JPH03280011A - Magneto-optical material - Google Patents

Magneto-optical material

Info

Publication number
JPH03280011A
JPH03280011A JP8195390A JP8195390A JPH03280011A JP H03280011 A JPH03280011 A JP H03280011A JP 8195390 A JP8195390 A JP 8195390A JP 8195390 A JP8195390 A JP 8195390A JP H03280011 A JPH03280011 A JP H03280011A
Authority
JP
Japan
Prior art keywords
magneto
temp
crystal film
faraday rotation
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8195390A
Other languages
Japanese (ja)
Inventor
Minoru Kojima
実 小島
Takao Takahashi
隆雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8195390A priority Critical patent/JPH03280011A/en
Publication of JPH03280011A publication Critical patent/JPH03280011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the magneto-optical material which has a large coefft. of Faraday rotation and small dependency on temp. by using Er and Tb which are complementary in temp. characteristic as the rare earths of a magnetic garnet crystal film. CONSTITUTION:The magnetic garnet crystal film expressed by compsn. formula Er3-x-yTbxBiyFe5O12 is grown on a nonmagnetic garnet substrate. In the formula, 0<x<3, 0<y<3. Namely, the coefft. of Faraday rotation is high and the dependency on temp. is small if two kinds of the rare earths, Er and Tb, which are complementary in temp. characteristic are combined. The growth of the magnetic garnet crystal film is, therefore, executed by immersing a garnet substrate into the melt of the prescribed compsn. formed by melting Fe2O3, Fr2O3, and Tb4O7 into a flux consisting of PbO, B2O3 and Bi2O3. The magneto- optical material which is high in the coefft. of Faraday rotation and small in the dependency on temp. is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は光アイソレータや光サーキュレータなどに用
いられる磁気光学材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to magneto-optical materials used in optical isolators, optical circulators, etc.

[従来の技術] 従来より、半導体レーザから放出された光線と戻り光と
を分離するための光アイソレータとして、あるいは光フ
アイバ損失測定において光ファイバの後方散乱光を受光
ダイオードのみに導くための光サーキュレータとしてフ
ァラデー回転効果を有する磁気光学材料が利用されてい
る。
[Prior Art] Conventionally, optical circulators have been used as optical isolators for separating the light beam emitted from a semiconductor laser and returning light, or for guiding backscattered light from an optical fiber only to a light receiving diode in optical fiber loss measurement. Magneto-optical materials having a Faraday rotation effect are used as such.

ファラデー回転効果は磁気光学材料が磁界の中に置かれ
た場合、材料中を磁界方向に進む光の偏光面が回転する
現象であり、光アイソレータ等に適用される磁気光学素
子としては、ファラデー回転係数(単位長当りの回転角
)か大きいこと、且つファラデー回転係数の温度依存性
が少ないこと、更に挿入損失か少ないことか条件となる
The Faraday rotation effect is a phenomenon in which when a magneto-optical material is placed in a magnetic field, the plane of polarization of light traveling in the direction of the magnetic field rotates. The conditions are that the coefficient (rotation angle per unit length) is large, the Faraday rotation coefficient has little temperature dependence, and the insertion loss is small.

この種の磁気光学材料として、Bi置換を行った希土類
鉄ガーネット(一般式B i 、RE、F e50.2
で表わされるもので、REは希土類を表わしx+y=3
である)か開発されている。このような希土類鉄ガーネ
ット結晶は基板となるガーネット上に液相エピタキシャ
ル法によって育成することができ、Biの置換量が多い
はいとファラデー回転係数が向上する。Biを多量に置
換するためにFeをAIおよび/又はGaで置換するこ
とか行なわれている(特開昭61−20925号)。
Rare earth iron garnet with Bi substitution (general formula B i , RE, Fe50.2
where RE represents rare earth and x+y=3
) or has been developed. Such a rare earth iron garnet crystal can be grown on a garnet substrate by a liquid phase epitaxial method, and the Faraday rotation coefficient increases as the amount of Bi substitution increases. In order to replace a large amount of Bi, it has been attempted to replace Fe with AI and/or Ga (Japanese Patent Application Laid-open No. 20925/1983).

一方、Biはイオン半径が犬であるため、Bi量が多く
なると基板との格子定数の差が大きくなり格子整合性が
悪い。このため、希土類元素としてイオン半径の小さな
希土類元素を用いることにより、基板との格子整合性を
図っている(特開昭63−291028号、特開平1−
217313号)。
On the other hand, since Bi has a dog-shaped ionic radius, as the amount of Bi increases, the difference in lattice constant with the substrate increases, resulting in poor lattice matching. For this reason, lattice matching with the substrate is achieved by using rare earth elements with a small ionic radius (JP-A-63-291028, JP-A-1-1999).
No. 217313).

[発明が解決しようとする課題] しかし、FeをAI、Ga等の非磁性元素で置換した磁
気光学材料では、一般に温度依存性が低下する傾向があ
る。また、希土類鉄ガーネットを形成する希土類は、1
種又は2種以上を混合して用いられているが、それぞれ
温度特性が異なり、一種のみを用いた場合或いは組合せ
が適当でない場合にはファラデー回転係数の温度依存性
が大きく、磁気光学素子として実用できない。
[Problems to be Solved by the Invention] However, in magneto-optical materials in which Fe is replaced with a non-magnetic element such as AI or Ga, temperature dependence generally tends to decrease. In addition, the rare earths that form rare earth iron garnet are 1
Although they are used as a mixture of two or more types, each has different temperature characteristics, and when only one type is used or the combination is inappropriate, the Faraday rotation coefficient has a large temperature dependence, making it difficult to put it into practical use as a magneto-optical element. Can not.

本発明は特定の希土類を2種組み合わせることによりフ
ァラデー回転係数と共に、温度依存性を向上することの
できる磁気光学材料を提供することを目的とし、更に光
アイソレータ等として用いた場合、挿入損失が少ない磁
気光学材料を提供することを目的とする。
The purpose of the present invention is to provide a magneto-optical material that can improve the Faraday rotation coefficient and temperature dependence by combining two types of specific rare earth elements, and furthermore has low insertion loss when used as an optical isolator etc. The purpose is to provide magneto-optical materials.

[課題を解決するための手段] このような目的を達成するために本発明者等は温度特性
が相補的である2種の希土類の組合せについて鋭意研究
の結果、希土類としてErとTbを組合せた場合にファ
ラデー回転係数が極めて高く、しかも温度依存性が小さ
いことを見出し本発明に至ったものである。
[Means for Solving the Problems] In order to achieve such an objective, the inventors of the present invention have conducted extensive research into combinations of two types of rare earths with complementary temperature characteristics, and have combined Er and Tb as rare earths. In this case, the Faraday rotation coefficient is extremely high and the temperature dependence is small, leading to the present invention.

即ち本発明の磁気光学材料は、非磁性ガーネット基板上
に育成され、組成式 %式% ) で表わされる磁性ガーネット結晶膜から成るものである
That is, the magneto-optical material of the present invention is grown on a non-magnetic garnet substrate and consists of a magnetic garnet crystal film represented by the compositional formula %.

ここで、非磁性ガーネット基板は、Gd5Gas01f
fi、Sm5GasOzz、NdBGBsO1*(以下
NGGという) 、Ca −Mg−Z r置換G d 
、G a。
Here, the non-magnetic garnet substrate is Gd5Gas01f
fi, Sm5GasOzz, NdBGBsO1* (hereinafter referred to as NGG), Ca-Mg-Z r substitution G d
, G a.

0.2(以下5GGGという)等が用いられるが、上記
組成の結晶膜は格子定数が12.497A前後の5GG
G基板との格子整合性が最もよい。
0.2 (hereinafter referred to as 5GGG), etc., but the crystal film with the above composition is 5GG with a lattice constant of around 12.497A.
It has the best lattice matching with the G substrate.

磁性ガーネット結晶膜の育成は液相エピタキシャル法に
よって行う。即ち、PbO1B203、Biassのフ
ラックス中に、Fe2O,、Er、O,。
The magnetic garnet crystal film is grown by liquid phase epitaxial method. That is, PbO1B203, Fe2O,, Er, O, in the Biass flux.

Tb、O,を融かして成る所定組成の融液中にガーネッ
ト基板を浸漬することによって基板上に厚さ500μm
以上の結晶膜を育成することができる。
A garnet substrate is immersed in a melt of a predetermined composition made by melting Tb, O, and a thickness of 500 μm is formed on the substrate.
The above crystalline film can be grown.

得られた結晶膜は必要に応じ基板を全部又は1部削り取
った後、光アイソレータ等の磁気光学素子として用いる
The obtained crystal film is used as a magneto-optical element such as an optical isolator after removing all or part of the substrate as necessary.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

実施例1 表1に示す組成の融液中(700℃)に5GGG基板を
10分浸漬し、基板上に鏡面を呈する厚さ5μmの結晶
膜を得た。
Example 1 A 5GGG substrate was immersed in a melt having the composition shown in Table 1 (700° C.) for 10 minutes to obtain a 5 μm thick crystal film exhibiting a mirror surface on the substrate.

得られた結晶膜の組成及び波長1.3μmにおけるファ
ラデー回転係数を表2に示す。
Table 2 shows the composition of the obtained crystal film and the Faraday rotation coefficient at a wavelength of 1.3 μm.

実施例2 実施笹1と同様の融液中に、NGG基板を10分浸漬し
、基板上に鏡面を呈する厚さ5μmの結晶膜を得た。
Example 2 An NGG substrate was immersed in the same melt as in Example Sasa 1 for 10 minutes to obtain a 5 μm thick crystal film exhibiting a mirror surface on the substrate.

表 表 [発明の効果コ 以上の実施例からも明らかなように、本発明によれば、
磁性ガーネット結晶膜の希土類として温変時性が相補的
であるErとTbを用いることにより、ファラデー回転
係数が極めて大きく、その温度依存性の小さい磁気光学
材料を得ることができる。
Table [Effects of the Invention] As is clear from the above embodiments, according to the present invention,
By using Er and Tb, which have complementary thermal chronotropy, as rare earth elements in the magnetic garnet crystal film, it is possible to obtain a magneto-optical material with an extremely large Faraday rotation coefficient and a small temperature dependence.

従って、光アイソレータ等の磁気光学素子として用いた
場合素子の小型化、低コスト化かで実現でき、挿入損失
も極めて小さくすることができる。
Therefore, when used as a magneto-optical element such as an optical isolator, the element can be made smaller and at a lower cost, and the insertion loss can also be extremely reduced.

Claims (1)

【特許請求の範囲】 非磁性ガーネット基板上に育成され、組成式Er_3_
−_x_−_yTb_xBi_yFe_5O_1_2(
但し、0<x<3、0<y<3である) で表わされる磁性ガーネット結晶膜から成ることを特徴
とする磁気光学材料。
[Claims] Grown on a non-magnetic garnet substrate, having the composition formula Er_3_
−_x_-_yTb_xBi_yFe_5O_1_2(
However, 0<x<3, 0<y<3) A magneto-optical material comprising a magnetic garnet crystal film.
JP8195390A 1990-03-29 1990-03-29 Magneto-optical material Pending JPH03280011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8195390A JPH03280011A (en) 1990-03-29 1990-03-29 Magneto-optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8195390A JPH03280011A (en) 1990-03-29 1990-03-29 Magneto-optical material

Publications (1)

Publication Number Publication Date
JPH03280011A true JPH03280011A (en) 1991-12-11

Family

ID=13760867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8195390A Pending JPH03280011A (en) 1990-03-29 1990-03-29 Magneto-optical material

Country Status (1)

Country Link
JP (1) JPH03280011A (en)

Similar Documents

Publication Publication Date Title
EP0409691B1 (en) Oxide garnet single crystal
US4932760A (en) Magneto-optic garnet
JPH09328398A (en) Faraday rotator exhibiting angular hysteresis
US5479290A (en) Faraday&#39;s rotator and optical isolator
JPH03280011A (en) Magneto-optical material
JPS61123814A (en) Magnetic semiconductor material and optical isolator
US6483645B1 (en) Garnet crystal for Faraday rotator and optical isolator having the same
JPS63107900A (en) Material for magneto-optical element
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JPH03242620A (en) Magneto-optical material
JPS61113026A (en) Medium for magnetooptic element
JPH046110A (en) Magneto-optical material
EP0338859B1 (en) Faraday rotator
JPH03280012A (en) Magneto-optical material
JPS61292613A (en) Faraday rotor and its production
JPH0450120A (en) Magnetic optical material
Kaneko et al. A low loss 0.8 µm band optical isolator using highly Bi-substituted LPE garnet film
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPS627634A (en) Magneto-optic garnet
JPH0369847B2 (en)
JPH0768048B2 (en) Magneto-optical net
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
JPH05134221A (en) Magneto-optical material and production thereof and optical element formed by using this process
JPS61205698A (en) Magnetooptical material