JPH05264824A - Optical fiber-combined insulator and its production - Google Patents

Optical fiber-combined insulator and its production

Info

Publication number
JPH05264824A
JPH05264824A JP4065784A JP6578492A JPH05264824A JP H05264824 A JPH05264824 A JP H05264824A JP 4065784 A JP4065784 A JP 4065784A JP 6578492 A JP6578492 A JP 6578492A JP H05264824 A JPH05264824 A JP H05264824A
Authority
JP
Japan
Prior art keywords
hole
optical fiber
diameter
optical fibers
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4065784A
Other languages
Japanese (ja)
Inventor
Koji Ikeda
光司 池田
Ryuichi Mine
竜一 峯
Masayuki Nozaki
政行 野崎
Tadashi Sugiura
忠司 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4065784A priority Critical patent/JPH05264824A/en
Priority to US08/033,751 priority patent/US5339381A/en
Priority to EP93302105A priority patent/EP0562778A2/en
Priority to CA002092170A priority patent/CA2092170A1/en
Publication of JPH05264824A publication Critical patent/JPH05264824A/en
Priority to US08/177,549 priority patent/US5538574A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4417High voltage aspects, e.g. in cladding
    • G02B6/442Insulators

Abstract

PURPOSE:To improve the light transmission performance at the time of a low temp. of the optical fiber-combined element and to improve the insulation performance thereof. CONSTITUTION:A through-hole 1a having an approximately circular shape in a transverse direction is provided in the insulator body. Plural pieces of optical fibers 2A, 2B (2A, 2B, 2C, 2D)are inserted into this through-hole 1a. These optical fibers are hermetically sealed by an org. insulator. The diameter of the through-hole 1a is specified to <=13mm. The optical fibers 2A, 2B (2A, 2B, 2C, 2D) exist on the inner side of a virtual circle C having the diameter of about 95% the diameter of the through-hole 1a. All of the spacings l (lAB, lBC, lCD, lDA, lAC, lBD) between the optical fibers are specified to >=0.1mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ複合碍子及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber composite insulator and a method for manufacturing the same.

【0002】[0002]

【従来の技術】送配電線あるいは電力変電所では、落雷
事故等により送配電線路や変電所内に発生した故障点を
速やかに検知し、復旧するシステムが必要である。この
ために、ファラデー効果、ポッケルス効果を持つ光セン
サーを利用した異常電流、異常電圧検出装置が使用され
ている。これらの装置では、配電線に付けたセンサーと
故障点検出器との間で、送電電圧、送電電流を絶縁する
必要がある。このため、光信号のみを伝送し、電気的に
絶縁を保つために、光ファイバを内蔵した光ファイバ複
合碍子が使用されている。
2. Description of the Related Art Transmission and distribution lines or electric power substations require a system for promptly detecting and restoring a fault point that has occurred in the transmission and distribution lines or substation due to a lightning accident or the like. For this reason, an abnormal current / abnormal voltage detection device using an optical sensor having the Faraday effect and the Pockels effect is used. In these devices, it is necessary to insulate the transmission voltage and the transmission current between the sensor attached to the distribution line and the failure point detector. Therefore, in order to transmit only an optical signal and maintain electrical insulation, an optical fiber composite insulator containing an optical fiber is used.

【0003】こうした光ファイバ複合碍子としては、碍
子本体に細長い貫通孔を設け、この貫通孔に光ファイバ
を挿通し、シリコーンゴム、エポキシ樹脂等の有機絶縁
物で封着したものが一般的である。しかし、冬場の低温
時に、有機絶縁物が大きく収縮し、光ファイバが歪み、
光伝送損失が増大するという問題があった。また、光フ
ァイバ複合碍子の製造過程において、有機絶縁物の注入
条件を損なうと有機絶縁物が光ファイバの周囲に周り込
まず、接着不良箇所ができ易く、絶縁性能が低下すると
いう場合があった。
As such an optical fiber composite insulator, it is general that an insulator main body is provided with an elongated through hole, an optical fiber is inserted into the through hole, and sealed with an organic insulating material such as silicone rubber or epoxy resin. .. However, at low temperatures in winter, the organic insulator contracts greatly, causing the optical fiber to distort.
There is a problem that the optical transmission loss increases. Further, in the manufacturing process of the optical fiber composite insulator, if the injection condition of the organic insulating material is impaired, the organic insulating material does not wrap around the optical fiber, which may easily cause defective adhesion and deteriorate the insulating performance. ..

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、光フ
ァイバ複合碍子において、低温時の光伝送性能及び絶縁
性能を向上させることである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the optical transmission performance and insulation performance at low temperature in an optical fiber composite insulator.

【0005】[0005]

【課題を解決するための手段】本発明は、幅方向断面が
略円形の貫通孔が碍子本体に設けられ、この貫通孔に複
数本の光ファイバが挿通され、これらの光ファイバが有
機絶縁物によって気密に封着されている光ファイバ複合
碍子において、前記貫通孔の直径が13mm以下であり、こ
の貫通孔と同心であってこの貫通孔の直径の95%の直径
を有する仮想円の内側に前記光ファイバが位置し、かつ
いずれの光ファイバ同士の間隔も 0.1mm以上であること
を特徴とする、光ファイバ複合碍子に係るものである。
According to the present invention, a through hole having a substantially circular cross section in the width direction is provided in an insulator body, and a plurality of optical fibers are inserted into the through hole, and these optical fibers are made of an organic insulator. In the optical fiber composite insulator hermetically sealed by, the diameter of the through hole is 13 mm or less, inside the virtual circle concentric with the through hole and having a diameter of 95% of the diameter of the through hole. The present invention relates to an optical fiber composite insulator, wherein the optical fibers are located and a distance between the optical fibers is 0.1 mm or more.

【0006】また、本発明は、幅方向断面が略円形であ
って直径が13mm以下の貫通孔を備えた碍子本体を準備
し、この貫通孔に複数本の光ファイバを挿通し、この際
前記貫通孔と同心であってこの貫通孔の直径の95%の直
径を有する仮想円の内側に前記光ファイバが位置しかつ
いずれの光ファイバ同士の間隔も 0.1mm以上となるよう
に各光ファイバを固定し、この状態で前記貫通孔内に有
機絶縁物材料を充填し、次いでこの有機絶縁物材料を加
熱硬化させて前記光ファイバを気密に封着することを特
徴とする光ファイバ複合碍子の製造方法に係るものであ
る。
Further, according to the present invention, an insulator body having a through-hole having a substantially circular cross section in the width direction and having a diameter of 13 mm or less is prepared, and a plurality of optical fibers are inserted into the through-hole. Position each optical fiber so that the optical fiber is located inside a virtual circle that is concentric with the through hole and has a diameter of 95% of the diameter of the through hole, and that the distance between any of the optical fibers is 0.1 mm or more. Fixing, filling the inside of the through hole with an organic insulating material, and then heating and curing the organic insulating material to hermetically seal the optical fiber, thereby producing an optical fiber composite insulator. It relates to the method.

【0007】[0007]

【実施例】図2は、光ファイバ複合碍子の端面付近を拡
大して示す断面図である。碍子本体1は細長い円柱状で
あり、外周面に多数の笠を備え、中央部には、幅方向断
面が略円形の貫通孔1aが形成されている。貫通孔1a
内に、例えば2本の光ファイバ2A,2Bが挿通されて
いる。碍子本体1の上端外周面及び下端外周面は、セメ
ント層5を介してフランジ6に取り付けられる。貫通孔
1a中には有機絶縁物3Aが充填される。更に、碍子本
体1の上端及び下端において、端面1cから有機絶縁物
3Aが盛り上がり、隆起部4Aを構成している。図2に
示す例においては、隆起部4Aが平坦な円盤形状をなし
ている。光ファイバ2A,2Bは、円盤状の隆起部4A
の中心から真直ぐに取り出されている。
EXAMPLE FIG. 2 is an enlarged sectional view showing the vicinity of an end face of an optical fiber composite insulator. The insulator main body 1 has an elongated cylindrical shape, is provided with a large number of shades on the outer peripheral surface thereof, and has a through hole 1a having a substantially circular cross section in the width direction formed in the central portion. Through hole 1a
For example, two optical fibers 2A and 2B are inserted therein. The upper end outer peripheral surface and the lower end outer peripheral surface of the insulator body 1 are attached to the flange 6 via the cement layer 5. The organic insulator 3A is filled in the through hole 1a. Further, at the upper end and the lower end of the insulator body 1, the organic insulator 3A rises from the end face 1c to form a raised portion 4A. In the example shown in FIG. 2, the raised portion 4A has a flat disk shape. The optical fibers 2A and 2B are disc-shaped raised portions 4A.
It is taken straight out from the center of.

【0008】貫通孔1aを幅方向に切ってみた断面図を
図1(a) に示す。ただし、図1(a)では、見易くするた
めに有機絶縁物3Aを図示省略している。貫通孔1aの
直径は、本発明に従って13mm以下とする。仮想円Cの中
心は、貫通孔1aの中心Oと一致させ、仮想円Cの直径
を、貫通孔1aの直径の95%とする。仮想円Cの内側
に、光ファイバ2A,2Bを位置させる。光ファイバ2
Aと2Bとの間隔lを 0.1mm以上とする。
A cross-sectional view of the through hole 1a taken in the width direction is shown in FIG. 1 (a). However, in FIG. 1 (a), the organic insulator 3A is not shown for the sake of clarity. The diameter of the through hole 1a is 13 mm or less according to the present invention. The center of the virtual circle C is made to coincide with the center O of the through hole 1a, and the diameter of the virtual circle C is set to 95% of the diameter of the through hole 1a. The optical fibers 2A and 2B are positioned inside the virtual circle C. Optical fiber 2
The distance l between A and 2B is 0.1 mm or more.

【0009】以上の構成を採用することにより、以下の
効果が得られる。即ち、本発明者は、低温での光伝送損
失が増大した原因について種々検討した結果、次の知見
を得た。有機絶縁物3Aは、具体的にはシリコーンゴ
ム、ウレタンゴム、エポキシ樹脂等であるが、特にシリ
コーンゴムが応力緩和性に優れ、好ましい。これらは、
碍子本体にくらべれば数倍〜数十倍の熱膨張係数を持つ
ので、低温時には、貫通孔の有機絶縁物が大きく収縮す
る。しかし、貫通孔1a内の有機絶縁物3Aは、碍子本
体1の壁面に対し強固に結合しているので、動きが拘束
され、径方向および円周方向にほとんど収縮せず、貫通
孔1aの端部付近で軸方向にのみ大きく収縮する。こう
した、貫通孔1aの端部付近での有機絶縁材3Aの変位
(へこみ)により、これに封着された光ファイバ2A,
2Bが縮み、光伝送損失が生じる。
The following effects can be obtained by adopting the above configuration. That is, the present inventor obtained the following findings as a result of various studies on the cause of the increase in optical transmission loss at low temperatures. The organic insulator 3A is specifically silicone rubber, urethane rubber, epoxy resin, or the like, but silicone rubber is particularly preferable because of its excellent stress relaxation property. They are,
Compared with the insulator body, it has a coefficient of thermal expansion of several times to several tens of times, so that the organic insulator in the through-hole largely shrinks at low temperature. However, since the organic insulator 3A in the through-hole 1a is firmly bonded to the wall surface of the insulator body 1, its movement is restricted and it hardly shrinks in the radial direction and the circumferential direction. Large contraction only in the axial direction near the part. Due to the displacement (dent) of the organic insulating material 3A near the end of the through hole 1a, the optical fiber 2A sealed to the organic insulating material 3A,
2B shrinks, causing optical transmission loss.

【0010】ここで、本発明に従い、貫通孔1aの直径
を13mm以下とすれば、低温時の貫通孔1aの端部付近で
の有機絶縁物の変位(へこみ)が小さく、低温時の光伝
送損失を少なくできることが判った。この理由は、次の
ように考えられる。まず、有機絶縁物3Aが貫通孔1a
の壁面に接着していることから、有機絶縁物3Aの軸方
向の収縮を拘束する効果があるわけだが、この効果は、
貫通孔壁面ほど強く、貫通孔の中心に近づくに従って弱
くなる。従って、貫通孔が細くなるほど、貫通孔の中心
部近くまで拘束の効果が及ぶ。貫通孔1a内に封着され
ている有機絶縁物3aの収縮は、上述の通り、貫通孔内
の径方向及び円周方向の動きが拘束されているため、貫
通孔1aの端部付近における軸方向の変位に集約される
ので、貫通孔1aの直径が大きいほど、有機絶縁物の収
縮率が同じであったとしても、軸方向の変位(へこみ)
の大きさ(最大値)は大きくなる。この軸方向の変位の
大きさは、貫通孔1aの直径の1.5 〜2乗にほぼ比例す
ると考えられる。従って、貫通孔が細くなるほど、端部
付近での変位(へこみ)が小さくなる。
According to the present invention, if the diameter of the through hole 1a is 13 mm or less, the displacement (dent) of the organic insulator near the end portion of the through hole 1a at a low temperature is small, and the optical transmission at a low temperature is achieved. It turns out that the loss can be reduced. The reason for this is considered as follows. First, the organic insulator 3A has the through hole 1a.
Since it is adhered to the wall surface of the organic insulator 3A, it has the effect of restraining the contraction of the organic insulator 3A in the axial direction.
The stronger the wall surface of the through hole, the weaker it gets closer to the center of the through hole. Therefore, as the through hole becomes thinner, the effect of restraint extends to near the center of the through hole. As described above, the contraction of the organic insulator 3a sealed in the through hole 1a is restricted by the movement in the radial direction and the circumferential direction in the through hole, so that the shaft near the end of the through hole 1a is restricted. As the diameter of the through-hole 1a is larger, the axial displacement (dent) is larger even if the contraction rate of the organic insulator is the same.
The size (maximum value) of becomes large. It is considered that the magnitude of this axial displacement is approximately proportional to the 1.5 to the square of the diameter of the through hole 1a. Therefore, the thinner the through hole, the smaller the displacement (dent) near the end.

【0011】更に、本発明に従い、仮想円Cの内側に光
ファイバ2A,2Bを位置させることで、光ファイバ2
A,2Bと貫通孔1aの壁面との接触をなくし、この間
に充分に有機絶縁物3Aを回り込ませることができる。
また、光ファイバ2Aと2Bの間隔lを 0.1mm以上とし
たことにより、光ファイバ2Aと2Bとの間にも充分に
有機絶縁物3Aを回り込ませることができる。これらの
両方の限定の結果、各光ファイバ2A,2Bの周囲に有
機絶縁物3Bが全体に均一に回り込むので、接着不良箇
所が生じにくくなる。これにより、光ファイバの絶縁性
能が向上する。
Further, according to the present invention, by locating the optical fibers 2A and 2B inside the virtual circle C, the optical fiber 2
It is possible to eliminate contact between A and 2B and the wall surface of the through hole 1a, and allow the organic insulator 3A to sufficiently wrap around in the meantime.
Further, by setting the distance l between the optical fibers 2A and 2B to be 0.1 mm or more, the organic insulator 3A can be made to sufficiently wrap around between the optical fibers 2A and 2B. As a result of both of these limitations, the organic insulator 3B wraps around the respective optical fibers 2A and 2B uniformly, so that defective adhesion sites are less likely to occur. This improves the insulation performance of the optical fiber.

【0012】光ファイバを3本以上貫通孔に挿通する場
合も、上記の場合と同様とする。例えば光ファイバが4
本である場合について、図1(b) を参照しつつ説明す
る。貫通孔1a内に、光ファイバ2A,2B,2C,2
Dが挿通されている。この際、仮想円Cの内側に、各光
ファイバ2A,2B,2C,2Dが位置するようにす
る。また、光ファイバ2Aと2Bとの間隔をlABとし、
光ファイバ2Bと2Cとの間隔をlBCとし、光ファイバ
2Cと2Dとの間隔をlCDとし、光ファイバ2Dと2A
との間隔をlDAとし、光ファイバ2Aと2Cとの間隔を
ACとし、光ファイバ2Bと2Dとの間隔をlBDとす
る。lAB, lBC, lCD, lDA, lAC, lBDを、いずれも
0.1mm以上とする必要がある。
The same applies to the case where three or more optical fibers are inserted into the through holes. For example, 4 optical fibers
The case of a book will be described with reference to FIG. The optical fibers 2A, 2B, 2C, 2 are placed in the through holes 1a.
D is inserted. At this time, the optical fibers 2A, 2B, 2C and 2D are positioned inside the virtual circle C. Also, the distance between the optical fibers 2A and 2B is set to l AB ,
The distance between the optical fibers 2B and 2C is 1 BC , the distance between the optical fibers 2C and 2D is 1 CD , and the optical fibers 2D and 2A are
The distance between the l DA, the distance between the optical fiber 2A and 2C and l AC, the distance between the optical fiber 2B and 2D and l BD. l AB , l BC , l CD , l DA , l AC , l BD are all
It should be 0.1 mm or more.

【0013】次に、図1,図2に示したような光ファイ
バ複合碍子の好ましい製造方法について図3を参照しつ
つ述べる。碍子本体1の上下の各端面1cに、それぞれ
型7を設置する。この型7には、それぞれ隆起部形成用
空間7aが形成され、各隆起部形成用空間7aに対して
貫通孔7bが連通している。下側の型7には材料注入管
9Aが取り付けられ、上側の型7には材料排出管9Bが
取り付けられ、管9A,9Bの内側が貫通孔7bに連通
している。型7を、フランジ6に対してボルト10で固定
し、各型7と端面1cとの間をOリング13で気密にシー
ルする。各型7の中心には、光ファイバを挿通するため
の挿通孔7cが設けられている。各型7をセットする
際、型7の中心と貫通孔1aの中心とが一致するように
する。
Next, a preferred method of manufacturing the optical fiber composite insulator as shown in FIGS. 1 and 2 will be described with reference to FIG. The mold 7 is installed on each of the upper and lower end surfaces 1c of the insulator body 1. Each of the molds 7 is formed with a raised portion forming space 7a, and a through hole 7b communicates with each raised portion forming space 7a. A material injection pipe 9A is attached to the lower mold 7, a material discharge pipe 9B is attached to the upper mold 7, and the insides of the pipes 9A and 9B communicate with the through hole 7b. The mold 7 is fixed to the flange 6 with bolts 10, and an O-ring 13 hermetically seals between each mold 7 and the end face 1c. An insertion hole 7c for inserting an optical fiber is provided at the center of each mold 7. When setting each die 7, the center of the die 7 and the center of the through hole 1a are aligned with each other.

【0014】貫通孔1a内で、光ファイバ2Aと2Bと
が接触したり、光ファイバ貫通孔壁面とが接触したりす
るのを防ぐため、有機絶縁物3Aと同種の材料で造られ
たスペーサ12で予め光ファイバ2Aと2Bとをそれぞれ
3箇所以上固定しておくことが好ましい。光ファイバ2
A,2Bの幾何学的配置は、本発明に従う。
In order to prevent the optical fibers 2A and 2B from coming into contact with each other and the optical fiber through hole wall surface from coming into contact with each other in the through hole 1a, the spacer 12 made of the same material as the organic insulator 3A is used. Therefore, it is preferable to fix the optical fibers 2A and 2B in advance at three or more locations. Optical fiber 2
The geometry of A, 2B is according to the invention.

【0015】光ファイバ2A,2Bを挿通孔7c及び貫
通孔1aに挿通する。型7の挿通孔7cにパッキング8
を取り付ける。貫通孔1aの端部付近で光ファイバ2A
と2Bとが接触したり、光ファイバ貫通孔壁面に接触す
るのを防ぐため、パッキング8に、光ファイバ2A,2
Bの外径とほぼ等しい直径の二つの挿通孔を設け、これ
らの挿通孔の位置を調整し、光ファイバ2A,2Bの位
置がずれないようにすることが好ましい。
The optical fibers 2A and 2B are inserted through the insertion hole 7c and the through hole 1a. Packing 8 in the insertion hole 7c of the mold 7
Attach. The optical fiber 2A near the end of the through hole 1a
And 2B and the optical fiber through hole wall surface are prevented from coming into contact with each other.
It is preferable to provide two insertion holes having a diameter substantially equal to the outer diameter of B and adjust the positions of these insertion holes so that the positions of the optical fibers 2A and 2B are not displaced.

【0016】また、各光ファイバ2Aと2Bとに対して
引張荷重をかけ、各光ファイバ2A,2Bを真っ直ぐに
引っ張ることが好ましい。これにより、有機絶縁物材料
3Bを充填するときにも、光ファイバ同士の接触や光フ
ァイバと貫通孔との接触が確実に防止される。また、有
機絶縁物材料3Bを充填する際の圧力によって、光ファ
イバ2A,2Bが微妙に曲がるのも防止できる。
Further, it is preferable to apply a tensile load to each of the optical fibers 2A and 2B and pull each of the optical fibers 2A and 2B straight. As a result, even when the organic insulating material 3B is filled, the contact between the optical fibers and the contact between the optical fibers and the through hole are reliably prevented. Further, it is possible to prevent the optical fibers 2A and 2B from being slightly bent by the pressure when the organic insulating material 3B is filled.

【0017】有機絶縁物材料3Bを充填する際には、注
入中の有機絶縁物材料3Bの内部に気泡が巻き込まれる
のを防ぐため、予め貫通孔1a内を1〜3torr程度まで
減圧することが好ましい。そして材料注入管9Aから有
機絶縁物材料3Bを注入する。この材料3Bは、貫通孔
1a内を上昇し、材料排出口9Bに達する。隆起部形成
用空間7a、貫通孔1aに有機絶縁物材料3Bを充填
し、加熱して硬化させる。この後、型7を取り外す。こ
の際、有機絶縁物材料3Bの注入圧力を3〜10kgf/cm2
とすると、貫通孔1a内に材料3Bを均一に注入し易
い。
When the organic insulating material 3B is filled, the inside of the through hole 1a may be depressurized to about 1 to 3 torr in order to prevent air bubbles from being trapped inside the organic insulating material 3B being injected. preferable. Then, the organic insulating material 3B is injected from the material injection pipe 9A. The material 3B rises in the through hole 1a and reaches the material discharge port 9B. The space 7a for forming the raised portion and the through hole 1a are filled with the organic insulating material 3B and heated to cure. Then, the mold 7 is removed. At this time, the injection pressure of the organic insulating material 3B is 3 to 10 kgf / cm 2
Then, it is easy to uniformly inject the material 3B into the through hole 1a.

【0018】以下、具体的な実験結果について述べる。 (実験1)図1(a),図2に示すような光ファイバ複合碍
子を図 3で示した上記の方法で製造した。碍子本体1の
寸法は、全長1150mm、胴径φ105mm 、笠径φ205mm とし
た。本実験では、隆起部4Aの高さhを3mmとし、中心
部の有機絶縁物の凹みの大きさを測定した。光ファイバ
2A,2Bとしては、石英系光ファイバ素線を用いた。
有機絶縁物材料3Bとしては、液状のシリコーンゴムで
あって、硬化前の粘度が 500〜1000ポイズのものを使用
した。
Specific experimental results will be described below. (Experiment 1) An optical fiber composite insulator as shown in FIGS. 1 (a) and 2 was manufactured by the method shown in FIG. The insulator body 1 had a total length of 1150 mm, a body diameter of 105 mm, and a cap diameter of 205 mm. In this experiment, the height h of the raised portion 4A was set to 3 mm, and the size of the depression of the organic insulator in the central portion was measured. As the optical fibers 2A and 2B, silica optical fiber strands were used.
As the organic insulating material 3B, a liquid silicone rubber having a viscosity before curing of 500 to 1000 poise was used.

【0019】そして、碍子本体1の貫通孔1Aの直径
を、図4,図5に示すように種々変更し、−20℃での有
機絶縁物3Aの平均の端面の変位(へこみ)と、−20℃
での光ファイバの光伝送損失とを測定した。この結果を
図4,図5に示す。−20℃での光伝送損失は、−20℃で
の光透過光量を、常温(25℃)での光透過光量で除した
比として求めた。なお、実験では、貫通孔1aと同心で
あって貫通孔1aの直径の30%の直径を有する仮想円の
円周上に、光ファイバ2Aと2Bとを位置させた。そし
て、光ファイバ2Aと2Bとを、貫通孔の中心Oを中心
として点対称に配置した。従って、貫通孔1aの直径が
4mmのときには、光ファイバ2 Aと2Bとの間隔は1.2m
mとなる。
The diameter of the through hole 1A of the insulator body 1 was variously changed as shown in FIGS. 4 and 5, and the average end face displacement (dent) of the organic insulator 3A at −20 ° C. 20 ° C
The optical transmission loss of the optical fiber was measured. The results are shown in FIGS. The optical transmission loss at −20 ° C. was obtained as a ratio of the amount of light transmitted at −20 ° C. divided by the amount of light transmitted at room temperature (25 ° C.). In the experiment, the optical fibers 2A and 2B were positioned on the circumference of an imaginary circle that was concentric with the through hole 1a and had a diameter of 30% of the diameter of the through hole 1a. Then, the optical fibers 2A and 2B are arranged point-symmetrically about the center O of the through hole. Therefore, when the diameter of the through hole 1a is 4 mm, the distance between the optical fibers 2A and 2B is 1.2m.
It becomes m.

【0020】図5から解るように、貫通孔の直径が13mm
となった時点で、−20℃での光伝送損失が急激に向上し
ている。また、貫通孔の直径が大きくなると、有機絶縁
物のへこみも上昇している。
As can be seen from FIG. 5, the diameter of the through hole is 13 mm.
At that point, the optical transmission loss at −20 ° C. has sharply improved. Further, as the diameter of the through hole increases, the dent of the organic insulating material also rises.

【0021】(実験2)図2に示すような光ファイバ複
合碍子を、図3で示した上記の方法で製造した。碍子本
体1の寸法は、全長1150mm、胴径105mm 、笠径205mm と
した。光ファイバ2A,2Bとしては、導光部である石
英ガラスの周囲を紫外線硬化型樹脂で被覆してある、外
径φ0.4mm のものを用いた。有機絶縁物材料3Bとして
は、液状のシリコーンゴムであって、硬化前の粘度が 5
00〜1000ポイズのものを使用した。
(Experiment 2) An optical fiber composite insulator as shown in FIG. 2 was manufactured by the above method shown in FIG. The insulator main body 1 has a length of 1150 mm, a body diameter of 105 mm, and a cap diameter of 205 mm. As the optical fibers 2A and 2B, those having an outer diameter of 0.4 mm in which the periphery of quartz glass which is a light guide portion is covered with an ultraviolet curable resin were used. The organic insulating material 3B is liquid silicone rubber and has a viscosity before curing.
A poise of 100 to 1000 was used.

【0022】そして、光ファイバ2A,2Bの配置を種
々変更し、光ファイバ複合碍子の絶縁性能を評価した。
具体的には、光ファイバ2Aと2Bとの間隔を表1に示
すように変えた。これと同時に、光ファイバ2Aと2B
とのうち中心Oから遠い方の光ファイバについて、貫通
孔の中心Oを中心としてこの遠い方の光ファイバを通る
仮想円を考え、この仮想円の直径の貫通孔直径に対する
比率を、表1に示すように変更した。表1に示す各例に
ついて、貫通孔1aの直径がφ6mmの碍子本体とφ10mm
の碍子本体とを、各々5本毎準備し、試験に供した。即
ち、各例について、供試体が10本毎ある。
Then, the arrangement of the optical fibers 2A and 2B was variously changed, and the insulation performance of the optical fiber composite insulator was evaluated.
Specifically, the distance between the optical fibers 2A and 2B was changed as shown in Table 1. At the same time, the optical fibers 2A and 2B
For an optical fiber farthest from the center O among the above, consider a virtual circle passing through the farthest optical fiber centered on the center O of the through hole, and Table 1 shows the ratio of the diameter of the virtual circle to the diameter of the through hole. Changed as shown. For each example shown in Table 1, the diameter of the through hole 1a is 6 mm and the insulator body is 10 mm.
The insulator body and the insulator body were prepared for every five pieces and subjected to the test. That is, for each example, there are 10 specimens.

【0023】また、標準品として、光ファイバ1本のみ
を貫通孔1aの中心に貫通孔壁と接触しないように真直
ぐに封着した供試体を、上述の各例と同じように、貫通
孔1aの直径がφ6mmの碍子本体とφ10mmの碍子本体を
各々5本、合計10本準備した。絶縁性能は、各光ファイ
バ複合碍子の閃絡電圧を測定し、各々10本の平均値を、
標準品の平均値を1.0 として相対値で評価した。参考品
として、最も絶縁性能が低下すると考えられる、2本の
光ファイバを接触させて、かつそれらの光ファイバを貫
通孔壁と接触させた供試体を、同様に10本準備し、閃絡
電圧の相対値を測定したところ0.70であった。表1に、
標準品、各例、及び参考品の閃絡電圧の相対値を示し
た。
Further, as a standard product, a test piece in which only one optical fiber is directly sealed at the center of the through hole 1a so as not to come into contact with the through hole wall is provided with the through hole 1a as in the above-mentioned examples. Insulator body with a diameter of φ6 mm and insulator body with a diameter of φ10 mm were prepared for each five pieces, for a total of ten pieces. The insulation performance is measured by measuring the flashover voltage of each optical fiber composite insulator, and averaging 10 of each,
The relative value was evaluated with the average value of the standard product as 1.0. As a reference, we prepared 10 test pieces in which two optical fibers, which are considered to have the lowest insulation performance, were brought into contact with each other, and those optical fibers were brought into contact with the through-hole wall. The relative value of was measured to be 0.70. In Table 1,
The relative values of the flashover voltage of the standard product, each example, and the reference product are shown.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から解るように、遠い方の光ファイバ
が位置する仮想円の直径の貫通孔直径に対する比率が97
%になると、絶縁性能が低下する。また、光ファイバ2
Aと2Bとの間隔を0.05mmとしても同様である。また、
遠い方の光ファイバが位置する仮想円の貫通孔直径に対
する比率は、70%以下とすると一層好ましいといえる。
光ファイバの間隔も0.2mm 以上とすると一層好ましいと
いえる。
As can be seen from Table 1, the ratio of the diameter of the virtual circle on which the distant optical fiber is located to the diameter of the through hole is 97.
When it becomes%, the insulation performance deteriorates. Also, the optical fiber 2
The same applies when the distance between A and 2B is 0.05 mm. Also,
It can be said that the ratio of the imaginary circle where the distant optical fiber is located to the diameter of the through hole is 70% or less.
It can be said that the distance between the optical fibers is more preferably 0.2 mm or more.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、貫
通孔の直径が13mm以下なので、低温時に、貫通孔の端部
付近での有機絶縁物の変位(へこみ)が小さくなり、低
温時の光伝送損失を少なくできる。しかも、貫通孔の直
径の95%の直径を有する仮想円の内側に光ファイバを位
置させているので、各光ファイバと貫通孔の壁面との接
触をなくし、この間に充分に有機絶縁物を回り込ませる
ことができる。かついずれの光ファイバ同士の間隔も
0.1mm以上としたので、光ファイバの間に充分に有機絶
縁物を回り込ませることができる。これらの結果、各光
ファイバの周囲全体に有機絶縁物が均一に回り込むの
で、接触不良箇所が生じにくくなり、光ファイバの絶縁
性能が向上する。
As described above, according to the present invention, since the diameter of the through hole is 13 mm or less, the displacement (dent) of the organic insulator near the end of the through hole becomes small at low temperature, and The optical transmission loss can be reduced. Moreover, since the optical fibers are positioned inside the virtual circle having a diameter of 95% of the diameter of the through hole, the contact between each optical fiber and the wall surface of the through hole is eliminated, and the organic insulator is sufficiently circulated between them. Can be made. And the distance between any optical fibers
Since the thickness is 0.1 mm or more, it is possible to sufficiently wrap the organic insulator between the optical fibers. As a result, since the organic insulating material uniformly wraps around the entire circumference of each optical fiber, a defective contact point is less likely to occur, and the insulating performance of the optical fiber is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b) はそれぞれ、本発明の構成を説明する
ために貫通孔1aを幅方向に切って見た模式的断面図で
ある。
1 (a) and 1 (b) are schematic cross-sectional views of a through hole 1a taken along a width direction for explaining the configuration of the present invention.

【図2】光ファイバ複合碍子の端面付近を拡大して示す
断面図である。
FIG. 2 is an enlarged cross-sectional view showing the vicinity of an end face of an optical fiber composite insulator.

【図3】碍子本体1の端面1cに型7を設置し、有機絶
縁物材料3Bを充填している状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a state in which a mold 7 is installed on the end surface 1c of the insulator main body 1 and the organic insulating material 3B is filled.

【図4】貫通孔の直径と有機絶縁物のへこみとの関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the diameter of a through hole and the dent of an organic insulating material.

【図5】貫通孔の直径と光伝送損失との関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between a diameter of a through hole and an optical transmission loss.

【符号の説明】[Explanation of symbols]

1 碍子本体 1a 貫通孔 1c 端面 2A,2B,2C,2D 光ファイバ 3A 有機絶縁物 3B 有機絶縁物材料 7 型 8 パッキング C 貫通孔の直径の95%の直径を有する仮想円 O 貫通孔の中心 l,lAB, lBC, lCD, lDA, lAC, lBD 光ファイバ
同士の間隔
1 Insulator body 1a Through hole 1c End face 2A, 2B, 2C, 2D Optical fiber 3A Organic insulator 3B Organic insulator material 7 Type 8 Packing C Virtual circle O with 95% diameter of through hole O Center of through hole l , L AB , l BC , l CD , l DA , l AC , l BD Distance between optical fibers

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 幅方向断面が略円形の貫通孔が碍子本体
に設けられ、この貫通孔に複数本の光ファイバが挿通さ
れ、これらの光ファイバが有機絶縁物によって気密に封
着されている光ファイバ複合碍子において、 前記貫通孔の直径が13mm以下であり、この貫通孔と同心
であってこの貫通孔の直径の95%の直径を有する仮想円
の内側に前記光ファイバが位置し、かついずれの光ファ
イバ同士の間隔も 0.1mm以上であることを特徴とする、
光ファイバ複合碍子。
1. An insulator body is provided with a through hole having a substantially circular cross section in a width direction, a plurality of optical fibers are inserted into the through hole, and these optical fibers are hermetically sealed by an organic insulator. In the optical fiber composite insulator, the diameter of the through hole is 13 mm or less, the optical fiber is located inside a virtual circle concentric with the through hole and having a diameter of 95% of the diameter of the through hole, and The distance between all the optical fibers is 0.1 mm or more,
Optical fiber composite insulator.
【請求項2】 幅方向断面が略円形であって直径が13mm
以下の貫通孔を備えた碍子本体を準備し、この貫通孔に
複数本の光ファイバを挿通し、この際前記貫通孔と同心
であってこの貫通孔の直径の95%の直径を有する仮想円
の内側に前記光ファイバが位置しかついずれの光ファイ
バ同士の間隔も 0.1mm以上となるように各光ファイバを
固定し、この状態で前記貫通孔内に有機絶縁物材料を充
填し、次いでこの有機絶縁物材料を加熱硬化させて前記
光ファイバを気密に封着することを特徴とする、光ファ
イバ複合碍子の製造方法。
2. The cross section in the width direction is substantially circular and has a diameter of 13 mm.
Prepare an insulator body having the following through holes, and insert a plurality of optical fibers into the through holes, at this time, a virtual circle that is concentric with the through holes and has a diameter of 95% of the diameter of the through holes. The optical fibers are located inside and each optical fiber is fixed such that the distance between any of the optical fibers is 0.1 mm or more, and in this state, the through hole is filled with an organic insulating material, and then this A method for manufacturing an optical fiber composite insulator, characterized in that an organic insulating material is heat-cured to hermetically seal the optical fiber.
JP4065784A 1992-03-23 1992-03-24 Optical fiber-combined insulator and its production Pending JPH05264824A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4065784A JPH05264824A (en) 1992-03-24 1992-03-24 Optical fiber-combined insulator and its production
US08/033,751 US5339381A (en) 1992-03-23 1993-03-18 Optical fiber composite insulators
EP93302105A EP0562778A2 (en) 1992-03-23 1993-03-19 Optical fiber composite insulators and processes for producing the same
CA002092170A CA2092170A1 (en) 1992-03-23 1993-03-22 Optical fiber composite insulators and process for producing the same
US08/177,549 US5538574A (en) 1992-03-23 1994-01-05 Process for producing optical fiber composite insulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065784A JPH05264824A (en) 1992-03-24 1992-03-24 Optical fiber-combined insulator and its production

Publications (1)

Publication Number Publication Date
JPH05264824A true JPH05264824A (en) 1993-10-15

Family

ID=13297010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065784A Pending JPH05264824A (en) 1992-03-23 1992-03-24 Optical fiber-combined insulator and its production

Country Status (1)

Country Link
JP (1) JPH05264824A (en)

Similar Documents

Publication Publication Date Title
ES2684578T3 (en) Outdoor dry type transformer
CN1989577A (en) High voltage bushing
BRPI0215491B1 (en) high strength straight tube, resin encapsulated transformer coil and method of manufacturing a resin encapsulated transformer coil
US20160144536A1 (en) Casting Method For Producing A Protective Sheath Around A Surge Arrestor And A Casting Mold Therefor
US9770862B2 (en) Method of making adhesion between an optical waveguide structure and thermoplastic polymers
KR960015429B1 (en) Optical fiber-containing insulators and process for producing the same
CN1717606B (en) High-voltage component with optical fibre and method for production thereof
CN105628249A (en) Fiber grating sensor insert for mould pressing product detection and manufacturing method thereof
JPH05264824A (en) Optical fiber-combined insulator and its production
EP1717822B1 (en) Electrical hermetic penetrant structure of low voltage
JPH06162845A (en) Insulator with built-in optical fiber
US5339381A (en) Optical fiber composite insulators
CN113270224B (en) High-voltage-resistant superconducting cable potential detection wire insulation leading-out structure
EP0449489B1 (en) Composite insulators with built-in optical fibre, and methods of making them
JP5766459B2 (en) Arrester and its test method
JP3004803B2 (en) Optical fiber composite insulator and manufacturing method thereof
JP3004802B2 (en) Manufacturing method of optical fiber composite insulator
US5286932A (en) Vacuum bulb provided with electrical insulation
CN112113682A (en) Manufacturing method of optical fiber temperature measuring probe of oil immersed transformer
US3882262A (en) Modular electrical penetration
JP3004801B2 (en) Manufacturing method of optical fiber composite insulator
CN210743702U (en) Electrical operating device and production device
JP3037815B2 (en) Optical fiber composite insulator and its manufacturing method
EP0705161B1 (en) Process for the manufacture of substantially hollow-cylindrical castings, and a substantially hollow-cylindrical casting
JP3839351B2 (en) A composite electrical insulator having an outer coating and at least one optical fiber compatible with the outer coating

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000307