JPH03147221A - Plastic mold vacuum valve - Google Patents

Plastic mold vacuum valve

Info

Publication number
JPH03147221A
JPH03147221A JP28486389A JP28486389A JPH03147221A JP H03147221 A JPH03147221 A JP H03147221A JP 28486389 A JP28486389 A JP 28486389A JP 28486389 A JP28486389 A JP 28486389A JP H03147221 A JPH03147221 A JP H03147221A
Authority
JP
Japan
Prior art keywords
vacuum valve
vacuum
glass cloth
layer
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28486389A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kagawa
加川 芳弘
Michihiko Koyama
充彦 小山
Mitsuru Oyamada
小山田 満
Teruhiko Maeda
照彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28486389A priority Critical patent/JPH03147221A/en
Publication of JPH03147221A publication Critical patent/JPH03147221A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To prevent cracks of material due to thermal stresses and separation due to opening and closing shocks by molding under vacuum a material containing silica particles and short strand glass fibers in a high density after forming a glass cloth layer around a vacuum valve body. CONSTITUTION:A vacuum valve is constituted with a main body 1 around which a glass cloth layer is formed while applying tension, and an insulated reinforcement layer 23 formed by molding a material containing silica particles and short strand glass fibers in a high density under vacuum. This causes the plastic component in the molding material serving as matrix impregnated into the glass cloth so as to form a firm FRP layer 21. Since the glass cloth layer is formed under a tension, the cloth is attached around the valve main body 1 with a constant tightening force.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、真空バルブに係り、特に、外側の沿面絶縁を
補強した樹脂モールド真空バルブの構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a vacuum valve, and particularly to the structure of a resin molded vacuum valve with reinforced outer creeping insulation.

(従来の技術) 第2図は、従来の真空バルブの一例を示す断面図である
。この真空バルブ1は、絶縁円筒2の両端開口部を、固
定側端板3.可動側端板4により気密に封止して真空容
器5を形成し、固定軸6は固定側端板3に真空気密に固
定され、可動軸7はベローズ8を介して可動側端板4に
取付けられ、真空を保持したまま接点9の開閉ができる
ようになっている。
(Prior Art) FIG. 2 is a sectional view showing an example of a conventional vacuum valve. This vacuum valve 1 has openings at both ends of an insulating cylinder 2 connected to a fixed side end plate 3. A vacuum container 5 is formed by air-tightly sealing the movable end plate 4, a fixed shaft 6 is vacuum-tightly fixed to the fixed end plate 3, and a movable shaft 7 is connected to the movable end plate 4 via a bellows 8. The contact 9 can be opened and closed while maintaining the vacuum.

上記した真空バルブ1は、絶縁円筒2内を高電圧に対し
てすぐれた絶縁耐力を有する高真空として、この高真空
中で接点9が開閉する時に発生するアークを直ちに消弧
させ、高電圧回路を遮断するものである。
The vacuum valve 1 described above has the inside of the insulating cylinder 2 as a high vacuum having excellent dielectric strength against high voltages, and immediately extinguishes the arc that occurs when the contacts 9 open and close in this high vacuum, and the high voltage circuit This is to block the

このように真空バルブ1は、高真空中で接点9を開閉す
るので、遮断に必要な電極開閉距離を非常に短くして高
電圧回路を遮断できる。このため。
In this way, the vacuum valve 1 opens and closes the contacts 9 in a high vacuum, so that the high-voltage circuit can be interrupted by extremely shortening the electrode opening/closing distance required for interruption. For this reason.

真空バルブの電極を収納している絶縁円筒2は。The insulating cylinder 2 houses the electrodes of the vacuum valve.

高電圧に対して小形コンパクトにできる。Can be made small and compact for high voltage.

しかしながら、絶縁円筒2が小形コンパクトにできるこ
とは、外側の沿面絶縁距離を短くすることになり、大気
中の汚損物(@気、塵埃等)が絶縁円筒2に付着したと
き、耐電圧が低下し、外部閃絡が発生し易くなる。
However, the fact that the insulating cylinder 2 can be made small and compact means that the creepage insulation distance on the outside is shortened, and when atmospheric contaminants (air, dust, etc.) adhere to the insulating cylinder 2, the withstand voltage decreases. , external flashover is more likely to occur.

このため、上記欠点を解消する手段として、真空容器5
の外側にエポキシ樹脂等により汚損条件を考慮した絶縁
外被を、注型によって一体に設けることが知られている
Therefore, as a means to eliminate the above-mentioned drawbacks, the vacuum container 5
It is known that an insulating jacket made of epoxy resin or the like is integrally formed on the outside of the housing by casting in consideration of contamination conditions.

しかしながら、このような一体構造は、MM外被の熱膨
張率と絶縁円筒2の熱膨張係数が異なることから、熱応
力の発生によってクラックが入ったり、開閉動作時の衝
撃力によって界面が剥離する等の不具合が発生し、製品
として信頼性を低下させる。
However, in such a monolithic structure, since the coefficient of thermal expansion of the MM jacket and the coefficient of thermal expansion of the insulating cylinder 2 are different, cracks may occur due to generation of thermal stress, and the interface may peel off due to impact force during opening/closing operations. Such defects may occur, reducing the reliability of the product.

そこで、上記したクラック等の不具合をなくす構造の一
つとして、エボギシJFM脂等により実質的に外側沿面
絶縁長を大きくした絶縁補強筒を予め注型により製作し
ておき、これを真空バルブに組込むようにしたものがあ
る。
Therefore, as one of the structures to eliminate the above-mentioned problems such as cracks, an insulation reinforcing tube with a substantially increased outer creeping insulation length is manufactured in advance by casting using Evogishi JFM resin, etc., and this is assembled into the vacuum valve. There is something like this.

第3図は、この構成の一例を示す断面図であり。FIG. 3 is a sectional view showing an example of this configuration.

真空容器5と絶縁補強筒10との隙間に、ポリブタジェ
ンやポリウレタン等のゴム状弾性体1】を形成し、応力
緩和を図ったものである。
A rubber-like elastic material 1 made of polybutadiene, polyurethane, etc. is formed in the gap between the vacuum container 5 and the insulation reinforcing tube 10 to alleviate stress.

しかしながら、ゴム状弾性体11は、耐熱性に劣り、硬
さ、接着力が温度の影響を受は易く、温度の上昇と共に
接着力が低下する。また、高温下に長時間曝されると劣
化し易く、硬くなり、収縮量も増加するため、真空容器
4および絶縁補強筒10の+jllで剥離が起り易すい
However, the rubber-like elastic body 11 has poor heat resistance, and its hardness and adhesive strength are easily affected by temperature, and the adhesive strength decreases as the temperature rises. In addition, if exposed to high temperatures for a long time, it will easily deteriorate, become hard, and increase the amount of shrinkage, so peeling is likely to occur at +jll of the vacuum container 4 and the insulation reinforcing cylinder 10.

そこで、本発明の目的は、熱応力の発生によるクラック
や開閉動作時の衝撃力による剥離の発生する恐れがなく
、外側極間耐電圧を確実に保証できる信頼性の高い樹脂
モールド真空バルブを提供することにある。
Therefore, an object of the present invention is to provide a highly reliable resin-molded vacuum valve that is free from cracks caused by thermal stress or peeling caused by impact force during opening/closing operations, and which can reliably guarantee withstand voltage between outer electrodes. It's about doing.

〔発明の構成〕[Structure of the invention]

(1題を解決するための手段) 本発明は、セラミック材から成る絶縁円筒の両端開口部
を端板で気密に封止して形成した真空容器の内部に、接
離自在とした一対の接点を配設した真空バルブと、この
真空バルブ本体の外周に、張力を付加しながらガラスク
ロス層を形成してがら、シリカ微粉末とガラス短繊維を
高密度に含有した注型材料を真空中でモールドして形成
した絶縁補強層で構成するようにしたものである。
(Means for Solving Problem 1) The present invention provides a pair of contacts that can be freely brought into and out of contact with each other inside a vacuum container formed by airtightly sealing the openings at both ends of an insulating cylinder made of a ceramic material with end plates. A casting material containing a high density of fine silica powder and short glass fibers is cast in a vacuum while applying tension and forming a glass cloth layer around the outer periphery of the vacuum valve body. It is constructed of an insulating reinforcing layer formed by molding.

(作用) 真空中で注型材料をモールドし絶縁補強層を形成するた
め、注型材料中のマトリックスである樹脂分がガラスク
ロス中に含浸して強固な!−’ RP層を形成し、しか
も、ガラスクロス層は張力を付加されながら形成された
ものであるから、常に締付力が作用する状態で真空バル
ブ本体の外周に装着される。
(Function) Since the casting material is molded in a vacuum to form an insulating reinforcing layer, the matrix resin in the casting material is impregnated into the glass cloth, making it strong! -' The RP layer is formed, and since the glass cloth layer is formed under tension, it is attached to the outer periphery of the vacuum valve body under constant tightening force.

また、シリカ微粉末を含む樹脂分は、ガラスクロス中に
含浸されるが、ガラス短繊維は、ガラスクロスで濾過さ
れないため、FRP層の周囲にガラス繊維の多いガラス
短繊維層が形成され、線膨張係数が非常に小さくなる。
In addition, the resin containing fine silica powder is impregnated into the glass cloth, but the short glass fibers are not filtered through the glass cloth, so a short glass fiber layer containing many glass fibers is formed around the FRP layer, and the The expansion coefficient becomes very small.

しかして、これらの層は、応力緩和層としても作用する
ため、急激な熱衝撃を受けても絶縁補強層の剥離やクラ
ックの発生をなくすことができる。
Since these layers also act as stress relaxation layers, it is possible to prevent the insulation reinforcing layer from peeling off or cracking even when subjected to sudden thermal shock.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は1本発明の一実施例を示す断面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention.

同図に示すように樹脂モールド真空バルブ20は、絶縁
円筒2にアルミナ系セラミックを用いた真空バルブ1の
外周に、F RP層21およびガラス短繊維層22を介
して絶縁補強層23を形成して構成されている。ここで
、絶縁補強層23は、外側が所望の沿面絶縁長を有する
ように形成されている。
As shown in the figure, the resin molded vacuum valve 20 has an insulation reinforcing layer 23 formed on the outer periphery of the vacuum valve 1 using an alumina ceramic for the insulation cylinder 2 via an FRP layer 21 and a short glass fiber layer 22. It is composed of Here, the insulation reinforcing layer 23 is formed so that its outer side has a desired creeping insulation length.

以上の構成を有する樹脂モールド真空バルブ20は、次
の手順により製作される。まず、上記した真空バルブ1
の外周に、厚さ0.3mm、幅25n+mのガラステー
プを3〜4kgfの張力を加えながら172ラツプで巻
回し、ガラスクロス層を形成する。得られた真空バルブ
を金型に組込み、予め規定の条件で予熱し、ビスフェノ
ールA型エポキシ樹脂(シェル化学■の商品エピコート
828) 100重景部、変性酸無水物系硬化剤(日立
化成■の商品HN 2200)85重斌部、無機質の微
粒子充填材として平均粒径1.0μm以下のシリカ粉末
(■龍森の商品グリスタライト5X)150重量部、繊
維長30=150μmのガラス短繊維(日本板硝子)株
の商品ミルドファイバーREV−7)250重量部を混
合した注型樹脂組成物に硬化促進剤を規定板添加し、 
3Torr以下の真空中でモールドを行う。このとき、
注型樹脂組成物の粘度は、低粘度の方がガラスクロスに
樹脂分が含浸し易すいことから、注型樹脂組成物の粘度
を2500cps以下にコントロールすることが望まし
い。
The resin mold vacuum valve 20 having the above configuration is manufactured by the following procedure. First, the vacuum valve 1 mentioned above
A glass tape having a thickness of 0.3 mm and a width of 25 nm+m is wound around the outer periphery of the glass cloth with 172 wraps while applying a tension of 3 to 4 kgf to form a glass cloth layer. The obtained vacuum valve was assembled into a mold, preheated under specified conditions, and mixed with bisphenol A epoxy resin (Epicoat 828, a product of Shell Chemical Co., Ltd.), a modified acid anhydride curing agent (produced by Hitachi Chemical Co., Ltd.) Product HN 2200) 85 parts by weight, 150 parts by weight of silica powder with an average particle size of 1.0 μm or less as an inorganic particulate filler (■Tatsumori product Glistalite 5X), short glass fiber with fiber length 30 = 150 μm (Japan) A hardening accelerator was added to a casting resin composition mixed with 250 parts by weight of milled fiber REV-7) manufactured by Sheet Glass Co., Ltd.,
Mold is performed in a vacuum of 3 Torr or less. At this time,
It is desirable to control the viscosity of the casting resin composition to 2500 cps or less, since the lower the viscosity, the easier the glass cloth will be impregnated with the resin.

また、真空保持時間も30分以上とし、できれば真空開
放後に3〜41Kgf/cxl の加圧を行った方が良
い。
Further, the vacuum holding time should be 30 minutes or more, and if possible, it is better to apply a pressure of 3 to 41 Kgf/cxl after releasing the vacuum.

以上のようにしてモールドした後、規定の条件で一次硬
化させてから離型し、その後二次硬化を行う。
After molding as described above, the mold is firstly cured under specified conditions, then released from the mold, and then secondly cured.

以上のような手順により製作されるので、注型樹脂中の
樹脂分は、ガラスクロスに含浸して強固なl−’ RP
層21を形成する。また、注型樹脂中のガラス短繊維は
、ガラスクロスでが過されないため。
Since it is manufactured using the above procedure, the resin content in the casting resin is impregnated into glass cloth to form a strong l-' RP.
Form layer 21. In addition, the short glass fibers in the casting resin are not passed through the glass cloth.

FR)’N21の周囲にガラス繊維の多いガラス短繊維
層22を形成する。
FR)' A short glass fiber layer 22 containing many glass fibers is formed around the N21.

次に、上記のようにして製作された本発明による樹脂モ
ールド真空バルブ20と、上記した第3図に示す絶縁補
強筒10とポリウレタン樹脂のゴム状弾性体11を用い
た従来の真空バルブを、熱衝撃試験後にインパルス耐電
圧試験をしたところ次の表に示す結果を得た。
Next, the resin-molded vacuum valve 20 according to the present invention manufactured as described above and the conventional vacuum valve using the insulation reinforcing cylinder 10 and the rubber-like elastic body 11 made of polyurethane resin shown in FIG. After the thermal shock test, an impulse withstand voltage test was conducted, and the results shown in the following table were obtained.

熱衝撃試験は、樹脂モールド部品の信頼性試験の1つと
して行われるもので、繰返し熱衝撃を加え、絶縁補強層
23またはゴム状弾性体11と絶縁円筒2の熱膨張係数
の相異から発生する熱応力によって、相互間の剥離、絶
縁補強層23のクラックの発生の有無を調査するもので
ある。
The thermal shock test is performed as one of the reliability tests for resin molded parts, and is performed by repeatedly subjecting thermal shock to thermal shocks that occur due to the difference in thermal expansion coefficient between the insulation reinforcing layer 23 or the rubber-like elastic body 11 and the insulation cylinder 2. The purpose is to investigate the presence or absence of mutual peeling and the occurrence of cracks in the insulation reinforcing layer 23 based on the thermal stress generated.

本発明で用いた熱?#撃試験の条件は、98〜100℃
の温水中に1時間浸漬し、温水中から取出した後、直ち
に0〜2℃の冷水中に1時間浸漬するのを1サイクルと
して、10サイクルまで行う。また、本発明で使用した
真空バルブは、定格6.9KVで熱衝撃試験後のインパ
ルス耐電圧の規格は±85KV以上である。
The heat used in this invention? #The conditions for the impact test are 98-100℃
One cycle consists of immersing the sample in hot water for 1 hour, taking it out from the hot water, and immediately immersing it in cold water at 0 to 2°C for 1 hour, and repeating up to 10 cycles. Further, the vacuum valve used in the present invention has a rating of 6.9 KV and a standard impulse withstand voltage of ±85 KV or more after a thermal shock test.

上表に示すように熱衝撃試験後のインパルス耐電圧は、
従来の絶縁補強筒10を用いた真空バルブの場合、ゴム
状弾性体11と絶縁円筒2の界面で閃絡を起した。これ
は、熱衝撃試験によって双方の間に剥離が生じたことに
よるものと判断される。
As shown in the table above, the impulse withstand voltage after the thermal shock test is
In the case of a vacuum valve using the conventional insulating reinforcing cylinder 10, a flash fault occurred at the interface between the rubber-like elastic body 11 and the insulating cylinder 2. This is considered to be due to peeling occurring between the two as a result of the thermal shock test.

これに対し0本発明による樹脂モールド真空バルブは、
熱衝撃試験後でも規定のインパルス耐電圧を十分満足し
、絶縁円筒2の界面での剥離は生じなかった。
On the other hand, the resin molded vacuum valve according to the present invention is
Even after the thermal shock test, the specified impulse withstand voltage was sufficiently satisfied, and no peeling occurred at the interface of the insulating cylinder 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、セラミック製絶縁
円筒を有する真空バルブ本体の外周に張力を加えながら
ガラスクロスを巻回し、さらに無機質の微粉末とガラス
短繊維を多量に含有する注型材料でモールドすることに
より、絶縁円筒の近傍に強固なF RP層を形成すると
共に、熱膨張係数が小さくなるため、急激な熱衝撃によ
っても剥離やクラックが発生することなく、インパルス
耐電圧等の電気絶縁性に優れた樹脂モールド真空バルブ
を提供することができる。
As explained above, according to the present invention, a glass cloth is wound around the outer periphery of a vacuum bulb body having a ceramic insulating cylinder while applying tension, and a casting material containing a large amount of inorganic fine powder and short glass fibers is formed. By molding with FRP, a strong FRP layer is formed near the insulating cylinder, and the coefficient of thermal expansion is small, so it will not peel or crack even under sudden thermal shock, and it will be able to withstand electricity such as impulse withstand voltage. A resin molded vacuum valve with excellent insulation properties can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は従来
の真空バルブの一例を示す断面図、第3図は従来の絶縁
補強筒を用いた真空バルブの一例を示す断面図である。 ■・・・真空バルブ、 3・・・固定端板、 5・・・真空容器、 21・・・FRP層、 23・・・絶縁補強層 2・・・絶縁円筒 4・・・可動端板 9・・・接点 22・・・ガラス短繊維層
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view showing an example of a conventional vacuum valve, and Fig. 3 is a sectional view showing an example of a vacuum valve using a conventional insulation reinforcing tube. It is. ■... Vacuum valve, 3... Fixed end plate, 5... Vacuum container, 21... FRP layer, 23... Insulating reinforcement layer 2... Insulating cylinder 4... Movable end plate 9 ...Contact point 22...Glass short fiber layer

Claims (1)

【特許請求の範囲】[Claims] セラミックス材から成る絶縁円筒の両端開口部を端板で
気密に封止して形成した真空容器の内部に、接離自在と
した一対の接点を配設した真空バルブと、この真空バル
ブ本体の外周に、張力を付加しながらガラスクロス層を
形成してから、シリカ微粉末とガラス短繊維を高密度に
含有した注型材料を真空中でモールドして形成した絶縁
補強層で構成したことを特徴とする樹脂モールド真空バ
ルブ。
A vacuum valve has a pair of contacts that can be freely connected and separated inside a vacuum container formed by airtightly sealing the openings at both ends of an insulating cylinder made of ceramic material with end plates, and the outer periphery of the vacuum valve body. It is characterized by an insulating reinforcing layer formed by forming a glass cloth layer while applying tension, and then molding a casting material containing fine silica powder and short glass fibers in a vacuum in a vacuum. Resin molded vacuum valve.
JP28486389A 1989-11-02 1989-11-02 Plastic mold vacuum valve Pending JPH03147221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28486389A JPH03147221A (en) 1989-11-02 1989-11-02 Plastic mold vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28486389A JPH03147221A (en) 1989-11-02 1989-11-02 Plastic mold vacuum valve

Publications (1)

Publication Number Publication Date
JPH03147221A true JPH03147221A (en) 1991-06-24

Family

ID=17684006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28486389A Pending JPH03147221A (en) 1989-11-02 1989-11-02 Plastic mold vacuum valve

Country Status (1)

Country Link
JP (1) JPH03147221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058025A1 (en) * 2008-11-24 2010-05-27 Areva T&D Sas Overmoulding for vacuum bulb
JP2013093276A (en) * 2011-10-27 2013-05-16 Toshiba Corp Vacuum circuit breaker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058025A1 (en) * 2008-11-24 2010-05-27 Areva T&D Sas Overmoulding for vacuum bulb
FR2938966A1 (en) * 2008-11-24 2010-05-28 Areva T & D Sa OVERMOLDING FOR VACUUM BULB
JP2013093276A (en) * 2011-10-27 2013-05-16 Toshiba Corp Vacuum circuit breaker

Similar Documents

Publication Publication Date Title
KR970004559B1 (en) Optical fiber composite insulator and method of producing the same
US2961518A (en) Circuit interrupter
KR100656233B1 (en) Molded electric device and method for making molded electric device
US20100314357A1 (en) Resin-molded vacuum valve
KR100851760B1 (en) Vacuum interrupter
JPH03147221A (en) Plastic mold vacuum valve
JPH05298974A (en) Resin mould vacuum valve
JPH06231661A (en) Resin molded vacuum bulb and its manufacture
JPH0644875A (en) Resin mold vacuum bulb
JPH0765677A (en) Vacuum valve
US5236973A (en) Electrical insulator
JP2000294087A (en) Resin mold vacuum valve
JPH0848857A (en) Resin molding
JPS5925125A (en) Vacuum bulb
JPH0212681Y2 (en)
JPH0562566A (en) Operating rod for gas insulated apparatus using sulphur hexafluoride
JP2003187678A (en) Vacuum valve and manufacturing method of the same
JP2003203546A (en) Mold vacuum switching device
JPS58163120A (en) Vacuum valve
JPH034406A (en) Resin mold electric equipment for outdoor use
JPH0471120A (en) Insulating operation rod for sf6 gas-insulated apparatus
JPH0535553Y2 (en)
JPS6261210A (en) Manufacture of resin injected insulator for gas insulated equipment
JPH04341711A (en) Epoxy resin molding
JP4350328B2 (en) Power distribution device