JPH06231661A - Resin molded vacuum bulb and its manufacture - Google Patents

Resin molded vacuum bulb and its manufacture

Info

Publication number
JPH06231661A
JPH06231661A JP2090893A JP2090893A JPH06231661A JP H06231661 A JPH06231661 A JP H06231661A JP 2090893 A JP2090893 A JP 2090893A JP 2090893 A JP2090893 A JP 2090893A JP H06231661 A JPH06231661 A JP H06231661A
Authority
JP
Japan
Prior art keywords
resin
vacuum valve
layer
vacuum
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090893A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kagawa
芳弘 加川
Michihiko Koyama
充彦 小山
Satoshi Makishima
聡 槙島
Toshio Shimizu
敏夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2090893A priority Critical patent/JPH06231661A/en
Publication of JPH06231661A publication Critical patent/JPH06231661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To enhance productivity in manufacture, and concurrently enhance electrical insulation by forming a stress relaxing layer around the outer circumference of a vacuum bulb where the layer is made of resin hardened by ultra violet ray. CONSTITUTION:In order to form a resin layer as a stress relaxing layer (UV hardening resin) 13, which is made of resin hardened by ultra violet ray, around the outer circumference of a vacuum bulb, the vacuum bulb is rotated by a variable speed motor, and let UV hardening resin stored in a resin tank, drop down therein. And ultra violet ray generated by a light source are locally irradiated thereon through a light inlet provided for a light shielding plate. This constitution thereby can prevent even a resin feed section fed from resin tank from being hardened. In this case, since the layer 13 acting as a stress relaxing layer made of UV hardening resin, is formed around the outer circumference of the vacuum bulb, and an insulation reinforcing cylinder 10 is also formed over the outer circumference of the layer 13, electrical insulation can thereby be enhanced. Furthermore, productivity can also be enhanced, because the bulb is locally irradiated by ultra violet ray.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂モールド真空バル
ブ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin mold vacuum valve and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図3は代表的な真空バルブの断面図であ
る。
2. Description of the Related Art FIG. 3 is a sectional view of a typical vacuum valve.

【0003】同図において、真空バルブ1は、絶縁筒2
の両端開口部を固定側端板3、可働側端板4により気密
に封止して真空容器5を形成し、固定軸6は固定側端板
3に真空気密に固定され、可働軸7はベローズ8を介し
て可働側端板4に取り付けられ、真空を保持したまま接
点9の開閉ができるようになっている。
In the figure, the vacuum valve 1 is an insulating cylinder 2.
Both end openings are airtightly sealed by the fixed side end plate 3 and the movable side end plate 4 to form a vacuum container 5, and the fixed shaft 6 is fixed to the fixed side end plate 3 in a vacuum airtight manner. 7 is attached to the movable side end plate 4 via a bellows 8 so that the contact 9 can be opened and closed while the vacuum is maintained.

【0004】このような真空バルブ1は、絶縁筒2内を
高電圧に対して優れた絶縁耐力を有する高真空を利用し
て、高真空中で接点9が開閉する時に発生するアークを
直ちに消弧させて、高電圧回路を遮断するものである。
Such a vacuum valve 1 utilizes a high vacuum having an excellent dielectric strength against a high voltage in the insulating cylinder 2 to immediately extinguish an arc generated when the contact 9 is opened and closed in the high vacuum. It makes an arc and interrupts the high voltage circuit.

【0005】このように、真空バルブ1は高真空中で接
点9を開閉するので、遮断に必要な電極間距離を短くし
て高電圧回路を遮断できる。このため、真空バルブの電
極を6収納している絶縁筒2をコンパクトにできるとい
う利点がある。
Since the vacuum valve 1 opens and closes the contact 9 in a high vacuum in this manner, the high-voltage circuit can be interrupted by shortening the interelectrode distance required for interruption. Therefore, there is an advantage that the insulating cylinder 2 accommodating six electrodes of the vacuum valve can be made compact.

【0006】しかしながら、絶縁筒2がコンパクトにで
きるということは、外側の沿面絶縁距離を短くすること
になり、大気中の汚損物(湿気、塵埃等)が付着した場
合、耐電圧が低下して外部閃洛が発生しやすくなる。こ
のため、真空容器5の外側にエポキシ樹脂等により、汚
損条件を考慮した絶縁外皮を設けることが知られてい
る。
However, the fact that the insulating cylinder 2 can be made compact means that the outer creepage insulation distance is shortened, and when contaminants (moisture, dust, etc.) in the atmosphere adhere, the withstand voltage decreases. External flash is likely to occur. For this reason, it is known to provide an insulating outer cover on the outside of the vacuum container 5 with epoxy resin or the like in consideration of the stain condition.

【0007】また、真空容器5の表面に絶縁外皮を直接
形成した場合、互いの持つ熱膨張係数の違いにより発生
する熱応力によってクラックが入ったり、開閉動作時の
衝撃力によって界面が剥離する等の不具合が発生し、製
品としての信頼性を低下させることがある。このため、
上記したクラック、剥離等の不具合をなくす構造の一つ
として、エポキシ樹脂等により実質的に外側沿面絶縁長
さを大きくした絶縁補強筒を予め注型により製作してお
き、これを真空バルブに組み込むようにしたものがあ
る。
Further, when the insulating envelope is directly formed on the surface of the vacuum container 5, cracks may be generated due to the thermal stress generated due to the difference in thermal expansion coefficient between them, or the interface may be separated due to the impact force during opening / closing operation. May occur, and the reliability as a product may be reduced. For this reason,
As one of the structures to eliminate the above-mentioned problems such as cracks and peeling, an insulation reinforcement cylinder having a substantially outer creeping insulation length substantially made of epoxy resin or the like is manufactured by casting in advance, and this is incorporated into a vacuum valve. There is something like this.

【0008】図4はこの構成を示す断面図であり、真空
容器5と絶縁補強筒10との隙間にポリブタジエン,ポリ
ウレタン等のゴム状弾性体11を形成させて、応力誘和を
図ったもので、ポッティング方式といわれている。
FIG. 4 is a cross-sectional view showing this structure, in which a rubber-like elastic body 11 of polybutadiene, polyurethane or the like is formed in the gap between the vacuum container 5 and the insulating reinforcing cylinder 10 for stress relaxation. It is said to be a potting method.

【0009】一方、その逆に、予め注型により真空バル
ブの外周に可とう性エポキシ樹脂、ポリブタジエンやポ
リウレタン等のゴム状弾性体11による応力緩和層を形成
した後、機械的特性の優れたエポキシ系注型材料でモー
ルドするというものもある。
On the other hand, on the contrary, after forming a stress relaxation layer by a rubber-like elastic body 11 such as a flexible epoxy resin, polybutadiene or polyurethane on the outer periphery of the vacuum valve by casting in advance, epoxy having excellent mechanical properties is formed. There is also a method of molding with a cast material.

【0010】この場合、予め製作される絶縁補強筒10、
またはゴム状弾性体11は、注型金型を用いて加工され
る。注型金型には、モールド品の離型性改善のために金
型表面に離型剤が塗布されており、得られる絶縁補強筒
10、ゴム状弾性体11の表面にも離型剤の被膜が形成され
る。現在、使用されている離型剤の成分はシリコーン系
化合物やフッ素化合物が主流であり、揆水性を有し他の
材料との接着を防止する。
In this case, a prefabricated insulation reinforcing cylinder 10,
Alternatively, the rubber-like elastic body 11 is processed by using a casting mold. The casting mold has a mold release agent applied to the mold surface to improve the mold release property of the molded product.
10. A film of a release agent is also formed on the surface of the rubber-like elastic body 11. Currently, the main components of the release agent used are silicone compounds and fluorine compounds, and they have water repellency and prevent adhesion with other materials.

【0011】このため、予め製作された絶縁補強筒10を
用いてポッティング方式で樹脂モールド真空バルブを製
作する場合、絶縁補強筒10とゴム状弾性体11の接着面の
処理は非常に重要であり、現状は有機剤等で洗浄して離
型剤成分を除去後、サンドブラスト等で粗面化して再び
有機溶剤等で洗浄した後にゴム状弾性体11を形成する材
料を流し込むようにしている。また、予め真空バルブ外
周にゴム状弾性体11を形成した後に機械的特性の優れた
エポキシ系注型材料でモールドする場合についても同様
であり、真空バルブ外周に形成されたゴム状弾性体11の
表面には離型剤が付着しているため、有機溶剤等で洗浄
した後にサンドペーパーで粗面化し、再び有機溶剤等で
洗浄後に機械的特性の優れたエポキシ注型材料にてモー
ルドする。
Therefore, when the resin-molded vacuum valve is manufactured by the potting method using the prefabricated insulating reinforcing cylinder 10, the treatment of the bonding surface between the insulating reinforcing cylinder 10 and the rubber elastic body 11 is very important. At present, after removing the release agent component by washing with an organic agent or the like, the material for forming the rubber-like elastic body 11 is poured after being roughened by sandblasting or the like and washed again with an organic solvent or the like. The same applies to the case where the rubber-like elastic body 11 is formed on the outer circumference of the vacuum valve in advance and is then molded with an epoxy-based casting material having excellent mechanical properties. Since the release agent adheres to the surface, it is washed with an organic solvent or the like, roughened with sandpaper, washed again with an organic solvent or the like, and then molded with an epoxy casting material having excellent mechanical properties.

【0012】[0012]

【発明が解決しようとする課題】このように、樹脂モー
ルド真空バルブの製作、特に上記したような材料が接着
する境界面には細心の注意が必要であり、多くの手間を
必要とする。万が一、接着部に剥離部分が存在した場
合、電界集中が起こってコロナ放電特性が著しく低下す
ると共に、絶縁破壊強さの低下等の電気絶縁性が劣って
しまう。
As described above, the manufacture of the resin-molded vacuum valve, especially the boundary surface where the above-mentioned materials are bonded, requires great care and requires a lot of trouble. In the unlikely event that a peeled portion is present in the adhesive portion, electric field concentration occurs and corona discharge characteristics are significantly reduced, and electrical insulation properties such as a reduction in dielectric breakdown strength are deteriorated.

【0013】また、従来の製造方法では、ゴム状弾性体
11の形成に金型を必要とし、材料が硬化するまで数時間
を要している。また、機械的特性の優れたエポキシ系注
型材料でモールドする際に、表面処理を必要とする等、
量産化に対して不向きである。本発明の目的は、生産性
の高い製造方法を提供すると共に、電気絶縁性の優れた
樹脂モールド真空バルブを提供することにある。
In the conventional manufacturing method, the rubber-like elastic body is used.
A mold is required to form 11 and it takes several hours for the material to cure. Also, when molding with an epoxy-based casting material with excellent mechanical properties, surface treatment is required, etc.
Not suitable for mass production. An object of the present invention is to provide a highly productive manufacturing method and a resin mold vacuum valve having excellent electrical insulation.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に第1の発明では、絶縁容器の両端を気密封着してなる
真空容器内に接離可能な一対の電極が配設された真空バ
ルブと、真空バルブの外周に形成され且つ紫外線により
硬化する樹脂からなる応力緩和層と、応力緩和層の外周
にモールドされる絶縁層とを有することを要旨とする。
In order to achieve the above object, according to a first aspect of the invention, a vacuum is provided in which a pair of electrodes which can be contacted and separated is disposed in a vacuum container in which both ends of an insulating container are hermetically sealed. The gist of the present invention is to have a valve, a stress relaxation layer formed on the outer circumference of a vacuum valve and made of a resin that is cured by ultraviolet light, and an insulating layer molded on the outer circumference of the stress relaxation layer.

【0015】また第2の発明では、絶縁容器の両端を気
密封着してなる真空容器内に接離可能な一対の電極が配
設された真空バルブを回転させ、紫外線により硬化する
樹脂を供給しながら部分的に紫外線を照射して製造する
ことを要旨とする。
According to the second aspect of the invention, a vacuum valve having a pair of electrodes that can be contacted and separated from each other is rotated in a vacuum container formed by hermetically sealing both ends of an insulating container to supply a resin which is cured by ultraviolet rays. However, the gist is to partially irradiate ultraviolet rays to manufacture.

【0016】[0016]

【作用】このような構成において、第1の発明では真空
バルブの外周に形成される応力緩和層は紫外線により硬
化する樹脂からなるので、金型を使用しなくても応力緩
和層を形成させることができ、樹脂の硬化時間も短縮で
きる。
With such a structure, in the first invention, the stress relaxation layer formed on the outer periphery of the vacuum valve is made of a resin which is cured by ultraviolet rays. Therefore, the stress relaxation layer can be formed without using a mold. And the curing time of the resin can be shortened.

【0017】また第2の発明では、真空バルブの外周に
応力緩和層を形成するのに、真空バルブを回転させ、紫
外線により硬化する樹脂を供給しながら部分的に紫外線
を照射するので、金型を使用しなくても応力緩和層を形
成させることができ、さらに樹脂供給部分までの硬化を
防げる。
In the second aspect of the invention, in order to form the stress relaxation layer on the outer periphery of the vacuum valve, the vacuum valve is rotated and ultraviolet rays are partially irradiated while supplying the resin which is cured by the ultraviolet rays. It is possible to form the stress relaxation layer without using, and it is possible to prevent the resin supply portion from being cured.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の一実施例を示す樹脂モールド真空
バルブの製造方法を説明するための図、図2は図1によ
り得られる樹脂モールド真空バルブの断面図である。な
お、従来と同様のものについては同一番号を付して説明
を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view for explaining a method of manufacturing a resin-molded vacuum valve showing an embodiment of the present invention, and FIG. 2 is a sectional view of the resin-molded vacuum valve obtained in FIG. It should be noted that the same components as those in the related art are designated by the same reference numerals and the description thereof will be omitted.

【0019】これらの図において、真空バルブ1の外周
に応力緩和層として紫外線により硬化する樹脂(以下、
UV硬化樹脂という)層13を形成させるために、図示し
ない可変速モータで真空バルブ1を回転させ、樹脂タン
ク18に注入されているUV硬化樹脂12、例えばアクリル
系UV硬化樹脂(UVU1002:三洋化成工業(株)製)
を滴下し、光遮蔽板15に設けられた光取入口17から光源
16で発生した紫外線を局部的に照射する。こうすること
により、樹脂タンク18から供給される樹脂供給部分まで
硬化することを防止できる。また、UV硬化樹脂層13の
厚さは、厚さ調整治具14で調整できるようにしている。
この際、真空バルブ1の外周にまずUV硬化樹脂12を塗
布またはディッピイングによって形成された後、この真
空バルブ1を回転させながら紫外線を局部的に照射させ
てもよい。
In these figures, a resin that is cured by ultraviolet rays (hereinafter referred to as a stress relaxation layer on the outer periphery of the vacuum valve 1)
In order to form the layer 13 called UV curable resin, the vacuum valve 1 is rotated by a variable speed motor (not shown), and the UV curable resin 12 injected into the resin tank 18, for example, an acrylic UV curable resin (UVU1002: Sanyo Kasei). Industrial Co., Ltd.)
Light from the light inlet 17 provided in the light shield plate 15
The ultraviolet rays generated in 16 are locally irradiated. By doing so, it is possible to prevent the resin supply portion supplied from the resin tank 18 from being cured. Further, the thickness of the UV curable resin layer 13 can be adjusted by the thickness adjusting jig 14.
At this time, the UV curable resin 12 may be first formed on the outer circumference of the vacuum valve 1 by coating or dipping, and then the vacuum valve 1 may be rotated to locally irradiate ultraviolet rays.

【0020】このようにして得られた真空バルブを絶縁
補強筒10を形成するために図示しない金型に組み込み、
予め規定の条件で予熱し、ビスフェノールA型エポキシ
樹脂100 重量部、変性酸無水物硬化剤85重量部をマトリ
ックスとし、充填剤として平均粒径 1.0μm以下のシリ
カ粉末 150重量部、繊維長30〜 100μmのガラス短繊維
250重量部を混合した樹脂組成物に硬化促進剤を規定量
添加した注型材料でモールドする。以上のようにしてモ
ールドした後、規定の条件で一次硬化させてから離型
し、さらに二次硬化を行って完全硬化する。
The vacuum valve thus obtained is assembled in a mold (not shown) to form the insulating reinforcing cylinder 10,
Preheated under the specified conditions in advance, using 100 parts by weight of bisphenol A type epoxy resin and 85 parts by weight of modified acid anhydride curing agent as a matrix, 150 parts by weight of silica powder with an average particle size of 1.0 μm or less as a filler, fiber length of 30 ~ 100 μm short glass fiber
Molding is performed with a casting material in which a specified amount of a curing accelerator is added to a resin composition mixed with 250 parts by weight. After molding as described above, primary curing is performed under specified conditions, and then mold release is performed, and secondary curing is further performed to completely cure.

【0021】次に、上記のようにして製作された図2に
示す本発明による樹脂モールド真空バルブ19と、前述し
た図4に示す絶縁補強筒10とポリウレタン樹脂のゴム状
弾性体11を用いた真空バルブとについて、熱衝撃試験後
にインパルス耐電圧試験をしたところ次の表に示す結果
を得た。
Next, the resin-molded vacuum valve 19 according to the present invention shown in FIG. 2 manufactured as described above, the insulating reinforcing cylinder 10 shown in FIG. 4 and the rubber-like elastic body 11 of polyurethane resin are used. When the vacuum valve and the impulse withstand voltage test were performed after the thermal shock test, the results shown in the following table were obtained.

【0022】熱衝撃試験は、樹脂モールド品の信頼性試
験の一つとして行われるもので、繰り返し熱衝撃を加
え、絶縁補強筒10またはゴム状弾性体11と絶縁円筒2の
熱膨張係数の相違から発生する熱応力によって相互間の
剥離、絶縁補強筒10のクラックの発生の有無を調査する
ものである。
The thermal shock test is carried out as one of the reliability tests of resin molded products, and the thermal expansion coefficient is repeatedly applied to the insulating reinforcing cylinder 10 or the rubber-like elastic body 11 and the insulating cylinder 2 so that the thermal expansion coefficient is different. The purpose of this is to investigate whether or not there is a peeling between each other and the occurrence of cracks in the insulating reinforcing cylinder 10 due to thermal stress generated from the.

【0023】本発明で用いた熱衝撃試験の条件は、98〜
100℃の温水中に1時間浸漬し、温水中から取りだした
後、直ちに0〜2℃の冷水中に1時間浸漬するのを1サ
イクルとして10サイクルまで行う。また、本発明で使用
した真空バルブは、定格6.9kV 用であるが熱衝撃試験後
のインパルス耐電圧の規格は±85kV以上である。
The conditions of the thermal shock test used in the present invention are 98-
Immersion in warm water of 100 ° C. for 1 hour, taking out from the warm water, and immediately immersing in cold water of 0 to 2 ° C. for 1 hour are set as one cycle up to 10 cycles. The vacuum valve used in the present invention is for a rating of 6.9 kV, but the standard of impulse withstand voltage after the thermal shock test is ± 85 kV or more.

【0024】[0024]

【表1】 表1に示すように熱衝撃試験後のインパルス耐電圧は、
図4の樹脂モールド真空バルブの場合、5ケ中2ケが破
壊した。これに対して本発明による樹脂モールド真空バ
ルブは、熱衝撃試験後でも規定のインパルス耐電圧を十
分満足し、接着部に剥離のないことがわかる。
[Table 1] As shown in Table 1, the impulse withstand voltage after the thermal shock test is
In the case of the resin-molded vacuum valve in FIG. 4, 2 out of 5 pieces were broken. On the other hand, it is understood that the resin-molded vacuum valve according to the present invention sufficiently satisfies the specified impulse withstand voltage even after the thermal shock test, and there is no peeling at the bonded portion.

【0025】以上のように本実施例によれば、UV硬化
樹脂は紫外線を照射した部分のみ硬化し、硬化時間は紫
外線の照射によって数秒で完了することから真空バルブ
表面に形成された未硬化のUV硬化樹脂が垂れ落ちる前
に硬化するので、金型を必要とせずにUV硬化樹脂層1
3、すなわち応力緩和層を形成することができる。従っ
て、得られたUV硬化樹脂層13の界面には離型剤等のよ
うな接着を阻害する物質が存在しないため、シリカ粉末
とガラス短繊維を高密度に含有した絶縁補強筒10の接着
も向上し、サンドブラスト等の処理も不要となる。
As described above, according to this embodiment, the UV curable resin is cured only in the portion irradiated with ultraviolet rays, and the curing time is completed within a few seconds by the irradiation of ultraviolet rays. Therefore, the uncured resin formed on the surface of the vacuum valve is not cured. UV curable resin cures before it drips, so UV curable resin layer 1 does not require a mold.
3, that is, the stress relaxation layer can be formed. Therefore, since there is no substance that inhibits adhesion such as a release agent at the interface of the obtained UV curable resin layer 13, the adhesion of the insulating reinforcing cylinder 10 containing the silica powder and the glass short fibers at a high density is also possible. It is improved, and the processing such as sandblasting becomes unnecessary.

【0026】また、UV硬化樹脂12の弾性率が 150〜30
0 kgf/mm2 であるのに対して、絶縁補強筒10に用いた注
型材料の弾性率が1500〜1600kgf/mm2 であり、UV硬化
樹脂12が柔らかいために応力緩和層として著しくその機
能を向上させ、樹脂モールド真空バルブ19の耐クラック
性を向上させることができる。
Further, the elastic modulus of the UV curable resin 12 is 150 to 30.
0 kgf / mm 2 On the other hand, the elastic modulus of the casting material used for the insulation reinforcing cylinder 10 is 1500 to 1600 kgf / mm 2 Since the UV curable resin 12 is soft, its function as a stress relaxation layer can be remarkably improved, and the crack resistance of the resin mold vacuum valve 19 can be improved.

【0027】[0027]

【発明の効果】以上のように第1の発明によれば、真空
バルブの外周に紫外線により硬化する樹脂からなる応力
緩和層を形成させ、この応力緩和層の外周に絶縁層をモ
ールドしたので、電気絶縁性を向上させることができ
る。
As described above, according to the first aspect of the present invention, the stress relief layer made of a resin which is cured by ultraviolet rays is formed on the outer periphery of the vacuum valve, and the insulating layer is molded on the outer periphery of the stress relief layer. The electrical insulation can be improved.

【0028】また第2の発明によれば、真空バルブを回
転させ、紫外線により硬化する樹脂を供給しながら部分
的に紫外線を照射して製造するので、生産性を向上させ
ることができる。
According to the second aspect of the invention, since the vacuum valve is rotated and the resin which is hardened by ultraviolet rays is supplied and the resin is partially irradiated with ultraviolet rays for manufacturing, the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の樹脂モールド真空バルブの製造方法の
一実施例を説明するための図。
FIG. 1 is a diagram for explaining an example of a method for manufacturing a resin-molded vacuum valve according to the present invention.

【図2】本発明の樹脂モールド真空バルブの一実施例を
示す断面図。
FIG. 2 is a sectional view showing an embodiment of a resin-molded vacuum valve of the present invention.

【図3】代表的な真空バルブの断面図。FIG. 3 is a sectional view of a typical vacuum valve.

【図4】従来の樹脂モールド真空バルブの断面図。FIG. 4 is a sectional view of a conventional resin-molded vacuum valve.

【符号の説明】[Explanation of symbols]

5…真空容器、10…絶縁補強筒、13…UV硬化樹脂層。 5 ... Vacuum container, 10 ... Insulation reinforcing tube, 13 ... UV curable resin layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 敏夫 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Shimizu 1 Toshiba Town, Fuchu City, Tokyo Toshiba Corporation Fuchu Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁容器の両端を気密封着してなる真空
容器内に高離可能な一対の電極が配設された真空バルブ
と、この真空バルブの外周に形成され且つ紫外線により
硬化する樹脂からなる応力緩和層と、この応力緩和層の
外周にモールドされる絶縁層とを有する樹脂モールド真
空バルブ。
1. A vacuum valve having a pair of electrodes which can be separated from each other in a vacuum container in which both ends of an insulating container are hermetically sealed, and a resin which is formed on the outer periphery of the vacuum valve and is cured by ultraviolet rays. A resin-molded vacuum valve having a stress relaxation layer made of and an insulating layer molded around the stress relaxation layer.
【請求項2】 前記応力緩和層は、アクリル系樹脂であ
ることを特徴とする請求項1記載の樹脂モールド真空バ
ルブ。
2. The resin-molded vacuum valve according to claim 1, wherein the stress relaxation layer is an acrylic resin.
【請求項3】 前記絶縁層は、シリカ粉末とガラス短繊
維を有することを特徴とする請求項1または請求項2の
いずれかに記載の樹脂モールド真空バルブ。
3. The resin-molded vacuum valve according to claim 1, wherein the insulating layer contains silica powder and glass short fibers.
【請求項4】 絶縁容器の両端を気密封着してなる真空
容器内に接離可能な一対の電極が配設された真空バルブ
を回転させ、紫外線により硬化する樹脂を供給しながら
部分的に紫外線を照射したことを特徴とする樹脂モール
ド真空バルブの製造方法。
4. A vacuum valve provided with a pair of electrodes which can be contacted and separated from each other is rotated in a vacuum container in which both ends of an insulating container are hermetically sealed, and a resin which is cured by ultraviolet rays is partially supplied while being supplied. A method for manufacturing a resin-molded vacuum valve, which is characterized in that it is irradiated with ultraviolet rays.
JP2090893A 1993-02-09 1993-02-09 Resin molded vacuum bulb and its manufacture Pending JPH06231661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090893A JPH06231661A (en) 1993-02-09 1993-02-09 Resin molded vacuum bulb and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090893A JPH06231661A (en) 1993-02-09 1993-02-09 Resin molded vacuum bulb and its manufacture

Publications (1)

Publication Number Publication Date
JPH06231661A true JPH06231661A (en) 1994-08-19

Family

ID=12040332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090893A Pending JPH06231661A (en) 1993-02-09 1993-02-09 Resin molded vacuum bulb and its manufacture

Country Status (1)

Country Link
JP (1) JPH06231661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316839A (en) * 1997-05-19 1998-12-02 Toshiba Corp Epoxy resin composition and molded vacuum valve using the same
JP2003203546A (en) * 2002-01-09 2003-07-18 Toshiba Corp Mold vacuum switching device
JP2008270209A (en) * 2007-04-18 2008-11-06 Ls Industrial Systems Co Ltd Vacuum interrupter
EP3297014A1 (en) * 2016-09-20 2018-03-21 Rail Power Systems GmbH High voltage switching apparatus and switching circuit using a high voltage switching apparatus and method for producing a high voltage switching apparatus
JP2018177244A (en) * 2017-04-04 2018-11-15 櫻護謨株式会社 Two-component liquid mixing spray container

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316839A (en) * 1997-05-19 1998-12-02 Toshiba Corp Epoxy resin composition and molded vacuum valve using the same
JP2003203546A (en) * 2002-01-09 2003-07-18 Toshiba Corp Mold vacuum switching device
JP2008270209A (en) * 2007-04-18 2008-11-06 Ls Industrial Systems Co Ltd Vacuum interrupter
JP4677005B2 (en) * 2007-04-18 2011-04-27 エルエス産電株式会社 Vacuum interrupter
EP3297014A1 (en) * 2016-09-20 2018-03-21 Rail Power Systems GmbH High voltage switching apparatus and switching circuit using a high voltage switching apparatus and method for producing a high voltage switching apparatus
WO2018054851A1 (en) * 2016-09-20 2018-03-29 Rail Power Systems Gmbh High-voltage switching device and switchgear comprising a high-voltage switching device, and method for producing a high-voltage switching device
CN109791858A (en) * 2016-09-20 2019-05-21 轨道动力系统有限责任公司 The manufacturing method of high-tension switch gear and switchgear and high-tension switch gear with high-tension switch gear
JP2018177244A (en) * 2017-04-04 2018-11-15 櫻護謨株式会社 Two-component liquid mixing spray container

Similar Documents

Publication Publication Date Title
US7852180B2 (en) Method for producing breaker pole parts for low-voltage, medium-voltage and high-voltage switchgear assemblies, and breaker pole part itself
JP3422252B2 (en) High voltage transformer and ignition transformer using it
WO2002017462A1 (en) Motor and rotor therefor
JPH06231661A (en) Resin molded vacuum bulb and its manufacture
EP3459705A1 (en) Method for manufacturing composite member
KR100851760B1 (en) Vacuum interrupter
KR20050012672A (en) Molded electric device and method for making molded electric device
CN1665089A (en) Solid-state insulated switchgear, resin molding and method of manufacturing the resin molding thereof
JP2015026821A (en) Electronic device sealing method, electronic device package production method, and sealing sheet
JPH05298974A (en) Resin mould vacuum valve
JP2015216230A (en) Method for manufacturing semiconductor device
JPH03147221A (en) Plastic mold vacuum valve
JPH06310307A (en) Compact lightning arrester for indoor and outdoor use
JPH0644875A (en) Resin mold vacuum bulb
JP2837031B2 (en) Manufacturing method of silicone key switch with resin key top
JP2005006423A (en) Vacuum motor and manufacturing method therefor
JPH0848857A (en) Resin molding
JP2604178B2 (en) Resin-sealed optical coupling semiconductor device and method of manufacturing the same
JPH08154364A (en) Resin molded body and its manufacture
JPS60207340A (en) Semiconductor device and manufacture thereof
JPS6318805B2 (en)
JP2004351852A (en) Production method for molded vacuum valve, and molded vacuum valve
JPS58163120A (en) Vacuum valve
JPH0249529B2 (en) KAPUSERUFUNYUBUHINOYOBIKAPUSERUFUNYUHOHO
JP3285693B2 (en) Manufacturing method of cast molding