
ンサーを利用した異常電流、異常電圧検出装置が使用さ
れている。これらの装置では、配電線に付したセンサー
と故障点検出器との間で、送電電圧、送電電流を絶縁す
る必要がある。このため、光信号のみを伝送し、電気的
に絶縁性を保ために、光ファイバを内蔵した光ファイバ
複合碍子が使用されている。
2. Description of the Related Art In transmission lines and power substations, there is a need for a system for quickly detecting and restoring a fault point occurring in a transmission line or a substation due to a lightning strike or the like. For this purpose, an abnormal current and abnormal voltage detecting device using an optical sensor having a Faraday effect and a Pockels effect is used. In these devices, it is necessary to insulate the transmission voltage and transmission current between the sensor attached to the distribution line and the fault point detector. For this reason, an optical fiber composite insulator having a built-in optical fiber is used to transmit only an optical signal and maintain electrical insulation.

【0003】実開昭64−31620 号公報で提案された光フ
ァイバ複合碍子においては、細長い碍子本体に貫通孔を
設け、貫通孔に光ファイバを挿通し、かつこの貫通孔に
有機絶縁物を充填し、更に碍子本体の端面から有機絶縁
物を盛り上がせている。これは、有機絶縁物の隆起部分
によって、有機絶縁物の膨張を吸収し、有機絶縁物自身
の飛び出しや、これに伴う光ファイバの断線を防ぐため
である。そして、高温時には有機絶縁物の膨張量が大き
いことから、できるだけ多く膨張を吸収するため、有機
絶縁物を大きく、高く盛り上げるのが普通である。
In an optical fiber composite insulator proposed in Japanese Utility Model Application Publication No. 64-31620, a through hole is provided in an elongated insulator main body, an optical fiber is inserted into the through hole, and the through hole is filled with an organic insulator. Further, the organic insulator is raised from the end face of the insulator body. This is for the purpose of absorbing the expansion of the organic insulator by the raised portion of the organic insulator, and preventing the organic insulator itself from jumping out and the optical fiber being disconnected due to this. Since the amount of expansion of the organic insulator is large at a high temperature, the expansion of the organic insulator is usually large and raised to absorb the expansion as much as possible.

【0004】[0004]

【発明が解決しようとする課題】しかし、こうした光フ
ァイバ複合碍子において、特に低温で光伝送損失が増大
するという問題が生じた。また、長期にわたる温度変化
を受けることで、有機絶縁物からなる隆起部と碍子本体
の端面との接着界面で接着力が低下するという問題があ
った。
However, such an optical fiber composite insulator has a problem that optical transmission loss increases particularly at low temperatures. In addition, there has been a problem in that the adhesive force is reduced at the adhesive interface between the raised portion made of an organic insulator and the end face of the insulator main body due to a long-term temperature change.

【0005】本発明の課題は、有機絶縁物で光ファイバ
を封着する型の光ファイバ複合碍子において、低温での
光伝送損失を低減することである。また有機絶縁物から
なる隆起部と碍子本体の端面との接着界面における剥離
を防止することである。更に、こうした光ファイバ複合
碍子を、光ファイバの伝送特性への悪影響なしに効率良
く生産することである。
An object of the present invention is to reduce optical transmission loss at low temperatures in an optical fiber composite insulator in which an optical fiber is sealed with an organic insulator. Another object of the present invention is to prevent peeling at the bonding interface between the raised portion made of an organic insulator and the end face of the insulator main body. Another object of the present invention is to efficiently produce such an optical fiber composite insulator without adversely affecting the transmission characteristics of the optical fiber.

【0006】[0006]

【課題を解決するための手段】本発明は、貫通孔が設け
られた碍子本体と、この貫通孔に挿通された一本以上の
光ファイバとを備え、前記貫通孔が有機絶縁物によって
充填され、前記碍子本体の端面から盛り上がった隆起部
が有機絶縁物によって形成され、かつ有機絶縁物によっ
て前記光ファイバが気密に封着されている光ファイバ複
合碍子において、前記碍子本体の端面から前記隆起部の
先端までの高さが5mm以上、40mm以下であることを特徴
とする光ファイバ複合碍子に係るものである。
According to the present invention, there is provided an insulator body provided with a through hole, and at least one optical fiber inserted into the through hole, wherein the through hole is filled with an organic insulator. An optical fiber composite insulator in which a raised portion protruding from an end face of the insulator main body is formed of an organic insulator, and wherein the optical fiber is hermetically sealed by the organic insulator, wherein the raised portion is protruded from the end face of the insulator main body. The height to the tip of the optical fiber composite insulator is 5 mm or more and 40 mm or less.

【0007】また、本発明は、貫通孔が設けられた碍子
本体と、この貫通孔に挿通された一本以上の光ファイバ
とを備え、前記貫通孔が有機絶縁物によって充填され、
前記碍子本体の端面から盛り上がった隆起部が有機絶縁
物によって形成され、かつ有機絶縁物によって前記光フ
ァイバが気密に封着されている光ファイバ複合碍子にお
いて、前記碍子本体の端面における前記貫通孔の外周縁
から、前記端面に対する前記隆起部の接着部分の外周縁
に至るまでの接着長さが1mm以上、35mm以下であること
を特徴とする、光ファイバ複合碍子に係るものである。
The present invention also includes an insulator main body provided with a through hole, and one or more optical fibers inserted through the through hole, wherein the through hole is filled with an organic insulator.
In an optical fiber composite insulator in which a raised portion protruding from an end face of the insulator main body is formed of an organic insulator, and the optical fiber is hermetically sealed by the organic insulator, the through hole at the end face of the insulator main body is provided. The optical fiber composite insulator according to claim 1, wherein a bonding length from an outer peripheral edge to an outer peripheral edge of a bonding portion of the raised portion to the end face is 1 mm or more and 35 mm or less.

【0008】更に、本発明は、隆起部形成用空間を有す
る型を用意し、貫通孔が設けられた碍子本体の一対の端
面にそれぞれ前記型を取り付け、これら一対の型と前記
貫通孔とに一本以上の光ファイバを挿通し、この光ファ
イバに引張応力を加えて真直ぐに引っ張った状態で前記
隆起部形成用空間と前記貫通孔とに有機絶縁物材料を充
填し、この有機絶縁物材料を硬化させることにより、前
記光ファイバを有機絶縁物で気密に封着することを特徴
とする、光ファイバ複合碍子の製造方法に係るものであ
る。
Further, according to the present invention, a mold having a space for forming a raised portion is prepared, and the mold is attached to each of a pair of end faces of an insulator body provided with a through-hole. Inserting one or more optical fibers, applying a tensile stress to the optical fibers, and pulling the optical fibers straight and filling the space for forming the ridges and the through holes with an organic insulating material; The method according to the present invention relates to a method for manufacturing an optical fiber composite insulator, characterized in that the optical fiber is hermetically sealed with an organic insulator by curing the composite.

【0009】[0009]

【実施例】図1は、光ファイバ複合碍子の端面付近を拡
大して示す断面図、図2は光ファイバ複合碍子の全体を
示す断面図である。碍子本体1は細長い円柱状であり、
外周面に多数の笠1bを備え、中央部には円形貫通孔1aが
形成されている。円形貫通孔1a内に、例えば2本の光フ
ァイバ2が挿通されている。碍子本体1の上端外周面及
び下端外周面は、セメント層5を介してフランジ6に取
り付けられる。貫通孔1a中には有機絶縁物3Aが充填され
る。更に、碍子本体1の上端及び下端において、端面1c
から有機絶縁物3Aが盛り上り、隆起部4Aを構成してい
る。
1 is an enlarged sectional view showing the vicinity of an end face of an optical fiber composite insulator, and FIG. 2 is a sectional view showing the entire optical fiber composite insulator. The insulator body 1 is in the shape of an elongated column,
The outer peripheral surface is provided with a number of shades 1b, and a circular through hole 1a is formed in the center. For example, two optical fibers 2 are inserted into the circular through hole 1a. The upper end outer peripheral surface and the lower end outer peripheral surface of the insulator main body 1 are attached to the flange 6 via the cement layer 5. The through hole 1a is filled with the organic insulator 3A. Furthermore, at the upper end and the lower end of the insulator main body 1, an end face 1c
From there, the organic insulator 3A rises to form the raised portion 4A.

【0010】図1に示す例においては、隆起部4Aが三つ
の部分からなる。即ち、円形貫通孔1aと同心に円錐台状
部分4aが形成され、円錐台状部分4aの中央に、円柱状頂
部4cが形成されている。円錐台状部分4aの外周縁の裾の
部分に、比較的薄肉の延設部4bが形成される。光ファイ
バ2は、円錐台状部分4a及び円柱状頂部4cを通り、円柱
状頂部4cの先端面から取り出されている。
In the example shown in FIG. 1, the raised portion 4A has three parts. That is, a truncated conical portion 4a is formed concentrically with the circular through-hole 1a, and a columnar top 4c is formed at the center of the truncated conical portion 4a. A relatively thin extending portion 4b is formed at the skirt portion of the outer peripheral edge of the truncated conical portion 4a. The optical fiber 2 passes through the truncated conical portion 4a and the cylindrical top 4c, and is taken out from the distal end surface of the cylindrical top 4c.

【0011】本発明者は、低温での光伝送損失が増大し
た原因について種々検討した結果、次の知見を得た。即
ち、有機絶縁物は、具体的にはシリコーンゴム、ウレタ
ンゴム、エポキシ樹脂等であり、碍子本体にくらべれば
数倍〜数十倍の熱膨張係数を持つので、低温時には、隆
起部の有機絶縁物が大きく収縮する。この一方、貫通孔
内の有機絶縁物は、碍子本体の壁面に対し強固に結合し
ているので、動きが拘束され、低温時にもあまり収縮し
ない。
The present inventor has made various studies on the cause of the increase in optical transmission loss at low temperatures, and has obtained the following findings. That is, the organic insulator is specifically a silicone rubber, a urethane rubber, an epoxy resin, or the like, and has a coefficient of thermal expansion several times to several tens times that of the insulator main body. Things shrink significantly. On the other hand, since the organic insulator in the through hole is firmly bonded to the wall surface of the insulator main body, the movement is restricted, and the organic insulator does not contract much even at a low temperature.

【0012】そして、前述したように、隆起部を高くし
て高温時の膨張を吸収することは行われていたのだが、
この反面、低温時には隆起部の収縮が大きくなり、貫通
孔の端部開口付近で有機絶縁物内部に歪が生じていたの
である。この結果、端部開口付近に封着されている光フ
ァイバにマイクロベンディングが生じ、これが光伝送損
失の原因となっていた。
As described above, it has been practiced to increase the height of the raised portion to absorb the expansion at high temperatures.
On the other hand, when the temperature is low, the protrusions shrink greatly, and strain is generated inside the organic insulator near the end openings of the through holes. As a result, microbending occurs in the optical fiber sealed in the vicinity of the end opening, which causes optical transmission loss.

【0013】本発明者は、このような新たな知見に基づ
き、碍子本体1の端面1cから隆起部4Aの先端までの高さ
Hを40mm以下にすると、低温での光伝送損失が大幅に減
少することを見出したのである。即ち、こうした限定に
よって、低温時にも円形貫通孔1aの端部開口付近での有
機絶縁物内部の歪を大きく減らし、この部分の光ファイ
バのマイクロベンディングを防止できたことによると考
えられる。
Based on such new knowledge, the present inventor has found that when the height H from the end face 1c of the insulator main body 1 to the tip of the protruding portion 4A is set to 40 mm or less, the optical transmission loss at low temperatures is greatly reduced. We found that we did. That is, it is considered that such a limitation significantly reduced the strain inside the organic insulator near the end opening of the circular through hole 1a even at a low temperature, thereby preventing microbending of the optical fiber in this portion.

【0014】また、本発明者は、有機絶縁物からなる隆
起部と碍子本体の端面との接着界面で、長期使用時に接
着力が低下した場合において、その原因について種々検
討した結果、貫通孔1aの外周縁Aから、端面1cに対する
隆起部4Aの接着部分の外周縁Bまでの接着長さlが重要
であることを見出した。具体的には、接着長さlを1mm
以上、35mm以下とすれば、剥離が生じなくなることが判
明した。
The inventor of the present invention has conducted various investigations on the cause of a decrease in the adhesive force during long-term use at the adhesive interface between the raised portion made of an organic insulator and the end face of the insulator main body. It has been found that the bonding length l from the outer peripheral edge A to the outer peripheral edge B of the bonding portion of the raised portion 4A to the end face 1c is important. Specifically, the bonding length l is 1 mm
As described above, it was found that when the thickness was 35 mm or less, peeling did not occur.

【0015】この理由について更に詳説する。接着長さ
lが小さい場合には、円形貫通孔1aと有機絶縁物3Aとの
接着界面の末端が直接露出する。周囲温度が変化する
と、有機絶縁物3Aが膨張、収縮する。有機絶縁物3Aは、
円形貫通孔1a内では、碍子本体1の壁面により径方向に
しっかり拘束されているので、軸方向にのみ伸縮する。
このため、円形貫通孔1aの端部開口付近では、円形貫通
孔1aの軸方向に沿って大きな引張応力が発生する。もし
円形貫通孔1aと有機絶縁物3Aとの接着界面の末端がこの
近辺に直接露出していると、この部分の接着力が低下し
やすくなるわけである。
The reason will be described in more detail. When the bonding length 1 is small, the end of the bonding interface between the circular through hole 1a and the organic insulator 3A is directly exposed. When the ambient temperature changes, the organic insulator 3A expands and contracts. Organic insulator 3A
In the circular through-hole 1a, since it is firmly restrained in the radial direction by the wall surface of the insulator main body 1, it expands and contracts only in the axial direction.
For this reason, near the end opening of the circular through hole 1a, a large tensile stress is generated along the axial direction of the circular through hole 1a. If the end of the adhesive interface between the circular through-hole 1a and the organic insulator 3A is directly exposed to the vicinity, the adhesive strength at this portion is likely to be reduced.

【0016】一方、隆起部4Aにおいては、円形貫通孔1a
内と異なり、有機絶縁物3Aが径方向にも軸方向にもある
程度自由に膨張、収縮する余地がある。従って、1mm以
上の接着長さlをとれば、接着部分の外周縁Bにかかる
応力は、円形貫通孔1aの外周縁Aにかかる応力よりも格
段に小さくなる。これにより、接着部分の末端からの剥
離は生じにくくなる。
On the other hand, in the raised portion 4A, the circular through hole 1a
Unlike the inside, there is room for the organic insulator 3A to expand and contract freely to some extent in both the radial direction and the axial direction. Accordingly, if the bonding length 1 is 1 mm or more, the stress applied to the outer peripheral edge B of the bonded portion is much smaller than the stress applied to the outer peripheral edge A of the circular through hole 1a. This makes it difficult for the adhesive portion to peel off from the end.

【0017】また、本発明者の研究によると、接着長さ
lが長すぎる場合、接着力が低下し易くなる。これは、
周囲温度が変化したときに、隆起部4Aの径方向の膨張及
び収縮の絶対量が大きくなるからである。この結果、有
機絶縁物3Aの端面1cとの接着部分の外周縁Bに、端面1c
に沿って径方向に大きな引張応力が発生する。
According to the study of the present inventor, when the bonding length 1 is too long, the bonding strength tends to decrease. this is,
This is because when the ambient temperature changes, the absolute amount of expansion and contraction in the radial direction of the raised portion 4A increases. As a result, the end face 1c
, A large tensile stress is generated in the radial direction.

【0018】この点、本発明に従い、円形貫通孔1aの外
周縁Aから接着部分の外周縁Bまでの接着長さlを35mm
以下とすることで、温度変化に伴う隆起部4Aの径方向の
膨張及び収縮の絶対量を小さくでき、この結果、接着部
分の外周縁Bに発生する引張応力も小さくなる。これに
より周囲温度変化により有機絶縁物3Aが膨張、収縮して
も、接着界面の接着力が低下しにくく、長期絶縁性能に
優れた光ファイバ複合碍子を得ることができる。
In this regard, according to the present invention, the bonding length 1 from the outer peripheral edge A of the circular through hole 1a to the outer peripheral edge B of the bonding portion is 35 mm.
With the following, the absolute amount of expansion and contraction in the radial direction of the raised portion 4A due to the temperature change can be reduced, and as a result, the tensile stress generated on the outer peripheral edge B of the bonding portion is also reduced. Thereby, even if the organic insulator 3A expands and contracts due to a change in the ambient temperature, the adhesive strength at the adhesive interface is hardly reduced, and an optical fiber composite insulator excellent in long-term insulation performance can be obtained.

【0019】図3は、碍子本体1を多段積みしてなる光
ファイバ複合碍子の全体を概略的に示す断面図である。
図1、図2に示した部材と同じ部材には、同じ符号を付
す。碍子本体1を二個以上準備し、碍子本体1のフラン
ジ6同士をボルト10で連結し、一体化することができ
る。このような多段積みされた複合碍子に対しても、本
発明を適用し、端面1cに隆起部4Aを形成することが可能
である。
FIG. 3 is a sectional view schematically showing an entire optical fiber composite insulator obtained by stacking the insulator main bodies 1 in multiple stages.
1 and 2 are denoted by the same reference numerals. Two or more insulator bodies 1 are prepared, and the flanges 6 of the insulator body 1 are connected to each other with bolts 10 to be integrated. The present invention can be applied to such a multi-tiered composite insulator, and the raised portion 4A can be formed on the end face 1c.

【0020】隆起部の形状を、図4、図5、図6に示す
隆起部4B, 4C, 14のように変更することもできる。図4
の例では、図1と同様に、円錐台状部分4aの外周縁の裾
の部分に、延設部4bが形成されている。円錐台状部分4a
の中央には、平面円形の平坦な頂部4dが形成されてい
る。図5の例では、やはり円錐台状部分4aの外周縁の裾
の部分に、延設部4bが形成されている。円錐台状部分4a
の中央には、平面円形の凹部4eが頂部として設けられて
いる。図6の例では、隆起部14が、貫通孔1aを中心とす
る円盤状部分14a と、円盤状部分14a の中央に形成され
た円柱状頂部14bとからなる。
The shape of the raised portion can be changed to the raised portions 4B, 4C and 14 shown in FIGS. FIG.
In the example, as in FIG. 1, an extended portion 4b is formed at the bottom of the outer peripheral edge of the truncated conical portion 4a. Frustoconical part 4a
A flat top 4d having a circular shape is formed at the center. In the example of FIG. 5, an extended portion 4b is also formed at the skirt portion of the outer peripheral edge of the truncated conical portion 4a. Frustoconical part 4a
Is provided with a flat circular concave portion 4e as the top. In the example of FIG. 6, the raised portion 14 includes a disc-shaped portion 14a centered on the through hole 1a, and a column-shaped top portion 14b formed at the center of the disc-shaped portion 14a.

【0021】隆起部4A , 4B , 4Cの本体部分を円錐台形
状とすることで、以下の効果が得られる。即ち、周囲の
温度変化による有機絶縁物の膨張収縮が径方向に均一に
逃げ、軸方向の膨張収縮は小さくなる。したがって、光
ファイバが歪むことなく、良好な光伝送性能を有する光
ファイバ複合碍子を得ることができる。
The following effects can be obtained by forming the main body of the raised portions 4A, 4B, 4C into a truncated cone shape. That is, expansion and contraction of the organic insulator due to a change in ambient temperature escapes uniformly in the radial direction, and expansion and contraction in the axial direction decreases. Therefore, an optical fiber composite insulator having good optical transmission performance can be obtained without distortion of the optical fiber.

【0022】また、円錐台状部分4a又は円盤状部分14a
の頂部を円柱形状とすると、低温時には、円柱状頂部4
c, 14b は、径方向にも軸方向にも同等に収縮する。し
かし、この円柱状頂部4c, 14b を除く他の円錐台状又は
円盤状の部分は、碍子端面1cと接着しているため、径方
向には収縮しにくく、軸方向に収縮し易い。従って、こ
の円柱状頂部4c, 14b における軸方向の収縮が、他の円
錐台状又は円盤状部分における軸方向の収縮よりも小さ
くなる。この収縮差の分だけ、円柱状頂部4c, 14b の付
け根付近の有機絶縁物内部に、歪が生ずる。ここで、円
柱状頂部4c, 14bの段差hを5mm以下にすると、上記の
収縮差が非常に小さくなり、円柱状頂部4c, 14b の付け
根付近の有機絶縁物内部に歪が生じないことを発見し
た。これにより、円柱状頂部4c, 14b の付け根付近の光
ファイバにマイクロベンディングが発生しないため、低
温時の光伝送損失が一層小さくなる。頂部が平面4dであ
る場合には、頂部の段差hが0mmであり、この種の問題
は生じない。
Also, the truncated conical portion 4a or the disc-shaped portion 14a
If the top of the cylinder is cylindrical, at low temperatures the cylindrical top 4
c and 14b shrink equally in the radial and axial directions. However, the truncated conical or disc-shaped portion other than the columnar tops 4c and 14b is adhered to the insulator end face 1c, so that it does not easily contract in the radial direction and easily contracts in the axial direction. Therefore, the contraction in the axial direction at the cylindrical tops 4c and 14b is smaller than the contraction in the axial direction at the other truncated conical or disk-shaped portions. Strain is generated in the organic insulator near the roots of the columnar tops 4c and 14b by the amount of the contraction difference. Here, when the step height h between the cylindrical tops 4c and 14b is set to 5 mm or less, the above-described shrinkage difference becomes extremely small, and it is found that no distortion occurs inside the organic insulator near the base of the cylindrical tops 4c and 14b. did. As a result, microbending does not occur in the optical fibers near the roots of the cylindrical tops 4c and 14b, so that the optical transmission loss at low temperatures is further reduced. When the top is a flat surface 4d, the step h at the top is 0 mm, and this kind of problem does not occur.

【0023】円錐台状部分4a又は円盤状部分14a の頂部
を凹部4eとした場合は、高温時に、凹部4eの底面付近
で、有機絶縁物の径方向の膨張が凹部4eの側面に拘束さ
れる。この結果、凹部4eの底面付近が膨らむ。このた
め、凹部4eの底面から突き出ている光ファイバの付け根
部分に歪が生ずる。この場合も、凹部4eの段差hを5mm
以下にすると、凹部4eの底面付近での径方向の膨張が拘
束されず、光ファイバの付け根部分に歪みが生じず、高
温での光伝送損失が一層少なくなる。
When the top of the truncated conical portion 4a or the disc-shaped portion 14a is formed as the concave portion 4e, the radial expansion of the organic insulator is restrained by the side surface of the concave portion 4e near the bottom surface of the concave portion 4e at a high temperature. . As a result, the vicinity of the bottom surface of the recess 4e swells. For this reason, distortion occurs at the base of the optical fiber protruding from the bottom surface of the recess 4e. Also in this case, the step h of the recess 4e is 5 mm.
In the following, expansion in the radial direction near the bottom surface of the concave portion 4e is not restrained, no distortion occurs at the root of the optical fiber, and optical transmission loss at high temperatures is further reduced.

【0024】また、図1、図6において、頂部4c, 14b
が円柱状である場合、この頂部の表面の半径は3mm以上
とすることが好ましい。これにより、光ファイバの引き
出し部分が頂部4c, 14b によって補強され、作業中の不
可抗力及び地震等の振動によって、封着部より外方に突
出している光ファイバが揺れても、引き出し部分の光フ
ァイバが損傷することはない。
In FIGS. 1 and 6, the tops 4c, 14b
Is cylindrical, the radius of the surface of the top is preferably 3 mm or more. As a result, the drawn-out portion of the optical fiber is reinforced by the top portions 4c and 14b, and even if the optical fiber protruding outward from the sealing portion is shaken due to force majeure during work and vibrations such as earthquakes, the optical fiber in the drawn portion is not affected. Will not be damaged.

【0025】次に、図1〜図6に示したような光ファイ
バ複合碍子の好ましい製造方法について、図7を参照し
つつ述べる。碍子本体1の上下の各端面1cに、それぞれ
型7を設置する。この型7には、それぞれ隆起部形成用
空間7aが形成され、各隆起部形成用空間7aに対して貫通
孔7bが連通している。下側の型7には材料注入管9Aが取
り付けられ、上側の型7には材料排出管9Bが取り付けら
れ、管9A, 9Bの内側が貫通孔7bに連通している。各型7
を、フランジ6に対してボルト10で固定し、各型7と端
面1cとの間をOリング11で気密にシールする。各型7の
光ファイバ挿通孔7cに光ファイバ2を挿通し、円形貫通
孔1a内に張り渡す。各型7の光ファイバ挿通孔7cに、そ
れぞれ真空パッキング8をセットする。
Next, a preferred method of manufacturing the optical fiber composite insulator as shown in FIGS. 1 to 6 will be described with reference to FIG. The molds 7 are installed on the upper and lower end faces 1c of the insulator main body 1, respectively. Each of the molds 7 has a space 7a for forming a ridge, and a through hole 7b communicates with each space 7a for forming a ridge. A material injection pipe 9A is attached to the lower mold 7, a material discharge pipe 9B is attached to the upper mold 7, and the insides of the pipes 9A and 9B communicate with the through holes 7b. Each type 7
Is fixed to the flange 6 with bolts 10, and the space between each mold 7 and the end face 1 c is hermetically sealed with an O-ring 11. The optical fiber 2 is inserted into the optical fiber insertion hole 7c of each mold 7 and stretched into the circular through hole 1a. The vacuum packing 8 is set in the optical fiber insertion hole 7c of each mold 7 respectively.

【0026】光ファイバ2に適当な引張応力をかけて真
直ぐに引っ張り、円形貫通孔1a内を真空吸引し、材料注
入管9Aから有機絶縁物材料3Bを注入する。この材料3B
は、円形貫通孔1a内を上昇し、材料排出口9Bに達する。
隆起部形成用空間7a、円形貫通孔1aに有機絶縁物材料3B
を充填し、加熱して硬化させる。この後、型7を取り外
す。
An appropriate tensile stress is applied to the optical fiber 2 and the optical fiber 2 is pulled straight, the inside of the circular through-hole 1a is vacuum sucked, and the organic insulating material 3B is injected from the material injection tube 9A. This material 3B
Rises in the circular through-hole 1a and reaches the material discharge port 9B.
The organic insulating material 3B is formed in the protrusion forming space 7a and the circular through hole 1a.
And cured by heating. Thereafter, the mold 7 is removed.

【0027】こうした方法により、図1〜図6に示した
ような光ファイバ複合碍子を、効率良く製造できる。し
かも、材料3Bの充填、加熱、硬化の段階で、光ファイバ
2に引張応力をかけてあることが効果的であり、これに
より光ファイバの伝送特性が、加熱硬化工程の前後を通
じて良好に保持される。
According to such a method, an optical fiber composite insulator as shown in FIGS. 1 to 6 can be efficiently manufactured. In addition, it is effective that a tensile stress is applied to the optical fiber 2 at the stage of filling, heating, and curing the material 3B, whereby the transmission characteristics of the optical fiber are maintained well before and after the heat curing process. You.

【0028】以下、具体的な実験結果について述べる。 〔実験1〕 図1に示すような光ファイバ複合碍子を、図7で示した
方法で製造した。有機絶縁物としては付加型シリコーン
ゴムを用い、加熱硬化温度は70〜90℃とした。碍子本体
の寸法は、全長950mm 、胴径φ105mm 、笠径φ205mm と
した。接着長さlは20mmとし、円柱状頂部4cの段差は3
mmとした。隆起部4Aの高さHを、図8に示すように5−
100μmで変更し、低温における光伝送損失を測定し
た。結果を図8に示す。
Hereinafter, specific experimental results will be described. [Experiment 1] An optical fiber composite insulator as shown in FIG. 1 was manufactured by the method shown in FIG. The addition type silicone rubber was used as the organic insulator, and the heat curing temperature was 70 to 90 ° C. The dimensions of the insulator body were 950 mm in total length, 105 mm in body diameter, and 205 mm in shade diameter. The bonding length 1 is 20 mm, and the step of the cylindrical top 4c is 3
mm. The height H of the raised portion 4A, as shown in FIG. 8 5-
The light transmission loss at a low temperature was measured by changing the thickness to 100 μm . FIG. 8 shows the results.

【0029】ただし、図8には、0℃での光伝送損失
と、−20℃での光伝送損失とを示した。0℃又は−20℃
での光伝送損失は、それぞれ0℃又は−20℃における光
透過量を、25℃における光透過量で除した比として求め
た。図8から解るように、Hが40mmを超えると、低温で
の光伝送損失が急に上昇する。この傾向は0℃でも−20
℃でもほぼ同じように見られる。
FIG. 8 shows the optical transmission loss at 0 ° C. and the optical transmission loss at −20 ° C. 0 ℃ or -20 ℃
Was determined as a ratio obtained by dividing the amount of light transmission at 0 ° C. or −20 ° C. by the amount of light transmission at 25 ° C., respectively. As can be seen from FIG. 8, when H exceeds 40 mm, the optical transmission loss at a low temperature sharply increases. This tendency is -20 even at 0 ° C.
It looks almost the same at ° C.

【0030】〔実験2〕実験1と同様にして光ファイバ
複合碍子を製造した。ただし、隆起部4Aの高さHは40mm
とし、円柱状頂部4cの段差は3mmとした。接着長さl
を、表1に示すように種々変更し、有機絶縁物と碍子端
面との接着力を評価した。具体的には、表1に示す接着
長さlを有する光ファイバ複合碍子を、各寸法、各所定
サイクルごとに3本毎準備し、それぞれ所定の回数繰り
返して、−20℃と80℃との間で冷熱サイクルを与えた。
次いで、有機絶縁物と碍子端面との接着力を評価した。
接着力は、降起部の有機絶縁物を上方に引っ張り、有機
絶縁物での凝集破壊が起こるか、有機絶縁物と碍子端面
との間で剥離が生ずるかを調べた。
[Experiment 2] An optical fiber composite insulator was manufactured in the same manner as in Experiment 1. However, the height H of the raised portion 4A is 40 mm
The step of the cylindrical top 4c was 3 mm. Adhesion length l
Was variously changed as shown in Table 1, and the adhesion between the organic insulator and the end face of the insulator was evaluated. More specifically, three optical fiber composite insulators having the bonding length 1 shown in Table 1 are prepared for each dimension and for each predetermined cycle, and are repeated a predetermined number of times. A heat cycle was given between.
Next, the adhesive strength between the organic insulator and the end face of the insulator was evaluated.
The adhesive strength was examined by pulling the organic insulator in the raised portion upward to determine whether cohesive failure occurs in the organic insulator or peeling occurs between the organic insulator and the insulator end face.

【0031】そして、3本の試料について、3本ともに
有機絶縁物での凝集破壊であった場合を「◎」とした。
また、3本の試料のうち、1本以上、有機絶縁物と碍子
端面とで剥離が生じた場合を「○」とした。3本とも
に、有機絶縁物と碍子端面とで剥離が生じた場合を
「×」とした。この結果を表1に示す。これから解るよ
うに、接着長さlを1〜35mmとすると接着力が大きい。
In each of the three samples, the case where the cohesive failure was caused by the organic insulator in all three samples was evaluated as “◎”.
In addition, when one or more of the three samples peeled off between the organic insulator and the end face of the insulator, the sample was evaluated as “○”. In all three, the case where peeling occurred between the organic insulator and the end face of the insulator was evaluated as “×”. Table 1 shows the results. As will be understood from the above, when the bonding length 1 is 1 to 35 mm, the bonding strength is large.

【0032】[0032]

【表1】 [Table 1]

【0033】〔実験3〕全長950mm 、胴径φ105mm 、笠
径205mm の碍子本体を2段積みし、有機封着材としてシ
リコーンゴムを使用し、図1、図4又は図5に示す光フ
ァイバ複合碍子を製造した。ただし、隆起部4A, 4B又は
4Cの高さ25mmとし、円錐台状部分4aの底面の直径はφ60
mmとした。そして、頂部の形状と段差とを図9に示すよ
うに変更し、80℃及び−20℃での光伝送損失を測定し
た。この結果を図9に示す。各光伝送損失は、25℃にお
ける光透過量に対する、80℃又は−20℃における光透過
量の比として表した。
[Experiment 3] An insulator body having a total length of 950 mm, a body diameter of 105 mm, and a shade diameter of 205 mm was stacked in two stages, and silicone rubber was used as an organic sealing material. The optical fiber composite shown in FIG. 1, FIG. 4 or FIG. Insulators were manufactured. However, ridges 4A, 4B or
4C height 25mm, diameter of bottom of frustoconical part 4a is φ60
mm. Then, the shape of the top and the step were changed as shown in FIG. 9, and the optical transmission loss at 80 ° C. and −20 ° C. was measured. The result is shown in FIG. Each optical transmission loss was expressed as a ratio of the amount of light transmission at 80 ° C. or −20 ° C. to the amount of light transmission at 25 ° C.

【0034】図9から解るように、段差hを5mm以下と
する光伝送損失が大きく減少する。また、特に凹状の頂
部を有する場合は、段差hが5mmを超えると、80℃での
光伝送損失が大きくなる。また、円柱状の頂部を有する
場合(図1)は、段差hが大きくなると、特に−20℃で
の光伝送損失が増大している。
As can be seen from FIG. 9, the optical transmission loss when the step h is 5 mm or less is greatly reduced. In particular, in the case of having a concave top, if the step h exceeds 5 mm, the optical transmission loss at 80 ° C. increases. In addition, in the case of having a column-shaped top (FIG. 1), when the step h becomes large, the optical transmission loss particularly at −20 ° C. increases.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、碍
子本体の端面から隆起部の先端までの高さを40mm以下と
したので、貫通孔の端部開口付近での有機絶縁物内部の
歪みを大きく減らし、この部分の光ファイバのマイクロ
ベンディングを防止できる。これにより、低温での光伝
送損失を大きく減らすことができる。また、貫通孔の外
周縁から、端面に対する隆起部の接着部分の外周面に至
るまでの接着長さを1mm以上、35mm以下としたことで、
隆起部の接着力の低下を防止でき、長期絶縁性能に優れ
た光ファイバ複合碍子を得ることができる。
As described above, according to the present invention, since the height from the end face of the insulator main body to the tip of the raised portion is set to 40 mm or less, the inside of the organic insulator near the opening at the end of the through hole is reduced. Can be greatly reduced, and microbending of the optical fiber in this portion can be prevented. Thereby, the optical transmission loss at a low temperature can be greatly reduced. In addition, by setting the bonding length from the outer peripheral edge of the through hole to the outer peripheral surface of the bonding portion of the raised portion to the end surface to be 1 mm or more and 35 mm or less,
It is possible to prevent a decrease in the adhesive strength of the raised portion and to obtain an optical fiber composite insulator excellent in long-term insulation performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光ファイバ複合碍子の端面1c付近を拡大して示
す断面図である。
FIG. 1 is an enlarged sectional view showing the vicinity of an end face 1c of an optical fiber composite insulator.

【図2】光ファイバ複合碍子の全体を概略的に示す断面
図である。
FIG. 2 is a sectional view schematically showing the entire optical fiber composite insulator.

【図3】光ファイバ複合碍子の全体を概略的に示す断面
図である。
FIG. 3 is a cross-sectional view schematically showing the entire optical fiber composite insulator.

【図4】他の光ファイバ複合碍子の端面1c付近を示す断
面図である。
FIG. 4 is a sectional view showing the vicinity of an end face 1c of another optical fiber composite insulator.

【図5】更に他の光ファイバ複合碍子の端面1c付近を示
す断面図である。
FIG. 5 is a sectional view showing the vicinity of an end face 1c of still another optical fiber composite insulator.

【図6】更に他の光ファイバ複合碍子の端面1c付近を示
す断面図である。
FIG. 6 is a sectional view showing the vicinity of an end face 1c of still another optical fiber composite insulator.

【図7】碍子本体1に型7を取り付け、有機絶縁物材料
3Bを注入している状態を示す断面図である。
FIG. 7: A mold 7 is attached to the insulator body 1, and an organic insulator material is used.
It is sectional drawing which shows the state which is injecting 3B.

【図8】隆起部の高さHと、0℃又は−20℃での光伝送
損失との関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a height H of a protruding portion and an optical transmission loss at 0 ° C. or −20 ° C.

【図9】頂部の段差hと、80℃又は−20℃での光伝送損
失との関係を示すグラフである。
FIG. 9 is a graph showing a relationship between a top step h and an optical transmission loss at 80 ° C. or −20 ° C.

【符号の説明】[Explanation of symbols]

1 碍子本体 1a 円形貫通孔 1b 笠 1c 碍子本体の端面 2 光ファイバ 3A 有機絶縁物 3B 有機絶縁物材料 4A, 4B, 4C, 14 隆起部 4a 円錐台状部分 4c, 14b 円柱状頂部 4d 平坦な頂部 4e 凹部 7 型 7a 隆起部形成用空間 14a 円盤状部分 A 端面1cにおける円形貫通孔1aの外周縁 B 端面1cに対する隆起部の接着部分の外周縁 H 隆起部の高さ h 段差 l 接着長さ DESCRIPTION OF SYMBOLS 1 Insulator main body 1a Circular through hole 1b Cap 1c End face of insulator main body 2 Optical fiber 3A Organic insulator 3B Organic insulator material 4A, 4B, 4C, 14 Raised part 4a Frustoconical part 4c, 14b Cylindrical top 4d Flat top 4e Recessed part 7 type 7a Raised portion forming space 14a Disc-shaped portion A Outer peripheral edge of circular through hole 1a at end surface 1c B Outer peripheral edge of raised portion bonded to end surface 1c H Height of raised portion h Step l Adhesive length

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉浦 忠司 愛知県岡崎市東牧内町字日久東26番地の 1 (56)参考文献 実開 昭64−31620(JP,U) 実開 昭63−194303(JP,U) 実開 平1−90006(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02B 6/00 H01B 17/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tadashi Sugiura 26-1, Hikuhigashi, Higashimakinai-cho, Okazaki-shi, Aichi 1 (JP, U) Japanese Utility Model Hei 1-90006 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 6/00 H01B 17/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 貫通孔が設けられた碍子本体と、この貫
通孔に挿通された一本以上の光ファイバとを備え、前記
貫通孔が有機絶縁物によって充填され、前記碍子本体の
端面から盛り上がった隆起部が有機絶縁物によって形成
され、かつ有機絶縁物によって前記光ファイバが気密に
封着されている光ファイバ複合碍子において、 前記碍子本体の端面から前記隆起部の先端までの高さが
5mm以上、40mm以下であることを特徴とする光ファイバ
複合碍子。
1. An insulator body provided with a through hole, and at least one optical fiber inserted through the through hole, wherein the through hole is filled with an organic insulator and rises from an end face of the insulator body. The raised portion is formed of an organic insulator, and the optical fiber is hermetically sealed with the organic insulator, wherein the height from the end face of the insulator main body to the tip of the raised portion is increased.
An optical fiber composite insulator having a length of 5 mm or more and 40 mm or less.
【請求項2】 前記隆起部が、円盤状部分又は円錐台状
部分と、この中央に設けられた頂部とを備え、この頂部
の段差が5mm以下である、請求項1記載の光ファイバ複
合碍子。
2. The optical fiber composite insulator according to claim 1, wherein the raised portion has a disk-shaped portion or a truncated cone-shaped portion and a top provided at the center thereof, and a step of the top is 5 mm or less. .
【請求項3】 前記頂部が円柱状であり、かつこの頂部
の先端面の半径が3mm以上である、請求項2記載の光フ
ァイバ複合碍子。
3. The optical fiber composite insulator according to claim 2, wherein the top is cylindrical, and a radius of a tip surface of the top is 3 mm or more.
【請求項4】 前記隆起部に段差5mm以下の凹部が設
けられていることを特徴とする、請求項1記載の光ファ
イバ複合碍子。
4. A concave portion having a step of 5 mm or less is provided in said raised portion.
2. The optical fiber according to claim 1, wherein
Iva composite insulator.
【請求項5】 貫通孔が設けられた碍子本体と、この貫
通孔に挿通された一本以上の光ファイバとを備え、前記
貫通孔が有機絶縁物によって充填され、前記碍子本体の
端面から盛り上がった隆起部が有機絶縁物によって形成
され、かつ有機絶縁物によって前記光ファイバが気密に
封着されている光ファイバ複合碍子において、 前記碍子本体の端面における前記貫通孔の外周縁から、
前記端面に対する前記隆起部の接着部分の外周縁に至る
までの接着長さが1mm以上、35mm以下であることを特徴
とする、光ファイバ複合碍子。
5. An insulator body provided with a through-hole, and one or more optical fibers inserted through the through-hole, wherein the through-hole is filled with an organic insulator and rises from an end face of the insulator body. The raised portion is formed of an organic insulator, and the optical fiber is hermetically sealed with the organic insulator in an optical fiber composite insulator.From the outer peripheral edge of the through hole at the end face of the insulator main body,
An optical fiber composite insulator, wherein an adhesion length of the raised portion to the end face to an outer peripheral edge of an adhesion portion is 1 mm or more and 35 mm or less.
【請求項6】 隆起部形成用空間を有する型を用意し、
貫通孔が設けられた碍子本体の一対の端面にそれぞれ前
記型を取り付け、これら一対の型と前記貫通孔とに一本
以上の光ファイバを挿通し、この光ファイバに引張応力
を加えて真直ぐに引っ張った状態で前記隆起部形成用空
間と前記貫通孔とに有機絶縁物材料を充填し、この有機
絶縁物材料を硬化させることにより、前記光ファイバを
有機絶縁物で気密に封着することを特徴とする、光ファ
イバ複合碍子の製造方法。
6. A mold having a space for forming a ridge is provided,
The molds are respectively attached to a pair of end faces of the insulator main body provided with through holes, and one or more optical fibers are inserted into the pair of molds and the through holes, and a tensile stress is applied to the optical fibers to straighten them. By filling an organic insulating material in the raised portion forming space and the through hole in a pulled state and curing the organic insulating material, the optical fiber is hermetically sealed with an organic insulating material. A method for producing an optical fiber composite insulator.
JP4065276A 1992-03-23 1992-03-23 Optical fiber composite insulator and its manufacturing method Expired - Lifetime JP3037815B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4065276A JP3037815B2 (en) 1992-03-23 1992-03-23 Optical fiber composite insulator and its manufacturing method
US08/033,751 US5339381A (en) 1992-03-23 1993-03-18 Optical fiber composite insulators
EP93302105A EP0562778A2 (en) 1992-03-23 1993-03-19 Optical fiber composite insulators and processes for producing the same
CA002092170A CA2092170A1 (en) 1992-03-23 1993-03-22 Optical fiber composite insulators and process for producing the same
US08/177,549 US5538574A (en) 1992-03-23 1994-01-05 Process for producing optical fiber composite insulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065276A JP3037815B2 (en) 1992-03-23 1992-03-23 Optical fiber composite insulator and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH05264823A JPH05264823A (en) 1993-10-15
JP3037815B2 true JP3037815B2 (en) 2000-05-08

Family

ID=13282243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065276A Expired - Lifetime JP3037815B2 (en) 1992-03-23 1992-03-23 Optical fiber composite insulator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3037815B2 (en)

Also Published As

Publication number Publication date
JPH05264823A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
JPH04210724A (en) Radially shrinkable cylindrical sleeve for enclosing connector or end of electric cable
CN105679470A (en) Insulator and adhesive binding method thereof
US5090793A (en) Optical fiber composite insulator
KR960015429B1 (en) Optical fiber-containing insulators and process for producing the same
JP3037815B2 (en) Optical fiber composite insulator and its manufacturing method
US5538574A (en) Process for producing optical fiber composite insulators
CN112629401A (en) Method for manufacturing road surface structure strain sensor and sensor
JP3004802B2 (en) Manufacturing method of optical fiber composite insulator
JPH0312411B2 (en)
CN2582013Y (en) Hanging optical fibre composite isolator
CN209880924U (en) Single-hole glass sintering connector
JP2713796B2 (en) Optical fiber composite insulator
JP3004803B2 (en) Optical fiber composite insulator and manufacturing method thereof
EP0449489A2 (en) Composite insulators with built-in optical fibre, and methods of making them
JP3004801B2 (en) Manufacturing method of optical fiber composite insulator
JPS6173111A (en) Tape-shaped optical fiber unit
JP3032372B2 (en) Optical fiber composite insulator and its manufacturing method
KR101115849B1 (en) insulator assembly
WO1999001789A1 (en) Organic insulating device with built-in optical fiber and manufacturing method therefor
CN104765118A (en) Waterproof loose tube and optical cable using loose tube
US6680439B2 (en) Composite electrical insulator having an outer coating and at least one optical fiber compatible therewith
JPH05264824A (en) Optical fiber-combined insulator and its production
JP3895034B2 (en) Optical fiber reinforcement structure
CN114063233B (en) Optical fiber sealing sleeve
JPS6053292B2 (en) Sealed termination structure of submarine optical cable

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13