JPH0456410B2 - - Google Patents

Info

Publication number
JPH0456410B2
JPH0456410B2 JP63311831A JP31183188A JPH0456410B2 JP H0456410 B2 JPH0456410 B2 JP H0456410B2 JP 63311831 A JP63311831 A JP 63311831A JP 31183188 A JP31183188 A JP 31183188A JP H0456410 B2 JPH0456410 B2 JP H0456410B2
Authority
JP
Japan
Prior art keywords
optical fiber
insulator
inner hole
test
silicone rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63311831A
Other languages
Japanese (ja)
Other versions
JPH02158017A (en
Inventor
Shoji Seike
Toshuki Mima
Masayuki Nozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63311831A priority Critical patent/JPH02158017A/en
Priority to DE68923145T priority patent/DE68923145T2/en
Priority to CA002000711A priority patent/CA2000711C/en
Priority to EP89310525A priority patent/EP0364288B1/en
Priority to KR1019890014777A priority patent/KR970004559B1/en
Priority to US07/421,410 priority patent/US5029969A/en
Publication of JPH02158017A publication Critical patent/JPH02158017A/en
Priority to US07/683,076 priority patent/US5090793A/en
Publication of JPH0456410B2 publication Critical patent/JPH0456410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4417High voltage aspects, e.g. in cladding
    • G02B6/442Insulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/005Insulators structurally associated with built-in electrical equipment

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、碍子の中央部分を貫通する内孔表面
の気密封着性を向上し、封着信頼性を高めた光フ
アイバ複合碍子に関するものである。 (従来の技術) 送配電線あるいは電力変電所では落雷事故等に
より送配電線路あるいは変電所内で発生した故障
点を速やかに検知して、復旧するシステムの開発
が望まれている。このため、従来、ポツケルス素
子、フアラデー素子を用いた光フアイバを利用し
た異常電圧、異常電流検出システムが使用されて
いる。 これらの光フアイバ複合碍子は種々構造が開示
されており、例えば特開昭60−158402号公報に於
いては、碍子の軸部の中心に貫通孔を有し、この
貫通孔に光フアイバを挿通し、貫通孔の全体また
は一部にシリコーンゴム等の有機絶縁物を充填す
ることにより光フアイバを封着し、碍子の表面漏
洩絶縁距離を減少させることを防止する技術及び
碍子の磁器全体を加熱し、貫通孔中に溶融したガ
ラスを貫通孔の全体または一部に流し込みを封着
する技術が知られている。 これらのシステムに使用する光フアイバ複合碍
子は、光フアイバを内蔵して光信号を確実に伝送
するばかりでなく、従来の碍子機能も重要であ
る。例えば、電力変電所では開閉器等の断路器を
光フアイバ複合碍子に置き換えて故障点検出シス
テムとする場合がある。この場合の光フアイバ複
合碍子は通常の断路器に使用されている中実支持
碍子と置き換える必要があるため、中実支持碍子
と同等の電気絶縁性能が要求される。 (発明が解決しようとする課題) 即ち、長時間の環境の温度変化、湿気等にさら
されても従来の碍子同様に電気絶縁性能を維持し
続けなければならない。つまり、シリコーンゴム
封着タイプ、ガラス封着タイプに限らず光フアイ
バとシリコーンゴム、ガラスの接着部の気密封着
性能あるいは碍子を貫通する内孔表面とシリコー
ンゴム、ガラスの接着部の気密封着性能を長期間
にわたつて維持することが重要な課題である。 しかしながら、碍子を貫通する内孔表面と光フ
アイバの封着材料であるシリコーンゴムまたは有
機材料との関係については、従来何等考慮がはら
われていなかつた。 本発明の目的は上述した課題を解消して、内孔
表面と封着材料との関係を調査することにより、
同一形状でも従来の中実碍子と同等の電気絶縁性
能を有する光フアイバ複合碍子を提供しようとす
るものである。 (課題を解決するための手段) 本発明の光フアイバ複合碍子は、碍子の中央部
分を貫通する内孔中に光フアイバを挿通するとと
もに、光フアイバと内孔表面をシリコーンゴムに
より封着した光フアイバ複合碍子において、前記
内孔表面を、釉薬を塗布して焼成した表面にした
ことを特徴とするものである。 また、本発明の光フアイバ複合碍子は、碍子の
中央部分を貫通する内孔中に光フアイバを挿通す
るとともに、光フアイバと内孔表面を無機材料に
より封着した光フアイバ複合碍子において、前記
内孔表面を研磨面にしたことを特徴とするもので
ある。 (作用) 本発明は有機材料または無機材料を封着材料と
して用いた光フアイバ複合碍子において、従来の
中実支持碍子と同等の電気絶縁性能を同一形状で
維持でき且つ、長期的な気密封着性に優れた内孔
表面の状態と封着材料との関係を見出したことに
よる。 すなわち、シリコーンゴムを封着材料として使
用する場合は、貫通する内孔表面を、釉薬を施し
た表面(以下施釉面と記す)とすることによつ
て、接着強度が改良されるとともに長期的な気密
性能が向上することを見出した。また、ガラス等
の無機材料を封着材料として使用する場合は、貫
通する内孔表面を研磨面にすることによつて、気
密性能が向上することを見出した。 その結果、光フアイバ複合碍子の内孔の表面を
封着材料にあわせて調整することにより、それぞ
れの封着材料に適した封着状態が得られ接着部の
気密性能が向上し、最終的に気密信頼性が高く電
気絶縁性も良好な光フアイバ複合碍子を用いた送
変電線、電力変電用の故障点検出システムを得る
ことができる。 (実施例) 以下、実際の例について説明する。 実施例 1 まず、有機材料を封着材料として使用する場合
について説明する。 磁器碍子の中央部分を貫通する内孔1を備えた
第1図に形状を示す穴開き碍子2を各種用意し
た。磁器材質は、変電所の開閉器の支持台に使用
される中実支持碍子と同一とした。碍子は胴部の
直径を105mmとし、全長を100mmとした。また碍子
軸芯中央部分の貫通する内孔径は6、8、10mmの
碍子を用意した。尚、穴開き碍子2の開放端部に
は貫通孔径に比較して10mm大きな直径で、且つ、
軸芯と30゜の角度を為すテーパ部3を設けた。こ
のテーパ部3を設けた理由は、シリコーンゴム硬
化後に環境温度の変化によつて発生する内圧を緩
和するためである。 また、碍子軸芯中央部を貫通する内孔の表面
は、碍子表面と同一の釉薬で施釉した場合(施釉
面;釉二色)及び無釉面(釉薬を塗布せずに焼成
した表面)で試験を実施した。。尚、碍子の軸芯
中央部を貫通する内孔の表面は、通常、釉薬を塗
布することが難しいため無釉の状態で作製され
る。 これらの碍子に光フアイバをシリコーンゴムで
封着した光フアイバ複合碍子を作製し性能試験を
実施した。試験体に使用する光フアイバとして
は、光フアイバ自身の気密性及び封着処理時の取
り扱い性を考慮して、一次被覆及び緩衝層のみ付
いた光フアイバを用いた。また、光フアイバの最
外層である緩衝層の表面にはシリコーンゴムとの
気密封着性を確保すべく、シランカツプリング材
等によるプライマー処理を実施した。 また、封着に使用したシリコーンゴムとして
は、高温硬化性付加反応型であり、引張強度、破
断時の伸び量が大きな材料を選択した。光フアイ
バを被覆する緩衝層およびシリコーンゴムの材料
特性値を第1表に示す。
(Field of Industrial Application) The present invention relates to an optical fiber composite insulator that has improved air-tight sealing on the surface of an inner hole passing through the central portion of the insulator, thereby increasing sealing reliability. (Prior Art) There is a desire to develop a system for quickly detecting and restoring failure points that occur in power transmission and distribution lines or power substations due to lightning strikes or the like. For this reason, conventionally, abnormal voltage and abnormal current detection systems using optical fibers using Pockels elements and Faraday elements have been used. Various structures of these optical fiber composite insulators have been disclosed. For example, in Japanese Patent Application Laid-open No. 158402/1987, the insulator has a through hole in the center of its shaft, and an optical fiber is inserted into this through hole. The optical fiber is sealed by filling all or part of the through-hole with an organic insulating material such as silicone rubber, and the technology prevents surface leakage of the insulator from reducing the insulation distance and heats the entire porcelain of the insulator. However, a technique is known in which molten glass is poured into the whole or part of the through hole to seal it. The optical fiber composite insulators used in these systems not only incorporate optical fibers to reliably transmit optical signals, but also have important conventional insulator functions. For example, in power substations, disconnectors such as switches may be replaced with optical fiber composite insulators to provide a failure point detection system. Since the optical fiber composite insulator in this case needs to replace the solid support insulator used in ordinary disconnectors, it is required to have electrical insulation performance equivalent to that of the solid support insulator. (Problem to be Solved by the Invention) In other words, it is necessary to continue to maintain electrical insulation performance like conventional insulators even if exposed to environmental temperature changes, humidity, etc. over a long period of time. In other words, it is not limited to the silicone rubber sealing type or the glass sealing type, but also the airtight sealing performance of the bond between the optical fiber, silicone rubber, and glass, or the airtight sealing of the bond between the inner hole surface passing through the insulator, silicone rubber, and glass. Maintaining performance over a long period of time is an important issue. However, no consideration has been given to the relationship between the surface of the inner hole passing through the insulator and the silicone rubber or organic material used as the sealing material for the optical fiber. The purpose of the present invention is to solve the above-mentioned problems by investigating the relationship between the inner hole surface and the sealing material.
The present invention aims to provide an optical fiber composite insulator that has the same electrical insulation performance as a conventional solid insulator even if it has the same shape. (Means for Solving the Problems) The optical fiber composite insulator of the present invention has an optical fiber inserted into an inner hole penetrating the central portion of the insulator, and an optical fiber that is sealed with silicone rubber to the surface of the inner hole. The fiber composite insulator is characterized in that the inner hole surface is a surface coated with a glaze and fired. Further, the optical fiber composite insulator of the present invention is an optical fiber composite insulator in which an optical fiber is inserted into an inner hole passing through a central portion of the insulator, and the optical fiber and the inner hole surface are sealed with an inorganic material. It is characterized by having a polished surface on the hole surface. (Function) The present invention provides an optical fiber composite insulator using an organic material or an inorganic material as a sealing material, which can maintain electrical insulation performance equivalent to that of a conventional solid support insulator in the same shape, and provide long-term hermetic sealing. This is due to the discovery of the relationship between the condition of the inner hole surface, which has excellent properties, and the sealing material. In other words, when using silicone rubber as a sealing material, by making the surface of the inner hole through which it is penetrated a glazed surface (hereinafter referred to as glazed surface), adhesive strength is improved and long-term stability is improved. It was found that the airtight performance was improved. Furthermore, it has been found that when an inorganic material such as glass is used as a sealing material, airtightness is improved by polishing the surface of the inner hole passing through the sealing material. As a result, by adjusting the surface of the inner hole of the optical fiber composite insulator to suit the sealing material, a sealing condition suitable for each sealing material can be obtained, the airtight performance of the bonded area is improved, and finally, It is possible to obtain a failure point detection system for power transmission lines and power substations using optical fiber composite insulators that have high airtight reliability and good electrical insulation properties. (Example) An actual example will be described below. Example 1 First, a case where an organic material is used as a sealing material will be described. Various types of perforated insulators 2 having shapes shown in FIG. 1 were prepared, each having an inner hole 1 passing through the center of the porcelain insulator. The porcelain material was the same as the solid support insulator used for the support stand of the switch in the substation. The diameter of the body of the insulator was 105mm, and the total length was 100mm. Further, insulators were prepared with inner hole diameters of 6, 8, and 10 mm passing through the center portion of the insulator shaft. Note that the open end of the perforated insulator 2 has a diameter 10 mm larger than the through hole diameter, and
A tapered portion 3 forming an angle of 30° with the axis is provided. The reason for providing this tapered portion 3 is to relieve internal pressure generated due to changes in environmental temperature after the silicone rubber is cured. In addition, the surface of the inner hole passing through the center of the insulator shaft can be glazed with the same glaze as the insulator surface (glazed surface; two-color glaze) or unglazed surface (surface fired without applying glaze). A test was conducted. . Note that the surface of the inner hole passing through the central part of the shaft of the insulator is usually made in an unglazed state because it is difficult to apply glaze. Optical fiber composite insulators were fabricated by sealing optical fibers to these insulators with silicone rubber, and performance tests were conducted. The optical fiber used in the test specimen was an optical fiber with only a primary coating and a buffer layer, taking into consideration the airtightness of the optical fiber itself and ease of handling during sealing. Furthermore, the surface of the buffer layer, which is the outermost layer of the optical fiber, was treated with a primer using a silane coupling material or the like to ensure airtight sealing with silicone rubber. Furthermore, as the silicone rubber used for sealing, we selected a material that is high temperature curing addition reaction type and has high tensile strength and elongation at break. Table 1 shows the material properties of the buffer layer and silicone rubber covering the optical fiber.

【表】 試験体は磁器碍子の貫通する内孔内に2本の光
フアイバを挿通して、それぞれの光フアイバを1
Kgの張力で引張つた状態で周囲をシリコーンゴム
で充填して作製した。シリコーンゴムは1Torr以
下の真空圧で30分、脱泡撹拌した後に、5Kg/cm2
で圧入した。シリコーンゴムの圧入の際には、シ
リコーンゴムを圧入する端部と反対の端部より真
空に脱気すれば、シリコーンゴムと磁器の接着
面、シリコーンゴムと光フアイバの接着面に気泡
が巻き込まれずに好ましい。シリコーンゴムを充
填後、80℃の恒温槽に6時間の保管して、シリコ
ーンゴムを硬化して光フアイバ複合碍子とした。 上記工程で作製した光フアイバ複合碍子に対し
て、耐熱限界、冷熱試験、ヒートサイクル後の
AC耐電圧試験を実施した。 試験方法を以下に示す。冷熱試験に関しては10
本の試験体を用意して、90℃の湯槽と0℃の冷水
槽を30分間隔で5回づつ浸水することによつて実
施した。試験後にクラツク発生の有無について観
察し、総ての試験体でクラツクが発生しない場合
に◎、クラツクが発生した場合を×で示した。 耐熱限界試験については10本の試験体を用意し
て、30℃/Hrで所定温度まで昇温し、所定温度
で3時間保持した後に放冷して、外観々察を実施
した。試験結果は総ての試験体で問題が無い場合
を◎、1/10の試験体に外観上のクラツク発生、シ
リコーンゴムの飛び出しあるいは透光率の変化等
の異常が発生した場合を△、2/10以上の試験体に
異常が発生した場合を×で示した。尚、試験は最
初80℃で実施し、試験後健全な試験体に関して
は、引き続き90℃、100℃、110℃、120℃で実施
した。 ヒートサイクル試験については10本の試験体を
用意して、恒温槽で90℃と−20℃に3時間保持す
ることによつて実施した。ヒートサイクル数とし
ては500、1000、1500、2000、2500、3000サイク
ルで外観によるクラツク観察及びAC耐電圧試験
を実施した。AC電圧は表面閃落電圧の80%を1
分間印加した。試験の結果、総ての試験体で問題
が無い場合を◎、1/10の試験体に内部電気貫通し
た場合は△、2/10以上の試験体で貫通した場合は
×で示した。 試験結果を第2表に示す。
[Table] The test specimen was made by inserting two optical fibers into the inner hole of the porcelain insulator, and inserting one optical fiber into each.
It was fabricated by filling the periphery with silicone rubber under tension of Kg. Silicone rubber is 5Kg/cm 2 after degassing and stirring for 30 minutes under a vacuum pressure of 1 Torr or less.
I pressed it in. When press-fitting silicone rubber, if you evacuate the air from the end opposite to the end where the silicone rubber is press-fitted, air bubbles will not get caught up in the bonding surfaces of the silicone rubber and porcelain, and the bonding surfaces of the silicone rubber and optical fiber. preferred. After filling with silicone rubber, it was stored in a constant temperature bath at 80°C for 6 hours to cure the silicone rubber and form an optical fiber composite insulator. For the optical fiber composite insulator produced in the above process, the heat resistance limit, cold temperature test, and after heat cycle
AC withstanding voltage test was conducted. The test method is shown below. 10 for cold testing
A test specimen was prepared and immersed in a 90°C hot water tank and a 0°C cold water tank five times at 30 minute intervals. After the test, the presence or absence of cracks was observed, and cases where cracks did not occur in all test specimens were marked ◎, and cases where cracks did occur were marked with ×. For the heat resistance limit test, 10 specimens were prepared, heated to a predetermined temperature at 30° C./hr, held at the predetermined temperature for 3 hours, then allowed to cool, and the external appearance was inspected. The test results are ◎ if there are no problems with all test specimens, △ if 1/10 of the test specimens have abnormalities such as cracks in appearance, popping out of silicone rubber, or changes in light transmittance. Cases in which an abnormality occurred in the test specimen of /10 or higher were indicated by ×. The test was first carried out at 80°C, and for healthy specimens after the test, it was subsequently carried out at 90°C, 100°C, 110°C, and 120°C. The heat cycle test was conducted by preparing 10 specimens and maintaining them at 90°C and -20°C for 3 hours in a constant temperature bath. The number of heat cycles was 500, 1,000, 1,500, 2,000, 2,500, and 3,000 cycles, and cracks were observed by appearance and AC withstand voltage tests were conducted. The AC voltage is 80% of the surface flash voltage.
It was applied for a minute. As a result of the test, if there was no problem in all the test specimens, it was marked ◎, if 1/10 of the test specimens had internal electrical penetration, it was △, and if 2/10 or more of the test specimens had penetration, it was marked with ×. The test results are shown in Table 2.

【表】【table】

【表】 ある。
第2表の結果から、以下のことが確認できた。
冷熱試験に関しては内孔の表面が施釉面、無釉面
とも良好な結果を得た。しかしながら、耐熱限界
試験、ヒートサイクル試験では施釉面、無釉面が
結果の差に現れた。即ち、耐熱限界試験では、貫
通する内孔直径によらず釉薬A,Bの施釉面であ
る光フアイバ複合碍子は、120℃迄問題が無いの
に対して、内孔内が無釉面の場合には、貫通孔径
が大きくなるに従つて、耐熱限界温度が低下する
結果が得られた。これは、シリコーンゴムと碍子
磁器の熱膨張係数差が大きく、耐熱限界試験時に
シリコーンゴムが膨張することによつて、碍子の
貫通する内孔に内圧が発生することによつて、磁
器が破壊したことによる。 またヒートサイクル試験の結果、貫通する内孔
の表面に釉薬A,Bを施釉した光フアイバ複合碍
子は、2500サイクル迄、クラツクの発生、AC耐
電圧の低下が無く、良好な結果が得られた。一
方、内孔表面が無釉の場合は、1500サイクルから
2000サイクルで接着部の剥離に起因したAC耐電
圧の低下が認められた。AC耐電圧の低値破壊品
と同一ヒートサイクル回数の光フアイバ複合碍子
を解体調査した結果、内孔の表面とシリコーンゴ
ムとの接着界面に剥離が認められ、ヒートサイク
ル回数が大きなもの程、剥離が進行していること
を確認した。 さらに、テストピースによる接着強度試験を実
施した。光フアイバ複合碍子に使用した碍子と同
一の磁器材質で40mmφ×10mmHのテストピースを
作製した。シリコーンゴムと接着させるテストピ
ース表面は、施釉面(釉色二水準)と無釉面で実
施した。テストピースは焼成後に所定の形状に研
磨した2枚の磁器をシリコーンゴムで接着して作
製した。シリコーンゴムは光フアイバ複合碍子と
同一条件で調合して使用した。シリコーンゴムの
硬化は、80℃、1時間で実施した。接着強度は同
一調合、硬化ロツトのテストピースを20個用意し
て、引張試験機を使用して、引張速さを25mm/分
で実施した。接着強度は接着部のシリコーンゴム
が切断した荷重を接着断面積で割つて算出した。
破壊形態はテストピース表面からシリコーンゴム
のはく離及びシリコーンゴム自身の引張破壊であ
る。 凝集破壊率は、全テストピースに占めるシリコ
ーンゴム自身の引張壊数をパーセントで示した。
試験結果を第3表に示す。
[Table] Yes.
From the results in Table 2, the following was confirmed.
Regarding the thermal testing, good results were obtained for both the glazed and unglazed inner hole surfaces. However, in the heat resistance limit test and heat cycle test, there was a difference in the results between the glazed and unglazed surfaces. In other words, in the heat resistance limit test, optical fiber composite insulators with glazed surfaces of glazes A and B have no problems up to 120°C, regardless of the diameter of the inner hole that penetrates, whereas when the inner hole is unglazed. The results showed that as the diameter of the through hole increases, the limit temperature of heat resistance decreases. This is because the difference in thermal expansion coefficient between silicone rubber and insulator porcelain is large, and when the silicone rubber expands during the heat resistance limit test, internal pressure is generated in the inner hole that the insulator passes through, causing the porcelain to break. It depends. Additionally, as a result of a heat cycle test, the optical fiber composite insulator with glazes A and B applied to the surface of the inner hole that penetrates showed good results with no cracks or decrease in AC withstand voltage up to 2500 cycles. . On the other hand, if the inner hole surface is unglazed, from 1500 cycles
After 2000 cycles, a decrease in AC withstand voltage was observed due to peeling of the adhesive. As a result of a disassembly investigation of an optical fiber composite insulator that had undergone the same number of heat cycles as a product with a low AC withstand voltage, peeling was observed at the adhesive interface between the surface of the inner hole and the silicone rubber, and the greater the number of heat cycles, the more peeling occurred. confirmed that it was in progress. Furthermore, an adhesive strength test was conducted using test pieces. A test piece measuring 40 mmφ x 10 mmH was prepared from the same porcelain material as the insulator used for the optical fiber composite insulator. The surface of the test piece to be bonded to the silicone rubber was a glazed surface (two levels of glaze color) and an unglazed surface. The test piece was prepared by bonding two pieces of porcelain that had been fired and polished into a predetermined shape using silicone rubber. The silicone rubber was prepared and used under the same conditions as the optical fiber composite insulator. The silicone rubber was cured at 80°C for 1 hour. Adhesive strength was tested using a tensile tester at a tensile speed of 25 mm/min using 20 test pieces of the same formulation and cured lot. The adhesive strength was calculated by dividing the load at which the silicone rubber of the adhesive part was cut by the adhesive cross-sectional area.
The forms of failure were peeling of the silicone rubber from the surface of the test piece and tensile failure of the silicone rubber itself. The cohesive failure rate was expressed as a percentage of the number of tensile failures of the silicone rubber itself in all test pieces.
The test results are shown in Table 3.

【表】 は同ブラウン釉薬である。
第3表の接着強度試験の結果、施釉面のテスト
ピースは接着強度が高く、破壊形態もシリコーン
ゴム自身の引張強度に依存した凝集破壊であり、
接着界面が強固であることが判る。また、無釉面
とシリコーンゴムの接着強度が高く、封着後の気
密特性に優れていることが判る。 実施例 2 次に、無機材料を封着材料として使用する場合
について説明する。 磁器碍子の中央部分を貫通する内孔1を備えた
第1図に示す穴開き碍子2を各種用意した。磁器
材質は、変電所の開閉器の支持台に使用される中
実支持碍子と同一とした。碍子は胴部の直径を
105mmとし、全長を1000mmとした。また碍子軸芯
中央部の貫通する内孔径は6mmである。また、内
孔の両端部はテーパ角度5゜、碍子の軸方向に50mm
の開孔部を有する。 内孔の内面は、中実支持碍子の表面に使用して
いる白色釉を施釉した場合、無釉の磁器焼成面と
した場合及び焼成後の磁器を研磨した状態で実施
した。 光フアイバはコア直径80μm、クラツド直径
125μmの石英ガラス系フアイバである。光フア
イバはそれ自身の気密性及び取り扱い性を考慮し
て一次被覆及び緩衝層のみ付いた光フアイバを使
用した。更に封着部のガラスと光フアイバとの気
密封着を完全のものとし、且つ、熔融時の高温に
よつて有機物の光フアイバの被覆部が燃焼し封着
用ガラスを発泡させないために、光フアイバとガ
ラスの封着部に相当する被覆部35mmをエタノール
中に30分浸けた後、ジヤケツトストリツパーを用
いて機械的に除去した。 碍子の端部開孔部と同一のテーパー角度5゜の外
周部で、底部に光フアイバの挿通孔を有し、ガラ
スをあらかじめ塗布したコバール製の円筒体を作
製した。上記形状に加工成形したコバール製の円
筒体はあらかじめ、FeCl3溶液を用いて酸処理に
よる表面洗浄、脱脂洗浄を実施した。また、ガラ
スとの濡れ特性を改善し、ガラス熔融時の接着反
応を完全なものとするための酸化処理を実施し
た。酸化処理条件は800℃の大気中で20分である。
このコバール製の円筒体の外周部にガラスをスプ
レーにて約1mm厚さに塗布した。 この後、この円筒体を80℃、30分で乾燥し、電
気炉を使用して320℃、1時間のガラスの仮焼を
実施した。このようにガラスを外周部に仮焼した
円筒体を碍子の貫通する内孔の開孔部にセツトす
る。尚、ガラスは低融点、低熱膨張係数の鉛硼酸
系ガラスを使用した。 更に円筒体の外周部と同一のテーパ角度を持
ち、長さ35mm、円筒体の内径と同一外径で光フア
イバの貫通する内孔を有するガラス仮焼体を円筒
体の底部の上にセツトする。ガラス仮焼体は鉛硼
酸系ガラスに少量のメチルセルロース(MC)に
有機バインダーを添加し調合水とともにプレス成
形した後、外周部加工、光フアイバ挿通孔の加工
を実施し、50℃/Hrで昇温し、320℃で1時間保
持することで作製した。 次に碍子の外周に七回巻きの銅製のコイルを配
置して高周波誘導電圧発生装置によりコイルに高
周波電圧を印加する。この高周波電圧によつてコ
バールの円筒体に高周波誘導電流が発生して自己
加熱される。円筒体が500℃となるように高周波
電圧、電流条件を設定した。 その結果、高周波電圧印加後、約20分後に所定
の500℃となつた。500℃で約10分保持し、この間
に円筒体の上端面を20Kgの荷重により押圧し、円
筒体の外周部と端部開孔部を気密封着した。この
後、自然冷却を実施した。 更に、碍子の開孔部のガラス封着部から突出し
た光フアイバの被覆部を保護する目的で、真空脱
泡したシリコーンゴムを注入器を用いて充填し、
80℃1時間で硬化した。上述した一連の製造工程
はまず碍子の片端部で封着工程、被覆部の補強工
程が終了した後、碍子を反転して、残りの片端部
を実施することにより光フアイバ複合碍子を作製
した。この後、通常の碍子と同一の方法で、フラ
ンジ金具をセメント付けして、光フアイバ複合碍
子が完成した。 本実施例で使用した碍子用磁器材質、封着用ガ
ラス材質を第4表に示す。
[Front] is the same brown glaze.
As a result of the adhesive strength test shown in Table 3, the test piece with the glazed surface had high adhesive strength, and the failure mode was cohesive failure depending on the tensile strength of the silicone rubber itself.
It can be seen that the adhesive interface is strong. It is also seen that the adhesive strength between the unglazed surface and the silicone rubber is high, and the airtightness after sealing is excellent. Example 2 Next, a case where an inorganic material is used as a sealing material will be described. Various types of perforated insulators 2 shown in FIG. 1 were prepared, each having an inner hole 1 passing through the center of the porcelain insulator. The porcelain material was the same as the solid support insulator used for the support stand of the switch in the substation. The diameter of the body of the insulator is
105mm, and the total length was 1000mm. The diameter of the inner hole passing through the center of the insulator shaft is 6 mm. In addition, both ends of the inner hole have a taper angle of 5°, and are 50mm in the axial direction of the insulator.
It has an opening. The inner surface of the inner hole was glazed with the white glaze used on the surface of the solid support insulator, an unglazed porcelain fired surface, and the fired porcelain was polished. The optical fiber has a core diameter of 80 μm and a cladding diameter.
It is a 125 μm silica glass fiber. Considering the optical fiber's own airtightness and ease of handling, an optical fiber with only a primary coating and a buffer layer was used. Furthermore, the optical fiber is used to ensure a perfect airtight seal between the glass in the sealing part and the optical fiber, and to prevent the coating of the organic optical fiber from burning due to the high temperature during melting and causing the sealing glass to foam. A 35 mm portion of the coated portion corresponding to the sealed portion of the glass was immersed in ethanol for 30 minutes, and then mechanically removed using a jacket stripper. A cylindrical body made of Kovar was prepared, having an outer periphery with a taper angle of 5°, which is the same as the opening at the end of the insulator, and an optical fiber insertion hole at the bottom, and which was coated with glass in advance. The cylindrical body made of Kovar, which had been processed and molded into the above shape, was previously subjected to surface cleaning and degreasing by acid treatment using FeCl 3 solution. In addition, oxidation treatment was carried out to improve the wetting characteristics with glass and perfect the adhesion reaction during glass melting. The oxidation treatment conditions were 20 minutes in the air at 800°C.
Glass was sprayed onto the outer periphery of this cylindrical body made of Kovar to a thickness of about 1 mm. Thereafter, this cylindrical body was dried at 80°C for 30 minutes, and the glass was calcined at 320°C for 1 hour using an electric furnace. The cylindrical body with the glass calcined on the outer periphery is set in the opening of the inner hole passing through the insulator. Incidentally, the glass used was lead borate glass having a low melting point and a low coefficient of thermal expansion. Furthermore, a glass calcined body having the same taper angle as the outer periphery of the cylinder, a length of 35 mm, and an inner hole through which the optical fiber passes with the same outer diameter as the inner diameter of the cylinder is set on the bottom of the cylinder. . The glass calcined body is made by adding a small amount of methylcellulose (MC) and an organic binder to lead-borate glass, press-forming it with mixed water, processing the outer periphery, processing the optical fiber insertion hole, and heating at 50℃/hour. It was prepared by heating and holding at 320°C for 1 hour. Next, a seven-turn copper coil is placed around the outer circumference of the insulator, and a high frequency voltage is applied to the coil by a high frequency induced voltage generator. This high-frequency voltage generates a high-frequency induced current in the Kovar cylinder, causing it to self-heat. High frequency voltage and current conditions were set so that the temperature of the cylinder was 500°C. As a result, the predetermined temperature of 500°C was reached approximately 20 minutes after the application of the high-frequency voltage. The temperature was maintained at 500° C. for about 10 minutes, and during this time the upper end surface of the cylinder was pressed with a load of 20 kg to airtightly seal the outer periphery of the cylinder and the end opening. After this, natural cooling was performed. Furthermore, in order to protect the coating of the optical fiber protruding from the glass sealing part of the opening of the insulator, vacuum-defoamed silicone rubber was filled using a syringe.
It was cured at 80°C for 1 hour. In the series of manufacturing steps described above, first, the sealing process and the reinforcing process of the covering part were completed at one end of the insulator, and then the insulator was reversed and the process was carried out at the remaining end to produce an optical fiber composite insulator. After this, the flange fittings were attached with cement using the same method as for ordinary insulators, and the optical fiber composite insulator was completed. Table 4 shows the porcelain material for the insulator and the glass material for sealing used in this example.

【表】 上記工程で作製した光フアイバ複合碍子に対
し、実施例1と同様に、耐熱限界試験、冷熱試
験、ヒートサイクル後のAC耐電圧試験を実施し
た。なお、耐熱限界試験は最初120℃で実施し、
試験後健全な試験体に関しては、引き続き130、
140、150℃で実施した。またヒートサイクル数は
2000、3000、4000、5000サイクルとした。 試験結果を第5表に示す。
[Table] Similar to Example 1, the optical fiber composite insulator produced in the above process was subjected to a heat resistance limit test, a cold heat test, and an AC withstand voltage test after heat cycling. The heat resistance limit test was first conducted at 120℃,
Regarding test specimens that are healthy after testing, 130,
It was carried out at 140 and 150°C. Also, the number of heat cycles is
The cycles were 2000, 3000, 4000, and 5000. The test results are shown in Table 5.

【表】 (注) 但し、白釉は通常の中実支持碍子に使用されて
いるものである。
第5表の結果から、以下のことが確認できた。
冷熱試験に関しては貫通する内孔の内面が無釉面
及び研磨面は破壊が発生せず、良好な結果が得ら
れた。一方、施釉面はガラスと内孔内面との間で
クラツクが発生した。耐熱限界試験では、内孔内
面が無釉面、研磨面である光フアイバ複合碍子は
150℃迄問題がないのに対して内孔内面が釉薬の
場合は、140℃で一部にクラツクの発生が認めら
れた。ヒートサイクル試験の結果、内孔内面が無
釉面あるいは研磨面の光フアイバ複合碍子は、
5000サイクル迄、クラツクの発生、AC耐電圧の
低下が無く良好な結果が得られたものの、内孔内
面が施釉面の場合には、3000サイクルで内部の絶
縁低下によるAC耐電圧の低下が認められた。AC
耐電圧の低値破壊品と同一ヒートサイクル回数の
光フアイバ複合碍子を解体調査した結果、ガラス
と内孔内面の封着部にクラツクが認められ、内孔
の軸芯中央部の空洞部に水分の浸入が認められ
た。また、光フアイバと内孔表面を無機材料によ
り封着する場合は、内孔表面を研磨面とした方が
無釉面とした場合よりも耐ヒートサイクル性能に
優れている。 さらに、テストピースによる接着強度試験を実
施した。光フアイバ複合碍子に使用した碍子と同
一の磁器材質で20mmφ×10mmHのテストピースを
作製した。ガラスと接着させるテストピース表面
は、無釉面、研磨面及び施釉面で実施した。テス
トピースは焼成後に所定の形状に端面を研磨した
後、接着面にガラスをスプレー塗布して、350℃
で1時間仮焼した後に、2枚のテストピースのガ
ラス塗布面同士を密着して500℃で1時間焼成し、
接着した。接着強度は各水準でテストピースを20
個用意し、引張試験機を使用して、引張速さを
0.5mm/分で実施した。接着強度は接着部が破壊
した荷重を接着断面積を割つて算出した。凝集破
壊率は、全テストピースに占めるガラス自身の引
張破壊数をパーセントで示した。試験結果を第6
表に示す。
[Table] (Note) However, white glaze is the one used for ordinary solid support insulators.
From the results in Table 5, the following was confirmed.
Regarding the thermal testing, good results were obtained with no breakage occurring on the unglazed and polished inner surfaces of the inner holes. On the other hand, cracks occurred between the glass and the inner surface of the inner hole on the glazed surface. In heat resistance limit tests, optical fiber composite insulators with an unglazed inner hole and a polished surface showed
While there were no problems up to 150°C, cracks were observed in some parts at 140°C when the inner surface of the inner hole was glazed. As a result of the heat cycle test, optical fiber composite insulators with an unglazed or polished inner hole inner surface showed
Although good results were obtained with no cracks or decrease in AC withstand voltage up to 5,000 cycles, if the inner surface of the inner hole was a glazed surface, a decrease in AC withstand voltage was observed after 3,000 cycles due to a decrease in internal insulation. It was done. A.C.
As a result of dismantling and investigating an optical fiber composite insulator that had undergone the same number of heat cycles as the low-withstand-voltage destroyed product, cracks were found in the seal between the glass and the inner surface of the inner hole, and moisture was found in the cavity at the center of the inner hole's axis. Infiltration was observed. Further, when the optical fiber and the inner hole surface are sealed with an inorganic material, the heat cycle resistance performance is better when the inner hole surface is a polished surface than when it is an unglazed surface. Furthermore, an adhesive strength test was conducted using test pieces. A test piece measuring 20 mmφ x 10 mmH was prepared from the same porcelain material as the insulator used for the optical fiber composite insulator. The surface of the test piece to be bonded to glass was an unglazed surface, a polished surface, and a glazed surface. After the test piece was fired, the end face was polished to the specified shape, and the adhesive surface was spray-coated with glass and heated to 350°C.
After calcining for 1 hour at
Glued. Adhesive strength is determined by 20 test pieces at each level.
Prepare each piece and use a tensile tester to test the tensile speed.
It was carried out at 0.5 mm/min. The adhesive strength was calculated by dividing the load at which the adhesive part broke by the adhesive cross-sectional area. The cohesive failure rate is the number of tensile failures of the glass itself in all test pieces expressed as a percentage. Test results in the 6th
Shown in the table.

【表】 (注) 但し、施釉面は碍子の表面として使用さ
れる白色釉薬を使用した。
第6表の接着強度試験の結果、無釉面あるいは
研磨面がガラスとの接着面であるテストピースは
接着強度が高く、破壊始発点も接着面ではなく、
ガラス内部であることが判つた。一方、施釉面の
テストピースは、総て接着面から破壊が始発して
いて、ガラスと釉薬の接着強度が低いことが判つ
た。 (発明の効果) 以上の説明から明らかなように、本発明の光フ
アイバ複合碍子によれば、光フアイバが挿通する
内孔の表面を封着材料にあわせて調整することに
より、それぞれの封着材料に適した封着材料が得
られ接着部の気密性能が向上し、従来の中実支持
碍子と同等の電気絶縁性を同一形状で維持でき
る。その結果、従来の電力変電所等の開閉器に使
用されている中実支持碍子と交換しても信頼性を
保てるため、変電所等における故障点検出システ
ムを容易に構成することができる。
[Table] (Note) However, the glazed surface was a white glaze that is used for the surface of insulators.
As a result of the adhesive strength test shown in Table 6, the adhesive strength of the test pieces in which the unglazed or polished surface was the adhesive surface to the glass was high, and the starting point of failure was not the adhesive surface.
It turned out to be inside the glass. On the other hand, all of the test pieces with glazed surfaces showed failure starting from the adhesive surface, indicating that the adhesive strength between glass and glaze was low. (Effects of the Invention) As is clear from the above description, according to the optical fiber composite insulator of the present invention, by adjusting the surface of the inner hole through which the optical fiber is inserted in accordance with the sealing material, each sealing A sealing material suitable for the material is obtained, the airtight performance of the bonded part is improved, and electrical insulation properties equivalent to those of conventional solid support insulators can be maintained in the same shape. As a result, reliability can be maintained even when replacing solid support insulators used in conventional switches in power substations, etc., so that a failure point detection system in a substation, etc. can be easily configured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光フアイバ複合碍子で使用し
た碍子の形状を示す図である。 1……内孔、2……碍子、3……テーパ部。
FIG. 1 is a diagram showing the shape of an insulator used in the optical fiber composite insulator of the present invention. 1...Inner hole, 2...Insulator, 3...Tapered part.

Claims (1)

【特許請求の範囲】 1 碍子の中央部分を貫通する内孔中に光フアイ
バを挿通するとともに、光フアイバと内孔表面を
シリコーンゴムにより封着した光フアイバ複合碍
子において、前記内孔表面を、釉薬塗布して焼成
した表面にしたことを特徴とする光フアイバ複合
碍子。 2 碍子の中央部分を貫通する内孔中に光フアイ
バを挿通するとともに、光フアイバと内孔表面を
無機材料により封着した光フアイバ複合碍子にお
いて、前記内孔表面を研磨面にしたことを特徴と
する光フアイバ複合碍子。
[Scope of Claims] 1. An optical fiber composite insulator in which an optical fiber is inserted into an inner hole penetrating the central portion of the insulator, and the optical fiber and the inner hole surface are sealed with silicone rubber. An optical fiber composite insulator characterized by having a glazed and fired surface. 2. An optical fiber composite insulator in which an optical fiber is inserted into an inner hole penetrating the central portion of the insulator and the optical fiber and the inner hole surface are sealed with an inorganic material, characterized in that the inner hole surface is a polished surface. Optical fiber composite insulator.
JP63311831A 1988-10-14 1988-12-12 Optical fiber composite insulator Granted JPH02158017A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63311831A JPH02158017A (en) 1988-12-12 1988-12-12 Optical fiber composite insulator
DE68923145T DE68923145T2 (en) 1988-10-14 1989-10-13 Composite isolator with optical fiber and process for its production.
CA002000711A CA2000711C (en) 1988-10-14 1989-10-13 Optical fiber composite insulator and method of producing the same
EP89310525A EP0364288B1 (en) 1988-10-14 1989-10-13 Optical fiber composite insulator and method of producing the same
KR1019890014777A KR970004559B1 (en) 1988-10-14 1989-10-14 Optical fiber composite insulator and method of producing the same
US07/421,410 US5029969A (en) 1988-10-14 1989-10-16 Optical fiber composite insulator and method of producing the same
US07/683,076 US5090793A (en) 1988-10-14 1991-04-10 Optical fiber composite insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311831A JPH02158017A (en) 1988-12-12 1988-12-12 Optical fiber composite insulator

Publications (2)

Publication Number Publication Date
JPH02158017A JPH02158017A (en) 1990-06-18
JPH0456410B2 true JPH0456410B2 (en) 1992-09-08

Family

ID=18021928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311831A Granted JPH02158017A (en) 1988-10-14 1988-12-12 Optical fiber composite insulator

Country Status (1)

Country Link
JP (1) JPH02158017A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290016A (en) * 1986-06-07 1987-12-16 日本碍子株式会社 Ceramic insulator with light transmitting body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290016A (en) * 1986-06-07 1987-12-16 日本碍子株式会社 Ceramic insulator with light transmitting body

Also Published As

Publication number Publication date
JPH02158017A (en) 1990-06-18

Similar Documents

Publication Publication Date Title
KR970004559B1 (en) Optical fiber composite insulator and method of producing the same
KR960015429B1 (en) Optical fiber-containing insulators and process for producing the same
JPH0461450B2 (en)
US3308414A (en) Porous-refractory encapsulant for cous and coil encapsulated therewith
EP1667175B1 (en) Compound and hollow insulator and manufacturing method thereof
JPH0536426A (en) Solid electrolytic fuel cell
US5977487A (en) High voltage insulator of ceramic material having shrink-fit cap and method of making
JPH0456410B2 (en)
US1164739A (en) Method of making insulating devices.
US3198877A (en) Pothead closure sealed with bismuth-tin alloy
JPH03276522A (en) Optical fiber composite insulator and its manufacture
JPH03280312A (en) Optical fiber compound insulator
US3425121A (en) Method of making high-temperature encapsulated apparatus
JPH02256004A (en) Optical fiber-combined insulator and production thereof
JPH02158018A (en) Optical fiber composite insulator
CN212485038U (en) Optical fiber insulator for transformer substation
CN111551801B (en) Thermal stress cycle test method and device for hollow composite insulator
KR200308484Y1 (en) Standard electrode for probe having a function of measurement concentration of oxygen in molten metal
JPS5853169A (en) Lead wire device and method of producing same
JPH0378728B2 (en)
JPH0664954B2 (en) Optical fiber composite insulator and method for manufacturing the same
JPH0159561B2 (en)
JP3004803B2 (en) Optical fiber composite insulator and manufacturing method thereof
JPH09320368A (en) Organic composite insulator and its manufacture
JPH02129816A (en) Resin molded branch bushing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 17