JPH03280012A - Magneto-optical material - Google Patents

Magneto-optical material

Info

Publication number
JPH03280012A
JPH03280012A JP8195490A JP8195490A JPH03280012A JP H03280012 A JPH03280012 A JP H03280012A JP 8195490 A JP8195490 A JP 8195490A JP 8195490 A JP8195490 A JP 8195490A JP H03280012 A JPH03280012 A JP H03280012A
Authority
JP
Japan
Prior art keywords
coefft
magneto
crystal film
small
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8195490A
Other languages
Japanese (ja)
Inventor
Minoru Kojima
実 小島
Takao Takahashi
隆雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8195490A priority Critical patent/JPH03280012A/en
Publication of JPH03280012A publication Critical patent/JPH03280012A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the magneto-optical material which has a large coefft. of Faraday rotation and small temp. coefft. by using Ho and Gd varying in the code of temp. coefft. as the rare earths of a magnetic garnet crystal film. CONSTITUTION:The magnetic garnet crystal film expressed by compsn. formula Ho3-x-yGdxBiyFe5O12 is grown on a nonmagnetic garnet substrate. In the formula, 0<x<3, 0<y<3. Namely, the coefft. of Faraday rotation is high and the exter nal saturation magnetic field is small if two kinds of the rare earths, Ho and Gd, which vary in the code of the temp. coefft. are combined. The growth of the magnetic garnet crystal film is, therefore, executed by immersing a garnet substrate into the melt of the prescribed compsn. formed by melting Fe2O3, Ho2O3, and Gd2O3 into a flux consisting of PbO, B2O3 and Bi2O3. The magneto- optical material which has the large coefft. of Faraday rotation, the small temp. coefft. and the small external saturation magnetic field and allows the miniaturization of the magnets to be used as parts is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は光アイソレータや光サーキュレータなどに用
いられる磁気光学材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical material used for optical isolators, optical circulators, etc.

[従来の技術] 従来より、半導体レーザから放出された光線と戻り光と
を分離するための光アイソレータとして、あるいは光フ
アイバ損失測定において光ファイバの後方散乱光を受光
ダイオードのみに導くための光サーキュレータとしてフ
ァラデー回転効果を有する磁気光学材料が利用されてい
る。
[Prior Art] Conventionally, optical circulators have been used as optical isolators for separating the light beam emitted from a semiconductor laser and returning light, or for guiding backscattered light from an optical fiber only to a light receiving diode in optical fiber loss measurement. Magneto-optical materials having a Faraday rotation effect are used as such.

ファラデー回転効果は磁気光学材料が磁界の中に置かれ
た場合、材料中を磁界方向に進む光の偏光面が回転する
現象であり、光アイソレータ等に適用される磁気光学素
子としては、ファラデー回転係数(単位長当りの回転角
)が大きいこと、且つファラデー回転係数の温度依存性
が少ないこと、更に挿入損失が少ないことが条件となる
The Faraday rotation effect is a phenomenon in which when a magneto-optical material is placed in a magnetic field, the plane of polarization of light traveling in the direction of the magnetic field rotates. The conditions are that the coefficient (rotation angle per unit length) is large, that the Faraday rotation coefficient has little temperature dependence, and that insertion loss is small.

この種の磁気光学材料として、Bi置換を行った希土類
鉄ガーネット(一般式B + x RE 、F e a
O12で表わされるもので、REは希土類を表わし、x
+y=3である)が開発されている。このような鉄ガー
ネツト結晶は基板となるガーネット上に液相エピタキシ
ャル法によって育成することができ、Biの置換量が多
いほいどファラデー回転係数が向上する。Biを多量に
置換するためにFeをA1、Ga等の非磁性元素で置換
することが行なわれている(特開昭61−20926号
)。
As this kind of magneto-optical material, rare earth iron garnet with Bi substitution (general formula B + x RE , Fe a
It is represented by O12, RE represents rare earth, and x
+y=3) has been developed. Such an iron garnet crystal can be grown on a garnet substrate by a liquid phase epitaxial method, and the Faraday rotation coefficient improves as the amount of Bi substitution increases. In order to replace a large amount of Bi, replacing Fe with a non-magnetic element such as Al or Ga has been carried out (Japanese Patent Application Laid-open No. 20926/1983).

一方、Biはイオン半径が大であるため、Bi量が多く
なると基板との格子定数の差が大きくなり格子整合性が
悪い。このため、希土類元素としてイオン半径の小さな
希土類元素を用いることにより、基板との格子整合性を
図っている(特開昭63−291028号、特開平1−
217313号)。
On the other hand, since Bi has a large ionic radius, as the amount of Bi increases, the difference in lattice constant with the substrate increases, resulting in poor lattice matching. For this reason, lattice matching with the substrate is achieved by using rare earth elements with a small ionic radius (JP-A-63-291028, JP-A-1-1999).
No. 217313).

[発明が解決しようとする課題] しかし、Feを非磁性元素で置換した場合には、得られ
る磁気光学材料の温度特性が劣化するという問題点があ
る。また、希土類鉄ガーネットを形成する希土類は、1
種又は2種以上を混合して用いられているが、それぞれ
温度特性(温度係数の符号)が異なり、一種のみを用い
た場合或いは組合せが適当でない場合にはファラデー回
転係数の温度係数が大きくなり、磁気光学素子として実
用できない。
[Problems to be Solved by the Invention] However, when Fe is replaced with a nonmagnetic element, there is a problem that the temperature characteristics of the resulting magneto-optical material deteriorate. In addition, the rare earths that form rare earth iron garnet are 1
Although these species or a mixture of two or more species are used, each has different temperature characteristics (the sign of the temperature coefficient), and if only one species is used or the combination is inappropriate, the temperature coefficient of the Faraday rotation coefficient will become large. , cannot be put to practical use as a magneto-optical element.

本発明は特定の希土類を2種組み合わせることによりフ
ァラデー回転係数が大きく、温度係数の小さい磁気光学
材料を提供することを目的とし、更に外部飽和磁界が小
さく、部品として用いる磁石の小型化を可能とする磁気
光学材料を提供することを目的とする。
The purpose of the present invention is to provide a magneto-optical material with a large Faraday rotation coefficient and a small temperature coefficient by combining two types of specific rare earth elements. Furthermore, the external saturation magnetic field is small, making it possible to miniaturize the magnet used as a component. The purpose is to provide a magneto-optical material that

[課題を解決するための手段] このような目的を達成するために本発明者等は温度係数
の符号が異なる二種の希土類の組合せについて鋭意研究
の結果、希土類としてHOとGdを組合せた場合にファ
ラデー回転係数が極めて高く、しかも外部飽和磁界が小
さいことを見出し本発明に至ったものである。
[Means for Solving the Problems] In order to achieve such an objective, the inventors of the present invention have conducted intensive research on combinations of two types of rare earths with different signs of temperature coefficients, and have found that when HO and Gd are combined as rare earths. The inventors discovered that the Faraday rotation coefficient is extremely high and the external saturation magnetic field is small, leading to the present invention.

即ち本発明の磁気光学材料は、非磁性ガーネット基板上
に育成され、組成式 %式% ) で表わされる磁性ガーネット結晶膜から成るものである
That is, the magneto-optical material of the present invention is grown on a non-magnetic garnet substrate and consists of a magnetic garnet crystal film represented by the compositional formula %.

ここで、非磁性ガーネット基板は、Gd、Ga。Here, the nonmagnetic garnet substrate is Gd or Ga.

012、Sm5Ga501z、NdaGasOta(以
下NGGという) 、Ca−Mg−Zr置換G d B
 G a 5O12(以下5GGGという)等が用いら
れるが、上記組成の結晶膜は格子定数が12.497A
前後の5GGG基板との格子整合性が最もよい。
012, Sm5Ga501z, NdaGasOta (hereinafter referred to as NGG), Ca-Mg-Zr substituted G d B
Ga 5O12 (hereinafter referred to as 5GGG) etc. are used, but the crystal film with the above composition has a lattice constant of 12.497A.
The lattice matching between the front and rear 5GGG substrates is the best.

磁性ガーネット結晶膜の育成は液相エピタキシャル法に
よって行う。即ち、PbO5BaOa、Bi、O,のフ
ラックス中に、Fe、OB、Ho□O,、G d 20
 mを融かして成る所定組成の融液中にガーネット基板
を浸漬することによって基板上に厚さ500μm以上の
結晶膜を育成することができる。
The magnetic garnet crystal film is grown by liquid phase epitaxial method. That is, in the flux of PbO5BaOa, Bi, O, Fe, OB, Ho□O,, G d 20
A crystal film with a thickness of 500 μm or more can be grown on the substrate by immersing the garnet substrate in a melt of a predetermined composition made by melting the garnet.

このような融液組成において、得られる結晶膜の結晶膜
はファラデー回転係数は極めて高いので、結晶膜の厚さ
を従来の磁性ガーネット結晶膜に比してはかなり薄く(
例えば、210μm以下に)でき、従って育成時間の短
縮を図ることができる。
With such a melt composition, the crystal film obtained has an extremely high Faraday rotation coefficient, so the thickness of the crystal film is considerably thinner than that of conventional magnetic garnet crystal films (
For example, 210 μm or less), and therefore the growth time can be shortened.

得られた結晶膜は必要に応じ基板を全部又は1部削り取
った後、光アイソレータ等の磁気光学素子として用いる
The obtained crystal film is used as a magneto-optical element such as an optical isolator after removing all or part of the substrate as necessary.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

実施例1 表1に示す組成の融液中(720℃)に5GGG基板を
10分浸漬し、基板上に鏡面を呈する厚さ5μmの結晶
膜を得た。
Example 1 A 5GGG substrate was immersed in a melt having the composition shown in Table 1 (720° C.) for 10 minutes to obtain a 5 μm thick crystal film exhibiting a mirror surface on the substrate.

得られた結晶膜の組成、波長1.3μmにおけるファラ
デー回転係数および外部飽和磁界を表2に示す。
Table 2 shows the composition of the obtained crystal film, the Faraday rotation coefficient at a wavelength of 1.3 μm, and the external saturation magnetic field.

表 表 実施例2 実施例1と同様の融液中にNGG基板を10分浸漬し、
基板上に鏡面を呈する厚さ5μmの結晶膜を得た。
Table Example 2 An NGG substrate was immersed in the same melt as in Example 1 for 10 minutes,
A 5 μm thick crystal film exhibiting a mirror surface was obtained on the substrate.

[発明の効果] 以上の実施例からも明らかなように、本発明によれば、
磁性ガーネット結晶膜の希土類として温度係数の符号が
異なるHoとGdを用いることにより、ファラデー回転
係数が極めて大きく、温度係数の小さい磁気光学材料を
得ることができる。
[Effect of the invention] As is clear from the above examples, according to the present invention,
By using Ho and Gd, which have different signs of temperature coefficients, as rare earths in the magnetic garnet crystal film, it is possible to obtain a magneto-optical material with an extremely large Faraday rotation coefficient and a small temperature coefficient.

従って、極めて薄い結晶膜を光アイソレータ等の磁気光
学素子として用いることができるので、素子の小型化、
低コスト化かで実現でき、結晶育成時間を短縮できる。
Therefore, an extremely thin crystal film can be used as a magneto-optical element such as an optical isolator, which reduces the size of the element.
This can be realized at low cost and shortens the crystal growth time.

更に本発明の磁気光学材料は外部飽和磁界が小さいので
、部品として用いる磁石を小さいものとすることができ
、装置全体としての小型化を実現することができる。
Further, since the magneto-optical material of the present invention has a small external saturation magnetic field, the magnet used as a component can be made small, and the entire device can be made smaller.

Claims (1)

【特許請求の範囲】 非磁性ガーネット基板上に育成され、組成式Ho_3_
−_x_−_yGd_xBi_yFe_5O_1_2(
但し、0<x<3、0<y<3である) で表わされる磁性ガーネット結晶膜から成ることを特徴
とする磁気光学材料。
[Claims] Grown on a non-magnetic garnet substrate, with the composition formula Ho_3_
−_x_-_yGd_xBi_yFe_5O_1_2(
However, 0<x<3, 0<y<3) A magneto-optical material comprising a magnetic garnet crystal film.
JP8195490A 1990-03-29 1990-03-29 Magneto-optical material Pending JPH03280012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8195490A JPH03280012A (en) 1990-03-29 1990-03-29 Magneto-optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8195490A JPH03280012A (en) 1990-03-29 1990-03-29 Magneto-optical material

Publications (1)

Publication Number Publication Date
JPH03280012A true JPH03280012A (en) 1991-12-11

Family

ID=13760895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8195490A Pending JPH03280012A (en) 1990-03-29 1990-03-29 Magneto-optical material

Country Status (1)

Country Link
JP (1) JPH03280012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690153A1 (en) 1994-07-01 1996-01-03 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690153A1 (en) 1994-07-01 1996-01-03 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal

Similar Documents

Publication Publication Date Title
US4981341A (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
US5186866A (en) Oxide garnet single crystal
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
US5608570A (en) Article comprising a magneto-optic material having low magnetic moment
JPH09185027A (en) Product consisting of magneto-optical material having low magnetic moment
US4932760A (en) Magneto-optic garnet
JP2786078B2 (en) Faraday rotator and optical isolator
JPH03280012A (en) Magneto-optical material
US6483645B1 (en) Garnet crystal for Faraday rotator and optical isolator having the same
JPH08290997A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JP2002287104A (en) Method of manufacturing faraday rotator without using magnet
JPH0450120A (en) Magnetic optical material
JPH046110A (en) Magneto-optical material
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
JPS63107900A (en) Material for magneto-optical element
EP0338859B1 (en) Faraday rotator
JPH03280011A (en) Magneto-optical material
JPH0632698A (en) Magneto-optical material and its production
JPH03242620A (en) Magneto-optical material
JPH0727823B2 (en) Magnetic material for magneto-optical element
JPH07104224A (en) Nonreciprocity optical device
JPH0642026B2 (en) Magneto-optical element material
JPH0817630A (en) Oxide garnet single crystal
JPH0933870A (en) Faraday rotator with low saturation magnetic field