JPH02129816A - Resin molded branch bushing - Google Patents

Resin molded branch bushing

Info

Publication number
JPH02129816A
JPH02129816A JP28118788A JP28118788A JPH02129816A JP H02129816 A JPH02129816 A JP H02129816A JP 28118788 A JP28118788 A JP 28118788A JP 28118788 A JP28118788 A JP 28118788A JP H02129816 A JPH02129816 A JP H02129816A
Authority
JP
Japan
Prior art keywords
embedded
conductor
resin
solution
branch bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28118788A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kagawa
加川 芳弘
Michihiko Koyama
充彦 小山
Mitsuru Oyamada
小山田 満
Hiroshi Watanabe
博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28118788A priority Critical patent/JPH02129816A/en
Publication of JPH02129816A publication Critical patent/JPH02129816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve adhesion to cast resin and eliminate cracks caused by the thermal shock and enable excellent corona resistance and air tightness by providing the formation film made of Na2Co3/Na2CrO4.4H2O on the surface of an embedded conductor made of aluminum. CONSTITUTION:After an aluminum embedded conductor 2 of a T type branch bushing is cleaned, it is dipped in a solution prepared by mixing 2 solution, where 15g/l of Na2CrO4.4H2O is prepared, with a solution, where 45g/l of Na2CO3 is prepared, at the rate of 3/1 with respect to Na2CO3/NaCrO4 4H2O. At this stage, the temperature of the treated solution is maintained at 90-95 deg.C, and the dip time is 10-15 minutes. After the etching film 3 is performed on the embedded conductor 2 and the conductor is sufficiently washed by the water, it is dried to eliminate the moisture. The conductor 2 having the film 3 mainly composed of the aluminium oxide is embedded in the mold, and the cast resin 1 mainly composed of the epoxy resin is embedded in the mold under the vacuum condition. The T-type branch bushing formed with an insulating layer made of the resin 1 is thus obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、中心導体にアルミニウム部材を用いる注型ブ
ッシングに係り、特にその部材の前処理法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a cast bushing using an aluminum member as a center conductor, and particularly relates to a pretreatment method for the member.

(従来の技術) 注型絶縁は、電気絶縁機能と構造物としての機能を合せ
持ち、複雑な形状の製品がボイドレスで得られることか
ら高電圧機器の固体絶縁の分野に幅広く使用されている
。また、最近の電気機器は。
(Prior Art) Cast insulation has both electrical insulation function and structural function, and is widely used in the field of solid insulation for high-voltage equipment because it allows products with complex shapes to be obtained without voids. Also, recent electrical equipment.

大容量化及びコンパクト化等によるトータルコストの低
減及び設置スペースの縮小が望まれ、使用される各種部
品も付加価値の大きいものが必要とされている。
It is desired to reduce the total cost and reduce the installation space by increasing the capacity and making the device more compact, and the various parts used are also required to have high added value.

このことから、各種電気機器においては、シリコーンオ
イル、フロン液、石油系の絶縁油と固体絶縁の組合せ、
あるいは、六フッ化硫黄(以下、SF6という)、フロ
ンガスと固体絶縁の組合せによる使用が一般的となって
いる。
For this reason, in various electrical equipment, combinations of silicone oil, fluorocarbon liquid, petroleum-based insulating oil, and solid insulation,
Alternatively, it is common to use a combination of sulfur hexafluoride (hereinafter referred to as SF6), fluorocarbon gas, and solid insulation.

そのため、使用される各種絶縁部品に対しても、機械特
性はもとより、高レベルの電気絶縁特性ならびに絶縁油
、絶縁ガスに対する気密性が要求される。
Therefore, the various insulating parts used are required to have not only mechanical properties but also high-level electrical insulation properties and airtightness against insulating oil and gas.

例えば、SF、ガス絶縁タイプの閉鎖配電盤(以下C−
GISという)には、SF6ガスが封入されているC−
G I S内部と外部の電源及び負荷側を接続するため
に、T型分岐ブッシングが用いられている。
For example, SF, gas insulated type closed switchboard (hereinafter C-
(referred to as GIS) is a C-
A T-shaped branch bushing is used to connect the inside of the GIS and the external power source and load side.

T型分岐ブッシングは、エポキシ樹脂を主成分とする注
型材料により、注型法によって製作されている。
The T-shaped branch bushing is manufactured by a casting method using a casting material whose main component is epoxy resin.

また、T型分岐ブッシングの埋込み導体は、−部に銅製
のものも使用されている、軽量化、加工性、コスト面及
び熱膨張係数が注型材料に近く、亀裂が発生しにくい等
の点からアルミニウム導体が広く用いられている。
In addition, the embedded conductor of the T-shaped branch bushing is made of copper at the negative part, and it is lightweight, easy to process, has a cost, and has a coefficient of thermal expansion close to that of cast material, and is less prone to cracking. Aluminum conductors are widely used.

T型分岐ブッシングの埋込み導体2は、第1図に示すT
型分岐ブッシングの断面図から分るように、外径の異な
るおおよそ 105の部材とφ22のφ 部材からなる。
The embedded conductor 2 of the T-type branch bushing is the T-shaped branch bushing shown in FIG.
As can be seen from the cross-sectional view of the type branch bushing, it consists of approximately 105 members with different outer diameters and a φ22 member.

埋込み導体2の製作は、あらかじめ、それぞれの部材を
所定の形状に加工し、溶接により一体化する方法あるい
は、鍛造により両者を一度に成形する方法がとられてい
る。従って、埋込み導体2のつけ根部に当然のことなが
ら、Rの加工部Aが生ずる。注型絶縁の場合、このRの
加工部Aが最も重要で、応力集中を余儀なくされる部品
である。
The embedded conductor 2 is manufactured by processing each member into a predetermined shape in advance and integrating them by welding, or by molding both parts at once by forging. Therefore, as a matter of course, a rounded portion A is formed at the base of the embedded conductor 2. In the case of cast insulation, the processed part A of this R is the most important part, and is the part where stress concentration is forced.

注型材料1の主成分であるエポキシ樹脂は、硬化時に必
ず体積収縮を起し、残留応力として注型樹脂1に残る。
The epoxy resin, which is the main component of the casting material 1, always undergoes volumetric contraction during curing, and remains in the casting resin 1 as residual stress.

更に周囲温度の変化により、埋込み感体2と注型樹脂1
の熱膨張係数の違いによる熱応力が加味される。このた
め、Rの加工部Aには、埋込み導体2の平滑部に比べ、
かなり高いレベルの応力が発生する。この応力が注型材
料1と埋込み導体2の接着強さより大きい場合、剥離が
生じてSF、ガスのリークの発生や電気絶縁に有害なコ
ロナの発生及び注型材料1のに対する亀裂の発生を誘発
する。ガスリーク、コロナ及び亀裂の発生は、最終的に
機器の短絡事故を誘発し、重大事故を招く。
Furthermore, due to changes in ambient temperature, the embedded sensing element 2 and the casting resin 1
Thermal stress due to the difference in thermal expansion coefficient is taken into account. Therefore, in the processed part A of R, compared to the smooth part of the embedded conductor 2,
Fairly high levels of stress occur. If this stress is greater than the adhesive strength between the casting material 1 and the embedded conductor 2, peeling will occur, causing leakage of SF and gas, generation of corona harmful to electrical insulation, and cracking of the casting material 1. do. Gas leaks, coronas, and cracks eventually cause short circuits in equipment, leading to serious accidents.

このため、従来は、埋込み感体2の表面にサンドブラス
ト処理やエポキシ樹脂、フェノール樹脂及びシアノアク
リレート等からなる樹脂被膜(以下プライマーという)
を形成し、注型樹脂1と埋込み導体2の接着力を改良し
ている。
For this reason, conventionally, the surface of the embedded sensitive body 2 is coated with sandblasting or a resin coating (hereinafter referred to as primer) made of epoxy resin, phenol resin, cyanoacrylate, etc.
is formed to improve the adhesive strength between the casting resin 1 and the embedded conductor 2.

しかし、サンドブラストによる接着力の改質は、所定の
大きさの粒子を吹きつけ表面を凹凸に粗し、一般にいわ
れている投錨効果により接着力を改善している。しかし
、サンドブラストによる表面粗さは通常45〜130p
と粗く、四部の深い部分が、多量に残った場合、第2図
に示すととく粗面化した埋込み導体2表面の凹部を注型
樹脂1で完全に充てんすることは困難であり、注型後微
小ボイド4となって埋込み導体2の表面に存在する。こ
の微小ボイド4の存在は、コロナに対して有害であり、
特にT型分岐ブッシングのように高電圧で使用される機
器におけろ微小ボイド4の存在は、電気絶縁特性に重大
な影響を与える。
However, in modifying the adhesive strength by sandblasting, particles of a predetermined size are sprayed to make the surface rough, and the adhesive strength is improved by what is generally called an anchoring effect. However, the surface roughness due to sandblasting is usually 45 to 130p.
If a large amount of rough and deep parts remain, as shown in Figure 2, it will be difficult to completely fill the recesses on the surface of the embedded conductor 2, which has a particularly rough surface, with the casting resin 1. Thereafter, microvoids 4 are present on the surface of the buried conductor 2. The existence of this microvoid 4 is harmful to the corona,
In particular, the presence of microvoids 4 in devices used at high voltages, such as T-type branch bushings, has a significant impact on electrical insulation properties.

また、プライマーによる表面処理の場合、注型樹脂1と
埋込み感体2の間に薄膜として介在し、双方の接着力の
改善に寄与するものであり、広く使用されている。
In addition, in the case of surface treatment with a primer, the primer is widely used because it is interposed as a thin film between the casting resin 1 and the embedded sensitive body 2 and contributes to improving the adhesive strength of both.

しかし、メカニカルに接着力を改良するサンドブラスト
処理に比べ、プライマー処理は、ケミカル的な接着であ
り、接着力はかなり劣る。
However, compared to sandblasting, which mechanically improves adhesive strength, primer treatment uses chemical adhesion and is considerably inferior in adhesive strength.

また、プライマーは、有機物であり、無機質布てん材を
含んでいない。このため、熱膨張係数が大きく、埋込み
導体2との熱膨張係数の差により、急熱急冷を受けた場
合、プライマーの薄膜に亀裂が発生しやすい。
Further, the primer is an organic substance and does not contain an inorganic fabric material. For this reason, the primer has a large coefficient of thermal expansion, and due to the difference in coefficient of thermal expansion with the embedded conductor 2, cracks are likely to occur in the thin film of the primer when subjected to rapid heating and cooling.

プライマーの亀裂の発生は、コロナ特性が低下するのみ
ならず注型材料1の亀裂をも誘発し、ガスリークに対し
ても重大な影響を与える。
The occurrence of cracks in the primer not only deteriorates the corona properties but also induces cracks in the casting material 1, and has a serious effect on gas leakage.

(発明が解決しようとする課題) 本発明は、前述のような問題点に鑑みなされたもので、
アルミニウム製埋込み感体2の表面を改質し、注型樹脂
1との接着力を大幅に改良することにより耐コロナ性及
び耐気密性にすぐれたC −GIS用T型分岐ブッシン
グを得ることを目的とするものである。
(Problem to be solved by the invention) The present invention has been made in view of the above-mentioned problems.
By modifying the surface of the aluminum embedded sensing element 2 and greatly improving its adhesion with the casting resin 1, it is possible to obtain a T-shaped branch bushing for C-GIS with excellent corona resistance and airtightness. This is the purpose.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明は、アルミニウム製埋込み導体2の表面にクロム
酸ソーダ(Na2Cr04・4 H2O)と無水炭酸ソ
ーダ(Nat C03)によって厚さ0.1〜0.3a
mの化成被膜3を形成し、その周囲をエポキシ樹脂を主
成分とする文型樹脂1で注型したことを特徴とする。
(Means and Effects for Solving the Problems) The present invention provides a coating with a thickness of 0.1 to 0.3 a on the surface of the aluminum embedded conductor 2 using sodium chromate (Na2Cr04.4 H2O) and anhydrous soda carbonate (Nat C03).
It is characterized in that a chemical conversion film 3 of m is formed and the surrounding area is cast with a pattern resin 1 whose main component is epoxy resin.

(実施例) 以下実施例について説明する。アルミニウムの表面処理
法は種々あり、処理薬品もいろいろである。このため、
4種の処理液、例えば日本バーカー社のボンデライト#
713とアルポンドCRN、日本CBケミカル社のケミ
ボンダー334及び本発明によるNa2CO3/Na2
CrO4・4H2Oの処理液で処理したアルミニウム板
を用い引張剪断接着強さの比較を行なった。
(Example) Examples will be described below. There are various methods for surface treatment of aluminum, and various treatment chemicals are used. For this reason,
4 types of treatment liquids, such as Nippon Barker's Bonderite #
713 and Alpond CRN, Chemibonder 334 from Japan CB Chemical Co., Ltd. and Na2CO3/Na2 according to the present invention.
The tensile shear adhesive strength was compared using an aluminum plate treated with a CrO4.4H2O treatment solution.

試験は、厚さ1.6mmのアルミニウム板5を用い、J
IS K 6850に準じて試験片を作成し、特性を調
査した。
The test was conducted using an aluminum plate 5 with a thickness of 1.6 mm.
Test pieces were prepared according to IS K 6850 and their properties were investigated.

接着剤には、シリカ粉を主体とする無機質充填材を60
%以上含有する注型樹脂1を用い規定の時間で硬化した
。また、比較のために、従来のサンドブラスト処理、プ
ライマー処理品についても調査した。それぞれの引張剪
断接着強さを第1表に示す。
The adhesive contains 60% inorganic filler mainly composed of silica powder.
% or more of casting resin 1 was used and cured for a specified time. For comparison, conventional sandblasting and primer treatment products were also investigated. Table 1 shows the tensile shear adhesive strength of each.

第   1   表 第1表に示すように、本発明による処理品が最も高い値
を示している。これは、化成被膜3は極微細な独立した
突起状を呈しているもの考えられ、この部位に注型樹脂
1が浸透し、メカニカル的に強固に接着力が改善するも
のと考える。
Table 1 As shown in Table 1, the product treated according to the present invention shows the highest value. This is thought to be because the chemical conversion film 3 has extremely fine independent protrusions, and the casting resin 1 penetrates into these parts, mechanically improving the adhesive strength.

このように、接着力が高く、しかも、被膜自体が平均厚
さ0.1〜0.3μsと均一でしかも非常に薄いためサ
ンドブラストに比べ電気絶縁に有害な微小ボイド4が残
りにくい。
As described above, since the adhesive force is high, and the film itself is uniform with an average thickness of 0.1 to 0.3 μs and is very thin, microvoids 4 harmful to electrical insulation are less likely to remain compared to sandblasting.

次に、本発明によるT副分岐ブッシングの具体的な一実
施例について説明する。
Next, a specific example of the T sub-branch bushing according to the present invention will be described.

第1図に本発明によるT副分岐ブッシングの断面図を示
す。アルミニウム製埋込導体2に脱脂処理を施した後、
Na2CrO4・4■、0を15##tに調整した水溶
液とNa2Co3を459.IQに調整した水溶液をN
a2CO3/NaCr0. ” 4H2O=3/1の割
合で調整した溶液中に浸漬する。この時、処理液の温度
は90〜95℃に保ち、浸漬時間は10〜15分が望ま
しい。
FIG. 1 shows a sectional view of a T sub-branch bushing according to the present invention. After degreasing the aluminum embedded conductor 2,
An aqueous solution of Na2CrO4.4■,0 adjusted to 15##t and Na2Co3 of 459. The aqueous solution adjusted to IQ was
a2CO3/NaCr0. ” It is immersed in a solution adjusted at a ratio of 4H2O=3/1. At this time, the temperature of the treatment liquid is maintained at 90 to 95°C, and the immersion time is preferably 10 to 15 minutes.

こうして化成被膜3が施された埋込み導体2を十分水洗
いした後、乾燥により水分を除去する。
After the buried conductor 2 coated with the chemical conversion film 3 is thoroughly washed with water, the moisture is removed by drying.

このようにして得られた酸化アルミニウムを主体とする
化成被膜3を有する埋込み導体2を図示はしないが金型
に組込み、真空下で金型内にエポキシ樹脂を主成分とす
る注型樹脂1を流込み、加熱硬化することによって埋込
み導体2の周囲に注型樹脂1の絶縁層を形成したT副分
岐ブッシングを得る。
The embedded conductor 2 having the chemical conversion film 3 mainly composed of aluminum oxide thus obtained is assembled into a mold (not shown), and a casting resin 1 mainly composed of epoxy resin is placed in the mold under vacuum. By pouring and heating and curing, a T sub-branch bushing in which an insulating layer of casting resin 1 is formed around the embedded conductor 2 is obtained.

こうして得られたT副分岐ブッシングによる試験結果に
ついて説明する。比較のための従来方法によるT副分岐
ブッシングの埋込温体2の前処理は、前に記したように
サンドブラスト処理の場合、コロナ特性に問題の残るこ
とが予想されるため、プライマー処理を施した埋込み導
体2を用いた。
Test results using the T sub-branch bushing obtained in this way will be explained. For comparison, the pretreatment of the embedded hot body 2 of the T sub-branch bushing by the conventional method was as follows: As mentioned above, in the case of sandblasting, it is expected that there will be problems with the corona characteristics, so primer treatment was performed. The embedded conductor 2 was used.

プライマーは、エポキシ樹脂系プライマー(商品名; 
AZ15/l(Z15、チバガイギー社製)を用いた。
The primer is an epoxy resin primer (product name;
AZ15/l (Z15, manufactured by Ciba Geigy) was used.

第2表にそれぞれのT副分岐ブッシングのコロナ特性及
び160KV/ 1分間の耐電圧試験の結果を示す。
Table 2 shows the corona characteristics of each T sub-branch bushing and the results of a 160 KV/1 minute withstand voltage test.

表中の冷熱試験は、樹脂モールド部品の信頼性試験の一
つとして行なわれるものであり、樹脂モールド部品に繰
返し熱衝撃を加え、注型樹脂1と埋込み導体2の熱膨張
係数の違いから発生する熱応力による注型樹脂1の亀裂
の有無や注型樹脂1と埋込み導体2の剥離を調査するも
のである。
The thermal test in the table is conducted as one of the reliability tests for resin molded parts, and the thermal shock is applied repeatedly to the resin molded parts, resulting in the difference in thermal expansion coefficient between casting resin 1 and embedded conductor 2. The purpose is to investigate the presence or absence of cracks in the casting resin 1 and peeling between the casting resin 1 and the embedded conductor 2 due to thermal stress.

本発明で用いた冷熱試験の条件は、98〜10 0 ’
Cの温水中に1時間浸漬し、温水から取出し後、直ちに
0〜2℃の冷水中に1時間浸漬を1サイクルとして10
サイクルまで行う。
The conditions of the thermal test used in the present invention were 98 to 100'
One cycle is 1 hour of immersion in warm water of C, and after taking it out from the hot water, 1 hour of immersion in cold water of 0 to 2 °C.
Do it until the cycle.

第  2  表 vi:  コロナ開始電圧 ve:  コロナ消滅電圧 また、T副分岐ブッシングは、耐気密性が要求されるこ
とから、冷熱試験後にヘリウムディテクタによる気密試
験を行なった。その結果、従来のプライマー処理埋込み
芯体を用いたT型分岐ブッシングは、5 Xl0−5t
orr、 (l八であったのに対し、本発明によるT型
分岐ブッシングは5 X 1O−1ltorr。
Table 2 vi: Corona starting voltage ve: Corona extinction voltage Since the T sub-branch bushing is required to have airtightness, an airtightness test using a helium detector was conducted after the thermal test. As a result, a T-shaped branch bushing using a conventional primer-treated embedded core has a 5Xl0-5t
orr.

QCsと極めて小さい特性を示している。It shows very small QCs characteristics.

以上の結果から明らかなように、本発明におけるT型分
岐ブッシングは、優れた気密性を有するとともに繰返し
の熱衝撃を受けても亀裂が発生することがなくコロナ特
性を大幅に改善できる。
As is clear from the above results, the T-shaped branch bushing of the present invention has excellent airtightness and does not crack even when subjected to repeated thermal shocks, and can significantly improve corona characteristics.

〔発明の効果〕〔Effect of the invention〕

上述のように、アルミニウム製埋込み導体の表面にNa
2GO3/Na2CrO4・4 H2Oによる化成被膜
を設けることによって、注型樹脂との接着力を改善し、
気密性にすぐれ、しかも苛酷な熱衝撃によっても亀裂の
発生がなく、優れた耐コロナ性を保持せしめることがで
きる。
As mentioned above, Na is applied to the surface of the aluminum embedded conductor.
By providing a chemical conversion coating with 2GO3/Na2CrO4.4H2O, the adhesive strength with the casting resin is improved,
It has excellent airtightness, does not crack even under severe thermal shock, and can maintain excellent corona resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すT型分岐ブッシングの
要部断面図、第2図はサンドブラスト処理面と注型樹脂
の接着の状態を示す断面図である。 1・・・注型樹脂 3・・・エツチング被膜 A・・・R加工部
FIG. 1 is a sectional view of a main part of a T-shaped branch bushing showing an embodiment of the present invention, and FIG. 2 is a sectional view showing the state of adhesion between the sandblasted surface and the casting resin. 1...Casting resin 3...Etching film A...R processing part

Claims (1)

【特許請求の範囲】[Claims] アルミニウム導体の表面にNa_2CrO_4・4H_
2O溶液とNa_2CO_2溶液の混合液により厚さ約
0.5μm以下の化成被膜を形成し、その被膜の上にエ
ポキシ樹脂を主成分とする注型材料により絶縁層を設け
たことを特徴とする樹脂モールド分岐ブッシング。
Na_2CrO_4・4H_ on the surface of the aluminum conductor
A resin characterized in that a chemical conversion film with a thickness of about 0.5 μm or less is formed using a mixed solution of a 2O solution and a Na_2CO_2 solution, and an insulating layer is provided on the film using a casting material whose main component is an epoxy resin. Molded branch bushing.
JP28118788A 1988-11-09 1988-11-09 Resin molded branch bushing Pending JPH02129816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28118788A JPH02129816A (en) 1988-11-09 1988-11-09 Resin molded branch bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28118788A JPH02129816A (en) 1988-11-09 1988-11-09 Resin molded branch bushing

Publications (1)

Publication Number Publication Date
JPH02129816A true JPH02129816A (en) 1990-05-17

Family

ID=17635560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28118788A Pending JPH02129816A (en) 1988-11-09 1988-11-09 Resin molded branch bushing

Country Status (1)

Country Link
JP (1) JPH02129816A (en)

Similar Documents

Publication Publication Date Title
US5029969A (en) Optical fiber composite insulator and method of producing the same
US3433893A (en) Cast electrical bushing
US3513253A (en) Cast condenser bushing having tubular metal coated mesh plates
US4984860A (en) Optical fiber-containing insulators and producing process thereof
KR100656233B1 (en) Molded electric device and method for making molded electric device
US3515799A (en) Electrical bushing mounted in casing with foamed resin
JPH02129816A (en) Resin molded branch bushing
GB1562092A (en) Electrically insulated leadthrough assembly
US5011717A (en) Explosion preventing porcelain hollow insulator
US20220359105A1 (en) Dry, syntactic foam as an electrically insulating material
US3530417A (en) Capsulated electrical apparatus
JPH02109222A (en) Branch bushing
JPS6261210A (en) Manufacture of resin injected insulator for gas insulated equipment
JP2006310205A (en) Cast article for electric insulation and its manufacturing method
JPS633154Y2 (en)
JPH0456410B2 (en)
JPH03147221A (en) Plastic mold vacuum valve
JPH02158018A (en) Optical fiber composite insulator
JPS5940759Y2 (en) High voltage feedthrough capacitor
JPS5991043A (en) Manufacture of resin molded item
JPS63298924A (en) Resin mould bushing
JPH01176611A (en) Resin-mold bushing for airtightness
WO2024005732A1 (en) Method for forming contact surfaces by peeling the insulation on the insulated conductor bars for energy distribution systems
JPS6334414Y2 (en)
JPH0218528Y2 (en)