JPS6318805B2 - - Google Patents

Info

Publication number
JPS6318805B2
JPS6318805B2 JP55014005A JP1400580A JPS6318805B2 JP S6318805 B2 JPS6318805 B2 JP S6318805B2 JP 55014005 A JP55014005 A JP 55014005A JP 1400580 A JP1400580 A JP 1400580A JP S6318805 B2 JPS6318805 B2 JP S6318805B2
Authority
JP
Japan
Prior art keywords
resin
rod end
cast
epoxy
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014005A
Other languages
Japanese (ja)
Other versions
JPS56112021A (en
Inventor
Ryukichi Sakai
Masaru Dobashi
Yasutake Murakami
Masakazu Noso
Koichiro Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1400580A priority Critical patent/JPS56112021A/en
Publication of JPS56112021A publication Critical patent/JPS56112021A/en
Publication of JPS6318805B2 publication Critical patent/JPS6318805B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】 本発明は絶縁破壊電圧や耐電圧寿命が安定的に
向上せしめられた高電圧電気機器用注型絶縁物の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cast insulator for high voltage electrical equipment, which has stably improved dielectric breakdown voltage and withstand voltage life.

従来、高電圧電気機器に使用する注型絶縁物用
の被注型物(すなわち導体や埋金類)では、注型
前の前処理として、所定の形状に機械加工したの
ち、サンドブラスト処理を施すかまたは施すこと
なく、ほこり、水分、油分、よごれ、さびなどが
除去され、または半導電性のクツシヨン性材料が
注型樹脂への埋め込み部に塗布され、注型に用い
られる。しかしながら、クツシヨン材料が形成さ
れないばあいには、注型樹脂と埋め込まれる金属
材料(すなわち導体や埋金など)との膨張係数の
違いや硬化反応による樹脂の収縮などにより注型
品内部に残留応力が生じ、埋め込まれた金属材料
と接する注型樹脂にクラツクが発生したり、注型
樹脂と金属材料との界面に微細な空隙が生じる傾
向がある。したがつてえられる注型絶縁物は、前
記クラツクや空隙などにより、絶縁破壊電圧や電
気的寿命が低下するという欠点がある。
Conventionally, cast objects (i.e. conductors and fillers) for cast insulators used in high-voltage electrical equipment have been machined into a predetermined shape and then subjected to sandblasting as a pretreatment before casting. Dust, moisture, oil, dirt, rust, etc., are removed without water or coating, or a semi-conductive cushioning material is applied to the potting resin and used for casting. However, if the cushion material is not formed, residual stress may occur inside the cast product due to differences in expansion coefficients between the cast resin and the embedded metal material (i.e., conductor, filler metal, etc.) and shrinkage of the resin due to the curing reaction. This tends to cause cracks in the casting resin that is in contact with the embedded metal material, or to create fine voids at the interface between the casting resin and the metal material. Therefore, the resulting cast insulator has the drawback that the cracks and voids reduce the dielectric breakdown voltage and the electrical life.

また、従来から行なわれている高電圧電気機器
用注型絶縁物の製法のうち、最も有効と考えられ
ている被注型物(導体や埋金類)の埋込部に半導
電性のクツシヨン性材料を塗布したのち注型する
方法では、クツシヨン性材料の作用により注型樹
脂の残留応力やクラツクなどが改善される半面、
半導電性にするために使用する充填剤の偏在など
による絶縁破壊電圧や電気的寿命が低下する、ク
ツシヨン性材料からの塗膜の強度が充分でないた
め、高電圧電気機器用の注型絶縁物の強度が充分
でなくなる、クツシヨン性材料と注型樹脂との接
着性が必ずしも良好でないため、この間で剥離の
生ずることがあり、剥離が生ずるとコロナ放電が
おこり、電気的特性が低下するなどという問題を
有する。
In addition, among the conventional manufacturing methods for cast insulators for high-voltage electrical equipment, a semiconductive cushion is used in the embedding part of the cast object (conductor or metal filler), which is considered to be the most effective method. In the method of applying a cushioning material and then casting, residual stress and cracks in the casting resin are improved due to the action of the cushioning material, but
Cast insulators for high-voltage electrical equipment are used because the strength of the coating made from cushioning materials is insufficient, resulting in reduced breakdown voltage and electrical life due to the uneven distribution of fillers used to make them semiconductive. The adhesive strength between the cushioning material and the casting resin is not necessarily good, so peeling may occur between the cushioning material and the casting resin. When peeling occurs, corona discharge occurs and the electrical properties deteriorate. have a problem

しかるに本発明者らは叙上の欠点を排除し、絶
縁破壊電圧や耐電圧寿命が安定的に向上せしめら
れた注型絶縁物を提供するく鋭意研究を重ねた結
果、注型樹脂中に埋め込まれる金属材料の埋め込
み部分の表面にあらかじめエポキシ樹脂系の樹脂
皮膜を形成せしめたのち、該金属材料を金型に固
定してエポキシ樹脂などの注型樹脂を注型、硬化
することにより、えられる注型絶縁物は埋め込ま
れた金属材料と注型樹脂との間に熱応力が加わつ
ても微細なクラツクや微細な空隙が発生しにく
く、絶縁破壊電圧や耐電圧寿命が向上しうるとい
う新たな事実を見出し、本発明を完成するにいた
つた。
However, the inventors of the present invention have conducted intensive research to eliminate the above-mentioned drawbacks and to provide a cast insulator with stably improved breakdown voltage and withstand voltage life. After forming an epoxy resin-based resin film on the surface of the embedded part of the metal material to be filled, the metal material is fixed to a mold, and a casting resin such as epoxy resin is poured and cured. Cast-molded insulators are new in that they are less likely to produce minute cracks or minute voids even when thermal stress is applied between the embedded metal material and the cast resin, and can improve dielectric breakdown voltage and withstand voltage life. After discovering this fact, we have completed the present invention.

すなわち本発明は高電圧電気機器用注型絶縁物
の製造に際し、被注型物の注型樹脂中に埋め込ま
れる部分の表面に、あらかじめ樹脂皮膜を形成せ
しめたのち注型することを特徴とする高電圧電気
機器用注型絶縁物の製造法に関するものであつ
て、被注型物である導体や埋金などの金属材料の
注型樹脂中に埋め込まれる部分の表面にあらかじ
め樹脂皮膜を形成せしめたのち注型することによ
り、埋め込まれた金属材料に樹脂皮膜を介して接
する注型樹脂部に微細なクラツクや空隙が発生し
たりするなどの欠点が排除され、絶縁破壊電圧が
向上し、部分放電が防止され、しかも電気的長期
寿命信頼性が向上するというきわめて顕著な効果
が奏される。
That is, the present invention is characterized in that when manufacturing a cast insulator for high voltage electrical equipment, a resin film is formed in advance on the surface of the part of the object to be cast that will be embedded in the casting resin, and then the insulator is cast. This relates to a method for manufacturing cast insulators for high-voltage electrical equipment, in which a resin film is formed in advance on the surface of the part of the cast object, such as a conductor or metal material, to be embedded in the casting resin. By casting the mold afterwards, defects such as minute cracks and voids occurring in the cast resin part that contacts the embedded metal material through the resin film are eliminated, and the dielectric breakdown voltage is improved and the part This has the extremely remarkable effect of preventing discharge and improving electrical long-term life reliability.

つぎに本発明の高電圧電気機器用注型絶縁物の
製造法を絶縁ロツドを製造する一実施例を代表さ
せて説明する。
Next, a method for manufacturing a cast insulator for high voltage electrical equipment according to the present invention will be explained using a representative example of manufacturing an insulating rod.

第1図は本発明の方法により製造された絶縁ロ
ツドの平面図、第2図は第1図に示す絶縁ロツド
の部分横断面図、第3図は従来の絶縁ロツドの部
分横断面図である。第1〜3図において、1はエ
ポキシ注型樹脂部、2はエポキシ注型樹脂部1に
埋め込まれた金属製ロツドエンド、3は金属製ロ
ツドエンドのエポキシ注型樹脂部1中に埋め込ま
れる部分の表面に形成された樹脂皮膜、4は金属
製ロツドエンド2とエポキシ注型樹脂部1との間
に存在する空隙である。
Fig. 1 is a plan view of an insulating rod manufactured by the method of the present invention, Fig. 2 is a partial cross-sectional view of the insulating rod shown in Fig. 1, and Fig. 3 is a partial cross-sectional view of a conventional insulating rod. . In Figures 1 to 3, 1 is the epoxy casting resin part, 2 is the metal rod end embedded in the epoxy casting resin part 1, and 3 is the surface of the part of the metal rod end embedded in the epoxy casting resin part 1. The resin film 4 is a gap existing between the metal rod end 2 and the epoxy casting resin part 1.

第1図において、エポキシ注型樹脂部1の線膨
張係数は30〜35×10-61/℃程度であるのに対し、
エポキシ注型樹脂部1の線膨張係数にもつとも近
いロツドエンド2に用いる金属材料、すなわち実
用面からしてアルミニウムを選んだとしても、ア
ルミニウム製ロツドエンドの線膨張係数は23×
10-61/℃であり、それらには僅かながら差があ
る。電気機器用注型絶縁物では、100℃程度の高
温においても良好な機械的強度および電気的特性
を維持することが要求されるから、エポキシ注型
樹脂部1の熱変形温度(HDT)またはガラス転
移温度(Tg)を高くしておく必要があり、した
がつてエポキシ樹脂に酸無水物系の硬化剤を用い
て100〜150℃程度の高温で硬化反応が行なわれ
る。したがつてえられる絶縁ロツドには、エポキ
シ樹脂の硬化反応による硬化収縮と硬化後室温ま
で冷却される過程における熱収縮が進行して、エ
ポキシ注型樹脂部1とロツドエンド2に用いる金
属材料との線膨張係数の差に伴なう熱応力がエポ
キシ注型樹脂部1内に発生する。またこの絶縁ロ
ツドが電気機器に組み込まれて使用されるあいだ
にも、電流の通電と停電の繰り返しによつて熱応
力が加えられる。
In Fig. 1, the coefficient of linear expansion of the epoxy casting resin part 1 is about 30 to 35 × 10 -6 1/°C, whereas
Even if aluminum is chosen as the metal material for the rod end 2, which has a linear expansion coefficient close to that of the epoxy casting resin part 1, from a practical standpoint, the linear expansion coefficient of the aluminum rod end is 23×
10 -6 1/℃, and there is a slight difference between them. Cast insulators for electrical equipment are required to maintain good mechanical strength and electrical properties even at high temperatures of around 100°C. It is necessary to keep the transition temperature (Tg) high, so the curing reaction is carried out at a high temperature of about 100 to 150°C using an acid anhydride curing agent for the epoxy resin. Therefore, the resulting insulating rod undergoes curing shrinkage due to the curing reaction of the epoxy resin and thermal shrinkage during the cooling process to room temperature after curing, causing the epoxy casting resin part 1 and the metal material used for the rod end 2 to bond. Thermal stress occurs within the epoxy casting resin part 1 due to the difference in linear expansion coefficients. Furthermore, while this insulating rod is incorporated into electrical equipment and used, thermal stress is applied to it due to repeated current application and power outage.

このような応力はいずれもエポキシ注型樹脂部
1のロツドエンド2の近傍に残留応力として残
り、この残留応力が大きいとロツドエンド2近傍
のエポキシ注型樹脂部1にクラツクを生じさせる
ばあいがある。またクラツクにいたらなくてもロ
ツドエンド2が固定された状態でエポキシ型注樹
脂部1が収縮すると、ロツドエンド2と該注型樹
脂部1の界面に第3図に示すごとき空隙4を残す
結果ともなる。このように空隙が発生すれば、絶
縁ロツドは絶縁破壊電圧の低下や部分放電の発
生、電気的長期寿命の低下などをおこし、したが
つて注型、硬化方法に多くの工夫を必要とする。
All of these stresses remain as residual stress near the rod end 2 of the epoxy casting resin part 1, and if this residual stress is large, it may cause cracks in the epoxy casting resin part 1 near the rod end 2. Furthermore, even if the rod end 2 is not in the crack, if the epoxy resin casting part 1 contracts with the rod end 2 fixed, a void 4 as shown in FIG. 3 will be left at the interface between the rod end 2 and the casting resin part 1. . If such voids occur, the insulating rod will suffer from a decrease in dielectric breakdown voltage, occurrence of partial discharge, and a decrease in long-term electrical life, thus requiring many ingenuity in casting and curing methods.

一方、エポキシ注型樹脂部1と埋め込まれたロ
ツドエンド2との間に空隙が発生したばあいにお
ける部分放電を防止するために、導電性を有する
クツシヨン性材料(たとえばブチルゴム、EPT
ゴムなどのクツシヨン材にカーボン粉末、金属微
粉末などの導電性物質を混合したクツシヨン性材
料)を、あらかじめロツドエンド2のエポキシ注
型樹脂部1に埋め込まれる部分の表面に塗布した
のち、該ロツドエンド2を金型に固定してエポキ
シ樹脂を注型、硬化する方法も行なわれている
が、このばあいには、クツシヨン材の材質、導電
性物質の分散性や塗布方法がよくないとクツシヨ
ン性材料に含まれる導電性粉末物質が凝集してロ
ツドエンド2表面に塊が生じ、したがつてこの導
電性凝集塊によるミクロな突起が電気的特性に影
響をあたえ、絶縁ロツドの絶縁破壊電圧や電気的
長期信頼性に問題の生ずることがある。
On the other hand, in order to prevent partial discharge when a gap occurs between the epoxy casting resin part 1 and the embedded rod end 2, a conductive cushioning material (such as butyl rubber, EPT, etc.) is used.
A cushioning material (a cushioning material such as rubber mixed with a conductive substance such as carbon powder or fine metal powder) is applied in advance to the surface of the portion of the rod end 2 that will be embedded in the epoxy molding resin portion 1, and then the rod end 2 is Another method is to fix the cushion material in a mold and then cast the epoxy resin and harden it. However, in this case, if the material of the cushion material, the dispersibility of the conductive substance, and the application method are not good, the cushioning material will not work properly. The conductive powder contained in the insulating rod aggregates to form a lump on the surface of the rod end 2, and the micro protrusions caused by this conductive aggregate affect the electrical properties, resulting in the dielectric breakdown voltage and long-term electrical properties of the insulating rod. Reliability problems may arise.

本発明における樹脂皮膜3の材質としては、高
温における接着強度が大きくかつ室温における接
着力が1.5Kg/mm2(対アルミニウム、銅、鉄など)
以上である樹脂または接着剤が採用され、それら
の代表的なものを例示すれば、たとえばエポキシ
樹脂(ビスフエノールA型エポキシ樹脂、ノボラ
ツク型エポキシ樹脂またはそれらのブレンド系エ
ポキシ樹脂など)、フエノール樹脂(たとえばフ
エノール−ホルムアルデヒド樹脂、フエノール−
フルフラール樹脂、レゾルシン−ホルムアルデヒ
ド樹脂など)、シアノアクリレート(たとえばメ
チルシアノアクリレート、エチルシアノアクリレ
ートなど)などがあげられ、それらの1種または
2種以上が用いられる。また形成される樹脂皮膜
3の層厚としては5〜500μ、好ましくは20〜
100μが採用される。樹脂皮膜3の層厚が500μよ
り大きいときは、樹脂皮膜3内に気泡が残りやす
く、また5μより小さいときは、樹脂を注型する
ために、ロツドエンド2を金型に固定して100〜
150℃で予熱を行なう際に、樹脂皮膜3を通して
空気が浸透し、したがつてロツドエンド2の表面
に酸化皮膜が形成されて接着力が低下しやすく、
いずれも好ましくない。
The material of the resin film 3 in the present invention has a high adhesive strength at high temperatures and an adhesive strength of 1.5 kg/mm 2 at room temperature (vs. aluminum, copper, iron, etc.).
The above resins or adhesives are employed, and representative examples thereof include epoxy resins (bisphenol A type epoxy resin, novolak type epoxy resin, or blended epoxy resins thereof, etc.), phenol resin ( For example, phenol-formaldehyde resin, phenol-
furfural resin, resorcinol-formaldehyde resin, etc.), cyanoacrylates (for example, methyl cyanoacrylate, ethyl cyanoacrylate, etc.), and one or more of these may be used. The thickness of the resin film 3 to be formed is 5 to 500μ, preferably 20 to 500μ.
100μ is adopted. When the layer thickness of the resin film 3 is larger than 500 μm, air bubbles tend to remain in the resin film 3, and when it is smaller than 5 μm, the rod end 2 is fixed to the mold to cast the resin.
When preheating at 150°C, air permeates through the resin film 3, resulting in the formation of an oxide film on the surface of the rod end 2, which tends to reduce adhesive strength.
Both are unfavorable.

前記樹脂皮膜3の形成に用いる樹脂または接着
剤の塗布準備として、一般的な方法、すなわち埋
め込まれるロツドエンド2に付着するほこり、水
分、油分やよごれ、錆、酸化皮膜などの除去が施
される。塗布する樹脂または接着剤は気泡が含ま
れないように溶剤(たとえばアセトン、メチルエ
チルケトン、トルエンまたはこれらの混合溶剤)
を添加して粘度をできるだけ低くしておくのが好
ましい。粘度は通常100cP(B型粘度計を用いて
塗布時の温度で測定した粘度)が採用される。し
かして粘度調整された樹脂溶液または接着剤溶液
中にロツドエンド2を該ロツドエンドの樹脂皮膜
3が形成される部分のみをどぶ漬けしたり、また
はその他の方法でロツドエンド2の樹脂皮膜3が
形成される部分に前記樹脂溶液または接着剤溶液
を塗布したのち、樹脂または接着剤の硬化に適す
る条件で硬化が行なわれ、樹脂皮膜3が形成され
る。ついで樹脂皮膜3が形成されたロツドエンド
2は金型に組み込まれ、エポキシ樹脂が注型さ
れ、100〜150℃程度で硬化反応が行なわれる。硬
化後えられる絶縁ロツドは金型より離型される
が、このばあいロツドエンド2の樹脂皮膜3が形
成されていない部分は金型に固定(すなわち拘
束)されているので、硬化炉から金型を出したの
ち一刻も早くその拘束をとり除くように、注型さ
れた絶縁ロツドを離型する必要があり、この離型
するまでの時間が長いときは、エポキシ注型樹脂
部1と金型の金属材料との線膨張係数の差分だけ
エポキシ注型樹脂部1が多く収縮し、第3図に示
すような空隙4を発生しやすくなる。また空隙4
が発生しないばあいには、その収縮に相当する残
留応力がエポキシ注型樹脂部1に残ることにな
る。
In preparation for applying the resin or adhesive used to form the resin film 3, a general method is used to remove dust, moisture, oil, dirt, rust, oxide film, etc. adhering to the rod end 2 to be embedded. The resin or adhesive to be applied must be in a solvent (e.g. acetone, methyl ethyl ketone, toluene or a mixed solvent thereof) so that it does not contain air bubbles.
It is preferable to keep the viscosity as low as possible by adding . The viscosity is usually 100 cP (viscosity measured at the temperature at the time of application using a B-type viscometer). Thus, the resin film 3 of the rod end 2 is formed by soaking only the portion of the rod end where the resin film 3 will be formed in a resin solution or adhesive solution whose viscosity has been adjusted, or by other methods. After the resin solution or adhesive solution is applied to the portion, curing is performed under conditions suitable for curing the resin or adhesive, and the resin film 3 is formed. The rod end 2 on which the resin film 3 has been formed is then assembled into a mold, an epoxy resin is cast, and a curing reaction is carried out at about 100 to 150°C. The insulating rod obtained after curing is released from the mold, but in this case, the part of the rod end 2 where the resin film 3 is not formed is fixed (that is, restrained) to the mold, so it is removed from the mold from the curing furnace. It is necessary to release the cast insulating rod from the mold in order to remove the restraint as soon as possible after releasing the mold. If it takes a long time to release the mold, it is necessary to The epoxy casting resin part 1 contracts more by the difference in coefficient of linear expansion with the metal material, making it easier to form voids 4 as shown in FIG. 3. Also, air gap 4
If this does not occur, residual stress corresponding to the shrinkage will remain in the epoxy casting resin part 1.

いまかりにアルミニウム製金型(線膨張係数:
23×10-61/℃)を使用し、かつ注型樹脂材料と
して線膨張係数が35×10-61/℃、引張り弾性係
数が1000Kg/mm2のものを用い、硬化条件として硬
化温度を120℃、室温を20℃、絶縁ロツドの対向
するロツドエンドの先端間の距離を300mmとし、
絶縁ロツドを完全に室温まで冷却したのち離型す
るものと仮定して、発生応力およびロツドエンド
と注型樹脂との空隙を単純に計算すれば、 発生応力:1000×(35−23)×10-6 ×(120−20)=1.2Kg/mm2 ロツドエンドと注型樹脂との空隙: 300×(35−23)×10-6×(120−20)×
1/2=0.8mm となり、ロツドエンドと注型樹脂との間に空隙を
発生するか、またはこのような空隙を発生しない
にしても注型樹脂内に残留応力を残すことにな
る。
Aluminum mold (linear expansion coefficient:
23×10 -6 1/℃), and a casting resin material with a linear expansion coefficient of 35×10 -6 1/℃ and a tensile elastic modulus of 1000 Kg/mm 2 was used, and the curing temperature was set as the curing condition. The temperature is 120℃, the room temperature is 20℃, and the distance between the tips of opposing rod ends of the insulating rod is 300mm.
Assuming that the insulating rod is released from the mold after being completely cooled to room temperature, the generated stress and the gap between the rod end and the casting resin can be simply calculated as follows: Generated stress: 1000 x (35-23) x 10 - 6 × (120−20) = 1.2Kg/mm 2 Gap between rod end and casting resin: 300 × (35−23) × 10 -6 × (120−20) ×
1/2 = 0.8 mm, and a gap will be generated between the rod end and the casting resin, or even if such a gap is not generated, residual stress will remain in the casting resin.

しかるにこのような問題を解決するために、注
型材料の線膨張係数をできる限り小さくするべく
エポキシ樹脂中に多量の無機質充填剤を加えた
り、また硬化反応をおだやかに行なつたり、離型
をできる限り高温で行なつて注型樹脂の自由収縮
をおこさせるなどの方法が採用されてきている。
However, in order to solve these problems, a large amount of inorganic filler was added to the epoxy resin in order to reduce the coefficient of linear expansion of the casting material as much as possible, the curing reaction was carried out slowly, and mold release was improved. Methods such as performing the molding at as high a temperature as possible to cause free shrinkage of the casting resin have been adopted.

本発明の方法により絶縁ロツドを製造するとき
は、前記のごとく樹脂または接着剤の接着力が充
分に大きいので、エポキシ注型樹脂部1とロツド
エンド2との接着が確実に行なわれ、エポキシ樹
脂部1が収縮してもエポキシ注型樹脂部1とロツ
ドエンド2との間に存在する樹脂皮膜の作用で空
隙を生じにくい。またロツドエンド2のエポキシ
樹脂部1中に埋め込まれた部分のすべてが樹脂皮
膜を介してエポキシ注型樹脂部1と均一にかつ大
きな力で接着しているために、前記硬化収縮およ
び熱応力によつて発生する残留応力は、ロツドエ
ンド2の周囲全面に均一に分散され、部分的な応
力集中によるクラツクが発生することが少ない。
さらに本発明の方法により絶縁ロツドを製造する
ときは、導電性粉末物質を含むクツシヨン性材料
を用いないのでロツドエンド2表面に微細な突起
が発生しない。しかして本発明の方法でえられる
絶縁ロツドは、絶縁破壊電圧がいちじるしく向上
し、また部分放電が防止され、しかも電気的長期
寿命信頼性のきわめて良好なものとなる。
When manufacturing an insulating rod by the method of the present invention, since the adhesive strength of the resin or adhesive is sufficiently strong as described above, the epoxy casting resin part 1 and the rod end 2 are reliably bonded, and the epoxy resin part Even if the rod end 1 shrinks, the resin film existing between the epoxy casting resin part 1 and the rod end 2 hardly creates a void. In addition, since the entire part of the rod end 2 embedded in the epoxy resin part 1 is bonded uniformly and with a large force to the epoxy casting resin part 1 through the resin film, the cure shrinkage and thermal stress The resulting residual stress is uniformly distributed over the entire circumference of the rod end 2, and cracks due to local stress concentration are less likely to occur.
Furthermore, when manufacturing the insulating rod by the method of the present invention, no cushioning material containing conductive powder material is used, so that no minute protrusions are generated on the surface of the rod end 2. Therefore, the insulating rod obtained by the method of the present invention has significantly improved dielectric breakdown voltage, prevents partial discharge, and has extremely good long-term electrical reliability.

なおこのような熱応力は、えられた絶縁ロツド
が電気機器に組み込まれて使用されている間の通
電と停電の繰り返しや、環境の温度変化によつて
も発生するものである。
Incidentally, such thermal stress is also generated due to repeated energization and power outage and environmental temperature changes while the obtained insulating rod is incorporated into electrical equipment and used.

以上述べたごとく、絶縁ロツドを製造する一実
施例をあげて本発明の方法を具体的に説明した
が、本発明はこの実施例のみに限定されるもので
はない。
As mentioned above, although the method of the present invention has been specifically explained using one example for manufacturing an insulating rod, the present invention is not limited to this example.

本発明に用いる注型用樹脂としては、前記のご
とくエポキシ樹脂のほか、不飽和ポリエステル樹
脂などがあげられ、必要に応じ適宜用いられる。
In addition to the above-mentioned epoxy resin, the casting resin used in the present invention includes unsaturated polyester resin and the like, which may be used as appropriate if necessary.

本発明の方法は、前記のごとく絶縁ロツドの製
造に適用されるほか、各種の高電圧用絶縁スペー
サ、絶縁支持物などにおける導体や埋金類にも適
用され、きわめてすぐれた高電圧電気機器用絶縁
物がえられる。
The method of the present invention is applied not only to the production of insulating rods as described above, but also to conductors and fillers in various high-voltage insulating spacers, insulating supports, etc., and is an excellent material for high-voltage electrical equipment. Insulators can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により製造された絶縁ロ
ツドの平面図、第2図は第1図に示す絶縁ロツド
の部分横断面図、第3図は従来の絶縁ロツドの部
分横断面図である。 (図面の符号)、1:エポキシ注型樹脂部、
2:金属製ロツドエンド、3:樹脂皮膜、4:空
隙。
Fig. 1 is a plan view of an insulating rod manufactured by the method of the present invention, Fig. 2 is a partial cross-sectional view of the insulating rod shown in Fig. 1, and Fig. 3 is a partial cross-sectional view of a conventional insulating rod. . (Drawing code), 1: Epoxy casting resin part,
2: metal rod end, 3: resin film, 4: void.

Claims (1)

【特許請求の範囲】[Claims] 1 高電圧電気機器用注型絶縁物の製造に際し、
被注型物の注型樹脂中に埋め込まれる部分の表面
に、あらかじめ樹脂皮膜を形成せしめたのち注型
することを特徴とする高電圧電気機器用注型絶縁
物の製造法。
1. When manufacturing cast insulators for high voltage electrical equipment,
A method for manufacturing a cast insulator for high-voltage electrical equipment, which comprises forming a resin film in advance on the surface of the part of the object to be embedded in the casting resin, and then casting.
JP1400580A 1980-02-06 1980-02-06 Method of manufacturing molded insulator for high voltage electric device Granted JPS56112021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1400580A JPS56112021A (en) 1980-02-06 1980-02-06 Method of manufacturing molded insulator for high voltage electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1400580A JPS56112021A (en) 1980-02-06 1980-02-06 Method of manufacturing molded insulator for high voltage electric device

Publications (2)

Publication Number Publication Date
JPS56112021A JPS56112021A (en) 1981-09-04
JPS6318805B2 true JPS6318805B2 (en) 1988-04-20

Family

ID=11849092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1400580A Granted JPS56112021A (en) 1980-02-06 1980-02-06 Method of manufacturing molded insulator for high voltage electric device

Country Status (1)

Country Link
JP (1) JPS56112021A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280712A (en) * 2006-04-05 2007-10-25 En Liang Enterprise Co Ltd Supporting insulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504278A (en) * 1973-05-12 1975-01-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504278A (en) * 1973-05-12 1975-01-17

Also Published As

Publication number Publication date
JPS56112021A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
US2464568A (en) Electrical coil insulated with thermoplastic particles and thermoset polymer
CN105647120B (en) A kind of epoxy resin-matrix nonlinear adaptive nano-composite insulating material and preparation method thereof
US3433893A (en) Cast electrical bushing
JPH11307359A (en) High voltage transformer and ignition transformer using the same
CZ20022253A3 (en) Process for producing electric conductor insulations by powder depositing
JP3923542B2 (en) Resin molded product and heavy electrical equipment using the same
US4267402A (en) Polymer concrete body with vibration molded threads, method of making same, and electrical insulator provided with the same
JPS6318805B2 (en)
US3576938A (en) Electrical insulator with polymer-containing joint between the porcelain and the hardware
US3626587A (en) Methods of constructing electrical transformers
US3068533A (en) Method of impregnating and covering electric windings
US1589094A (en) Laminated mica product
JP3285693B2 (en) Manufacturing method of cast molding
JPS59201309A (en) Polyester premixing insulating operation rod
JP4673688B2 (en) Manufacturing method for epoxy resin castings
JPH10308128A (en) Electric insulating resin molded goods
US3265799A (en) Method of making terminal bushings
JPH06231661A (en) Resin molded vacuum bulb and its manufacture
JP3895128B2 (en) Method for manufacturing member for electric device and member for electric device
JP3621119B2 (en) Resin mold product
JPH01242655A (en) Epoxy resin composition
US2381163A (en) Electrical insulating material
JPH0848857A (en) Resin molding
RU2151436C1 (en) Ceramic insulator repair technique
JP2571483B2 (en) Method for forming a conductive layer on an epoxy resin insulating molded article