JPH03272179A - Gate turnoff thyristor - Google Patents

Gate turnoff thyristor

Info

Publication number
JPH03272179A
JPH03272179A JP7400690A JP7400690A JPH03272179A JP H03272179 A JPH03272179 A JP H03272179A JP 7400690 A JP7400690 A JP 7400690A JP 7400690 A JP7400690 A JP 7400690A JP H03272179 A JPH03272179 A JP H03272179A
Authority
JP
Japan
Prior art keywords
layer
current
turnoff
gate
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7400690A
Other languages
Japanese (ja)
Inventor
Masami Nakamura
正己 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7400690A priority Critical patent/JPH03272179A/en
Publication of JPH03272179A publication Critical patent/JPH03272179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To prevent an ON current from concentrating at turnoff and to improve a gate turnoff thyristor in turnoff performance without decreasing it in other characteristics by a method wherein the central part of an island- shaped first conductive layer is set lower than its peripheral part in impurity concentration. CONSTITUTION:An N2 emitter layer 2 is located closer to the center than an N1 emitter layer 1 and backward biased in impurity concentration b starting from a part a closest to a gate electrode 7, an ON current in an emitter layer is made to concentrate on the center with the elapse of a gate turnoff time, and the N2 emitter layer 2 is smaller than a part just under the N1 emitter layer 1 in injection efficiency. Therefore, a current just under the layer 2 returns to an OFF state sooner than a current just under the layer 1. Therefore, as the inner peripheral part of the layer 1 is turned in an ON state just before turnoff, the current of a thyristor of this design is smaller than that of a conventional GTO. Therefore, An ON current can be made to flow more than that in a conventional GTO in intensity by a certain degree compensated by the reduction in current density, so that a thyristor of this design can be improved in gate turnoff performance as compared with a conventional GTO.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ゲートターンオフサイリスタ(以下、GT
Oと呼ぶ)に係り、特にそのエミッタ構造に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to gate turn-off thyristors (hereinafter referred to as GT
(referred to as O), and in particular its emitter structure.

〔従来の技術) 第2図に従来のGTOの断面の一例を示す。[Conventional technology] FIG. 2 shows an example of a cross section of a conventional GTO.

第2図において、1および4はn形感電層であるn、エ
ミツタ層およびnベース層、3および5はp形感電層で
あるpベース層およびp工くツタ層、6はアノード電極
、7はゲート電極、8はカソード電極で、複数個が独立
しに島状の電極として形成され、半導体基板の凸部の第
1導電層であるn1工ミツタ層1上に形成されている。
In FIG. 2, 1 and 4 are n-type electric shock layers, ie, an emitter layer and an n base layer, 3 and 5 are p-type electric shock layers, which are a p base layer and a p-type vine layer, 6 is an anode electrode, and 7 Reference numeral 8 indicates a gate electrode, and 8 indicates a cathode electrode. A plurality of electrodes are formed independently as island-shaped electrodes, and are formed on the n1 layer 1, which is the first conductive layer, on the convex portion of the semiconductor substrate.

9はこのカソード電極8を電気的につなぐ金属板である
9 is a metal plate that electrically connects this cathode electrode 8.

以上のような構造をもつGTOにおいて、ゲートターン
オフ時の電流密度Cを調べると、まず、ターンオフ開始
時はゲート電極7がカソード電極8に対してマイナスに
なるため、pn接合J1のゲート電極7に最も近い部分
aから逆バイアスがかり、アノード電極6からカソード
電極8へ流れるオン電流のnエミツタ層部分は、ターン
オフ時間の経過とともに各n1工ミツタ層1の中央部に
集中することになる。
In a GTO with the above structure, when examining the current density C at the time of gate turn-off, firstly, at the start of turn-off, the gate electrode 7 becomes negative with respect to the cathode electrode 8, so that the gate electrode 7 of the pn junction J1 A reverse bias is applied from the nearest portion a, and the on-current flowing from the anode electrode 6 to the cathode electrode 8 in the n emitter layer becomes concentrated in the center of each n1 emitter layer 1 as the turn-off time elapses.

従って、ターンオフ完了直前においては各nlエミツタ
層1の中心部は非常に高い電流密度に達する。
Therefore, just before turn-off is completed, the center of each Nl emitter layer 1 reaches a very high current density.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって、半導体装置のゲートターンオフ能力以上の
オン電流が流れた場合には、この電流集中により半導体
装置が熱破壊をしてしまうことになり、このことがGT
Oのターンオフ能力を制限する大きな要因となっていた
Therefore, if an on-current that exceeds the gate turn-off capability of the semiconductor device flows, the semiconductor device will be thermally destroyed due to this current concentration.
This was a major factor limiting O's turn-off ability.

この発明は、上記のような問題点を解消するためにさな
れたもので、他の特性を劣化させることなく、ターンオ
フ能力を改善したゲートターンオフサイリスタを得るこ
とを目的とするものである。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a gate turn-off thyristor with improved turn-off ability without deteriorating other characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るゲートターンオフサイリスタは、島状の
電極と接する第1導電層において、その中央部の方が外
周部よりも不純物濃度が低くなるように設定したもので
ある。
In the gate turn-off thyristor according to the present invention, in the first conductive layer in contact with the island-shaped electrode, the impurity concentration is set to be lower at the center than at the outer periphery.

〔作用〕 この発明においては、第1導電層の不純物濃度を外周部
より中央部の方が低くなるようにしたことから、第1導
電層を流れる電流は中央部に集中しなくなり、ゲートタ
ーンオフ能力が向上する。
[Function] In this invention, since the impurity concentration of the first conductive layer is lower in the center than in the outer periphery, the current flowing through the first conductive layer is no longer concentrated in the center, and the gate turn-off ability is improved. will improve.

(実施例〕 第1図はこの発明の一実施例を示すGTOの断面図であ
る。
(Embodiment) FIG. 1 is a sectional view of a GTO showing an embodiment of the present invention.

第1図において、n2工ミツタ層2はn、エミツタ層1
より中央部に位置し、その不純物濃度はn1工くツタ層
1より低く設定されている。
In FIG. 1, the n2 emitter layer 2 is n, the emitter layer 1 is
It is located closer to the center, and its impurity concentration is set lower than that of the ivy layer 1 by n1.

なお、その他の構成は第2図と同じであるので、その説
明は省略する。
Note that the other configurations are the same as those in FIG. 2, so their explanation will be omitted.

このような構造の場合のゲートターンオフ時の電流密度
すは、まず、ゲート電極7に最も近い部分aから逆バイ
アスがかり、オン電流の工くツタ層部分はゲートターン
オフ時間の経過とともに中央部へ集中していくが、n2
工主ツタ層2はn1工ミツタ層1より不純物濃度が低く
設定されているため、n2工ミツタ層2直下の注入効率
はn1工くツタ層1直下の注入効率より小さくなる。そ
のために、n2工ミツタ層2直下の電流の方がn1工く
ツタ層1直下の電流より早くオフ状態に回復する。その
ため、ターンオフ直前においてはn1工ミツタ層1の内
周部がオン状態になっているため、従来の構造のGTO
より電流は低くなる。
In such a structure, the current density at gate turn-off is reverse biased first from the part a closest to the gate electrode 7, and the vine layer part where the on-current is generated concentrates in the center as the gate turn-off time passes. I will do it, but n2
Since the impurity concentration of the main vine layer 2 is set to be lower than that of the n1 vine layer 1, the injection efficiency immediately below the n2 vine layer 2 is lower than the injection efficiency immediately below the n1 vine layer 1. For this reason, the current directly under the n2 vine layer 2 recovers to the off state more quickly than the current directly under the n1 vine layer 1. Therefore, just before turn-off, the inner peripheral part of the n1 process layer 1 is in the on state, so the GTO of the conventional structure
The current will be lower.

従って、電流密度が低くなった分だけより多くのオン電
流を流すことができることになり、従来のGTOよりも
ゲートターンオフ能力が向上する。
Therefore, since the current density is lowered, more on-current can flow, and the gate turn-off ability is improved compared to the conventional GTO.

また、ターンオフ特性については、ゲートトリガ感度を
決定する8部のエミッタ構造は、従来と同一のためゲー
トトリガ電流が大きくなることはない。
Furthermore, regarding the turn-off characteristics, the emitter structure of the 8th part that determines the gate trigger sensitivity is the same as the conventional one, so the gate trigger current does not increase.

なお、上記実施例では、1,2.4がnタイプの導電層
、3.5がpタイプの導電層の場合について説明したが
、1,2.4がpタイプ、3,5がnタイプの場合も同
様の効果を奏する。
In the above embodiment, the case where 1 and 2.4 are n-type conductive layers and 3.5 is a p-type conductive layer is explained, but 1 and 2.4 are p-type and 3 and 5 are n-type conductive layers. A similar effect is achieved in the case of .

また、上記実施例では逆阻止タイプのGTOについて説
明したが、逆導電タイプ、逆導通タイプのGTOについ
ても同様の効果を奏する。
Further, in the above embodiment, a reverse blocking type GTO has been described, but the same effect can be achieved with a reverse conduction type or a reverse conduction type GTO.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、島状の第1導電層の
中央部の不純物濃度を外周部より低く設定したので、タ
ーンオフ時のオン電流の集中を防ぎ、他の特性を低下さ
せることなくターンオフ能力を改善することができる効
果が得られる。
As explained above, in this invention, the impurity concentration at the center of the island-shaped first conductive layer is set lower than at the outer periphery, thereby preventing concentration of on-current at turn-off and without deteriorating other characteristics. The effect of improving turn-off ability is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるGTOの一実施例を示す断面図
、第2図は従来のGTOの一例を示す断面図である。 図において、1はn1工くツタ層、2はn2工ミツタ層
、3はpベース層、4はnベース層、5はp工尖ツタ層
、6はアノード電極、7はゲート電極、8はカソード電
極、9は金属板である。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of a GTO according to the present invention, and FIG. 2 is a sectional view showing an example of a conventional GTO. In the figure, 1 is an n1 vine layer, 2 is an n2 vine layer, 3 is a p base layer, 4 is an n base layer, 5 is a p vine layer, 6 is an anode electrode, 7 is a gate electrode, and 8 is a The cathode electrode 9 is a metal plate. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  複数のpn接合を有し、一方の主表面に2種類の異な
った電極が設けられ、前記2種類の異なった電極のうち
一種類は凸部に複数個の独立した島状の電極として形成
され、この島状の電極と接する半導体基板の第1導電層
を備えたゲートターンオフサイリスタにおいて、前記第
1導電層の中央部の不純物濃度を外周部の不純物濃度よ
りも低く設定したことを特徴とするゲートターンオフサ
イリスタ。
It has a plurality of pn junctions, two different types of electrodes are provided on one main surface, and one type of the two different types of electrodes is formed as a plurality of independent island-shaped electrodes on the convex portion. , a gate turn-off thyristor including a first conductive layer of a semiconductor substrate in contact with the island-shaped electrode, characterized in that the impurity concentration in the central part of the first conductive layer is set lower than the impurity concentration in the outer peripheral part. Gate turn-off thyristor.
JP7400690A 1990-03-22 1990-03-22 Gate turnoff thyristor Pending JPH03272179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7400690A JPH03272179A (en) 1990-03-22 1990-03-22 Gate turnoff thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7400690A JPH03272179A (en) 1990-03-22 1990-03-22 Gate turnoff thyristor

Publications (1)

Publication Number Publication Date
JPH03272179A true JPH03272179A (en) 1991-12-03

Family

ID=13534559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7400690A Pending JPH03272179A (en) 1990-03-22 1990-03-22 Gate turnoff thyristor

Country Status (1)

Country Link
JP (1) JPH03272179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491351A (en) * 1993-10-30 1996-02-13 Abb Management Ag Gate turn-off thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491351A (en) * 1993-10-30 1996-02-13 Abb Management Ag Gate turn-off thyristor

Similar Documents

Publication Publication Date Title
US3896476A (en) Semiconductor switching device
JPH0534834B2 (en)
JPH09246570A (en) Semiconductor device
JP2970774B2 (en) Semiconductor device
JPS6315464A (en) Gata turn-off thyristor
JPH03272179A (en) Gate turnoff thyristor
USRE36770E (en) MOS-controlled high-power thyristor
US4609933A (en) Gate turn-off thyristor having P+ gate and emitter
US4825270A (en) Gate turn-off thyristor
JPS6257250A (en) Semiconductor device
JP2804216B2 (en) Gate turn-off thyristor
JPH02296370A (en) Gate turn-off thyristor
JPS5933988B2 (en) Electrostatic induction thyristor
JPH06291320A (en) Insulated gate bipolar transistor
JPH0758777B2 (en) Gate turn-off thyristor
JPS60198778A (en) Switching element
JPS59163867A (en) Gate turn-off thyristor
JP2630080B2 (en) Gate turn-off thyristor
JPH0217674A (en) Gate turn-off thyristor
JPS60189261A (en) Gate turn-off thyristor
JPS5915185B2 (en) thyristor
JP2679292B2 (en) Method for manufacturing semiconductor device
JP2941347B2 (en) Semiconductor device
JPS6110986B2 (en)
JPS621273A (en) Reverse-conducting gto thyristor