JPH03266239A - Sputtering method for magneto-optical disk - Google Patents

Sputtering method for magneto-optical disk

Info

Publication number
JPH03266239A
JPH03266239A JP6314790A JP6314790A JPH03266239A JP H03266239 A JPH03266239 A JP H03266239A JP 6314790 A JP6314790 A JP 6314790A JP 6314790 A JP6314790 A JP 6314790A JP H03266239 A JPH03266239 A JP H03266239A
Authority
JP
Japan
Prior art keywords
film
rotation
base body
magneto
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6314790A
Other languages
Japanese (ja)
Inventor
Shinichiro Matsuo
松尾 伸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6314790A priority Critical patent/JPH03266239A/en
Publication of JPH03266239A publication Critical patent/JPH03266239A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow easy formation in a large quantity by specifying the rotation and revolution ratio to the rotation of a 2nd base body when the rotation of a 1st base body is determined as revolution and reference. CONSTITUTION:The rotation and revolution ratio to the rotation of the 2nd base body 4 is set in a range of equation I when the rotation of the 1st base body 3 is determined as the revolution and reference. Namely, the rotation of the 2nd base body 4 is so set as to deviate slightly each at every one revolution. Consequently, periodic multilayerd films are formed on a disk substrate 5. Namely, the film by a film forming source 1 and a film forming source 2 are alternately formed by one layer each at every one revolution of the 1st base body 3. The periodic multilayered films laminated with the layers having the relatively significant influence of the film forming source 1 and the layers having the significant influence of the film forming source 2 are formed on the disk substrate 5. The easy production in a large quantity is possible in this way.

Description

【発明の詳細な説明】 [概要〕 この発明は、記録層として希土類金属多量の磁性膜と遷
移金属多量の磁性膜とを光磁気ディスク基板へスパッタ
リング成膜により交互に積層された、周期多層膜を有す
る光磁気ディスクのスパッタリング方法に関し、 周期多層膜の光磁気ディスクを簡便に、かつ大量に製造
できる光磁気ディスクのスパッタリング方法を従供する
ことを目的とし、 前記記録層をスパッタリングにより成膜する希土類金属
多量の磁性膜の第1の成膜源と、遷移金属多量の磁性膜
の第2の成膜源とを用意し、回転自在な第1の基体と、
この第1の基体上にあって、かつ回転自在な第2の基体
と、この第2の基体の日周部に保持され、かつ前記成膜
源に対向する位置にある光磁気ディスク基板とを有し、
前記第1の基体の回転を公転として基準とする時、前記
第2の基体の自転との自公転、比率を1±0.2.3±
0.2.5±0.2.7±0.2.9±0.2の範囲に
設定して第1、第2の基体を自公転しながら、光磁気デ
ィスク基板上にスパッタリングし、周期多層膜を成膜す
ることを特徴とする光磁気ディスクのスパッタリング方
法。
[Detailed Description of the Invention] [Summary] The present invention provides a periodic multilayer film in which a magnetic film containing a large amount of rare earth metal and a magnetic film containing a large amount of transition metal are alternately laminated on a magneto-optical disk substrate by sputtering film formation as a recording layer. The purpose of the present invention is to provide a sputtering method for a magneto-optical disk having a periodic multilayer film that can be manufactured easily and in large quantities, with the objective of providing a sputtering method for a magneto-optical disk having a periodic multilayer film, and a rare earth material in which the recording layer is formed by sputtering. A first film forming source for a magnetic film containing a large amount of metal and a second film forming source for a magnetic film containing a large amount of transition metal are prepared, a rotatable first substrate;
A second base body that is located on the first base body and is rotatable; and a magneto-optical disk substrate that is held in the diurnal part of the second base body and is located opposite to the film forming source. have,
When the rotation of the first base body is used as a reference, the rotation and revolution ratio with respect to the rotation of the second base body is 1±0.2.3±.
Sputtering is performed on the magneto-optical disk substrate while the first and second substrates rotate and revolve within the range of 0.2.5±0.2.7±0.2.9±0.2. A sputtering method for a magneto-optical disk characterized by forming a multilayer film.

〔産業上の利用分野〕[Industrial application field]

この発明は、希土類金属多量の磁性膜と遷移金属多量の
磁性膜とを光磁気ディスク基板へスパッタリング成膜に
より交互に積層された、周期多層膜を記録層として有す
る光磁気ディスクのスパッタリング方法に関する。
The present invention relates to a method for sputtering a magneto-optical disk having a periodic multilayer film as a recording layer, in which a magnetic film rich in rare earth metals and a magnetic film rich in transition metals are alternately laminated on a magneto-optical disk substrate by sputtering film formation.

〔従来の技術〕[Conventional technology]

書き替え可能な光磁気ディスク等の光磁気記録媒体を構
成する希土類−遷移金属系磁性膜は、這常単一組成の磁
性膜(すなわち、単層膜)によって構成されている。こ
の希土類−遷移金属系磁性膜では、非晶質希土類−遷移
金属材料の組成により光磁気特性(記録・消去特性、C
/N比、周波数特性等の再生特性)が変わってくる。
A rare earth-transition metal magnetic film constituting a magneto-optical recording medium such as a rewritable magneto-optical disk is usually composed of a magnetic film of a single composition (ie, a single layer film). This rare earth-transition metal magnetic film has opto-magnetic properties (recording/erasing properties, C
/N ratio, frequency characteristics, etc.) will change.

例えば、補償組成に対して遷移金属組成の多い希土類−
遷移金属系磁性膜(以下、遷移金属多量膜という)の単
層膜の場合には、カー回転角が大きく得られるのでC/
N比が高い。また、磁化の反転がし易くなるので、記録
感度も高い。しかし、消去特性についてみると、周囲の
磁化が大きいために記録ビットが静磁気的に安定になり
消去が困難となる。また、磁化M、が大きいので垂直異
方性磁界が大きくなければ垂直異方性が悪く、安定な記
録ビットが得られない。そのため、周波数特性が悪くな
る。
For example, rare earths with a high transition metal composition relative to the compensation composition -
In the case of a single layer of a transition metal-based magnetic film (hereinafter referred to as a transition metal-rich film), a large Kerr rotation angle can be obtained, so C/
High N ratio. Furthermore, since the magnetization can be easily reversed, the recording sensitivity is also high. However, in terms of erasing characteristics, the large surrounding magnetization makes the recorded bits magnetostatically stable, making erasing difficult. Furthermore, since the magnetization M is large, unless the perpendicular anisotropy field is large, the perpendicular anisotropy is poor and stable recording bits cannot be obtained. Therefore, the frequency characteristics deteriorate.

次に、補償組成に対して希土類金属組成の多い、希土類
−遷移金属系磁性膜(以下、希土類金属多量膜という)
の単層膜の場合には、1移金属多量膜に比してカー回転
角が小さいのでC/N比か悪い。また、記録感度も低く
、高いレーザーパワーが必要となる。反面、磁化M、が
小さいので消去は容易であり、また、周波数特性もよい
Next, a rare earth-transition metal magnetic film (hereinafter referred to as a rare earth metal-rich film) that has a higher rare earth metal composition than the compensation composition.
In the case of a single-layer film, the Kerr rotation angle is smaller than that of a single-transfer metal-rich film, so the C/N ratio is poor. Furthermore, recording sensitivity is low and high laser power is required. On the other hand, since the magnetization M is small, erasing is easy and the frequency characteristics are good.

そこで、遷移金属多量膜と希土類金属多量膜との長所を
生かして短所を補うために、この2層膜を互いに交換結
合するように積層してなる希土類−遷移金属系磁性膜が
提案され、実施されている。
Therefore, in order to take advantage of the advantages of transition metal-rich films and rare earth metal-rich films and compensate for their shortcomings, a rare earth-transition metal magnetic film was proposed and implemented in which these two layers are laminated in such a way that they are exchange-coupled with each other. has been done.

たとえば、遷移金属多量膜と希土類金属多量膜の2つを
交互に積層させた膜構造(周期多層膜)の公知の技術と
して、特開昭63−311641号広報の「光磁気記録
媒体」、特開昭63−282944号広報の「光熱磁気
記録媒体」が開示されている。
For example, as a well-known technology of a film structure (periodic multilayer film) in which a transition metal-rich film and a rare earth metal-rich film are alternately laminated, there is a technique known as "magneto-optical recording medium" published in Japanese Patent Application Laid-open No. 63-311641. ``Photothermal magnetic recording medium'' is disclosed in Publication No. 63-282944.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、従来の周期多層膜を成膜する方法は、2つの
成膜源から交互にスパッタリングして厚さが数10人(
オングストローム)程度の薄膜を積層させて成膜するか
、あるいは、複数個の成膜源を用いてパワー調整により
スパッタリングするものである(例えば、特開昭63−
311641号広報の「光磁気記録媒体」参照)。
By the way, the conventional method of forming a periodic multilayer film involves sputtering alternately from two film forming sources to a thickness of several tens of layers (
The film is formed by stacking thin films of the order of 10 angstroms, or sputtering is performed by adjusting the power using multiple film forming sources (for example,
(See "Magneto-Optical Recording Media" in Publication No. 311641).

しかし、従来実施されているスパッタリング方法は数1
0人程度の薄膜を交互にスパッタリングしたり、あるい
はパワー調整によりスパッタリングするものであり、い
ずれもスパッタリング装置や製造方法が煩雑になるとと
もに、スパッタリング後の周期多N膜の安定性(品質)
に問題があった。
However, the conventional sputtering method is
Thin films are sputtered alternately or by adjusting the power, and both require complicated sputtering equipment and manufacturing methods, and the stability (quality) of the periodic N film after sputtering is affected.
There was a problem.

この発明は、このような課題に鑑みて創案したものであ
り、周期多層膜の光磁気ディスクを簡便に、かつ大量に
製造できる光磁気ディスクのスパッタリング方法を捉供
することを目的とする。
The present invention was devised in view of the above-mentioned problems, and an object of the present invention is to provide a sputtering method for magneto-optical disks that can easily produce large quantities of periodic multilayer film magneto-optical disks.

〔課題を解決するための手段〕[Means to solve the problem]

光磁気ディスクの記録層として希土類金属多量の磁性膜
と遷移金属多量の磁性膜とを交互に積層された、周期多
層膜を有する光磁気ディスクのスパッタリング方法にお
いて、 第1図を参照すると、前記記録−層をスパッタリングに
より成膜する希土類金属多量の磁性膜の第1の成膜源1
と、遷移金属多量の磁性膜の第2の成膜源2とを用意し
、 回転自在な第1の基体3と、この第1の基体3上にあっ
て、かつ回転自在な第2の基体4と、この第2の基体4
の円周部に保持され、かつ成膜源12に対向する位置に
ある光磁気ディスク基板(以下、ディスク基板とする)
5とを有し、第1の基体3の回転を公転として基準とす
る時、第2の基体4の自転との自公転比率を1±0.2
.3±0.2.5±0.2.7±0.2.9±0.2の
範囲に設定して第1、第2の基体3.4を自公転しなが
ら、ディスク基板5上にスパッタリングし、周期多層膜
を成膜することを特徴とする。
In a sputtering method for a magneto-optical disk having a periodic multilayer film in which a magnetic film containing a large amount of rare earth metal and a magnetic film containing a large amount of transition metal are alternately laminated as a recording layer of the magneto-optical disk, referring to FIG. - First film formation source 1 for a rare earth metal-rich magnetic film where the layer is formed by sputtering
and a second film forming source 2 for forming a magnetic film containing a large amount of transition metal, a rotatable first base 3, and a rotatable second base on the first base 3. 4 and this second base 4
A magneto-optical disk substrate (hereinafter referred to as disk substrate) held on the circumference of the disk and located opposite to the film-forming source 12
5, and when the rotation of the first base body 3 is taken as a reference as the revolution, the rotation-revolution ratio with respect to the rotation of the second base body 4 is 1±0.2.
.. 3 ± 0.2.5 ± 0.2.7 ± 0.2.9 ± 0.2, and while the first and second base bodies 3.4 rotate and revolve, they are placed on the disk substrate 5. It is characterized by forming a periodic multilayer film by sputtering.

[作用] この発明のように、ディスク基板5を保持する第1、第
2の基体3.4との自公転比を用いると、ディスク基板
5の軌道上に、第3図のX部のように、第1の成膜′a
l上の滞在時間の長い部分と、Y部のように短い部分が
出現し、第2の基体4の自転が、第1の基体3の1公転
毎に少しずつずれていくように動く。
[Function] If the rotation and revolution ratio of the first and second base bodies 3.4 holding the disk substrate 5 is used as in the present invention, there will be a part on the orbit of the disk substrate 5 as shown in the X section in FIG. , the first film formation 'a
A portion with a long residence time on L and a short portion such as the Y portion appear, and the rotation of the second base 4 moves so as to shift little by little with each revolution of the first base 3.

その結果、第1の基体3の1回の回転(公転)で、成膜
源1のスパッタリングにより成膜された膜(塗り潰し部
分)と成膜源2のスパッタリングにより成膜された膜(
白色部分)が1層ずつ成膜されるが、第3図に示す軌道
の特性により、比率(厚さ)が少しずつ変化して、第4
図に示すように、比較的に成膜源1の影響が大きい層(
第1層A1、第3層A2・・・)と、成膜源2の影響が
大きい層(第2層B5、第゛4層B2・・・)とが交互
に積層された形の周期多量膜になる。
As a result, in one rotation (revolution) of the first base 3, a film formed by sputtering of the film forming source 1 (filled part) and a film formed by sputtering of the film forming source 2 (
The white part) is deposited one layer at a time, but due to the characteristics of the trajectory shown in Figure 3, the ratio (thickness) changes little by little, and the fourth
As shown in the figure, the layer (
1st layer A1, 3rd layer A2...) and layers that are largely influenced by the film formation source 2 (2nd layer B5, 4th layer B2...) are laminated alternately. It becomes a membrane.

ここで、成膜源1に希土類金属多量の磁性体を、成膜源
2に遷移金属多量の磁性体を用いることにより、ディス
ク基板5に前記周期多層膜が成膜されて光磁気ディスク
が簡便に、かつ大量に生成される。
By using a magnetic material containing a large amount of rare earth metals in the film forming source 1 and a magnetic material containing a large amount of transition metals in the film forming source 2, the periodic multilayer film is formed on the disk substrate 5, and the magneto-optical disk can be easily manufactured. and in large quantities.

〔実施例〕〔Example〕

以下、この発明の実施例を図面を用いて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明の一実施例であるスパッタリング装置
の構成図、第2図はディスク基板を保持する基体とディ
スク基板との配置説明図、第3図はこの基体とディスク
基板の自公転の動きの説明図、第4図はこの発明による
成膜部分の説明図、第5図はこの成膜部分のTb組成の
変化を示す表、第6図はこの成膜部分のC/N比・周波
数特性図である。
FIG. 1 is a configuration diagram of a sputtering apparatus which is an embodiment of the present invention, FIG. 2 is an explanatory diagram of the arrangement of a base body that holds a disk substrate and the disk substrate, and FIG. 3 is a diagram showing the rotation and revolution of this base body and the disk substrate. FIG. 4 is an explanatory diagram of the film-formed portion according to the present invention, FIG. 5 is a table showing changes in the Tb composition of this film-formed portion, and FIG. 6 is a diagram showing the C/N ratio of this film-formed portion. It is a frequency characteristic diagram.

第1図において、1は記録層をスパッタリングにより成
膜する希土類多量の磁性膜の第1の成膜源、1aは希土
類多量を有するターゲット、1bはこのターゲラt−1
aを保持するバッキングプレート、1cは高周波電源で
ある。
In FIG. 1, 1 is a first film forming source for forming a magnetic film rich in rare earths by sputtering the recording layer, 1a is a target having a large amount of rare earths, and 1b is this target layer t-1.
1c is a high frequency power source.

2は遷移金属多量の磁性膜をスパッタリングする第2の
成膜源、2aは遷移金属多量を有するターゲット、2b
はこのターゲット2aを保持するバッキングプレート、
2Cは高周波電源である。
2 is a second film forming source for sputtering a magnetic film containing a large amount of transition metal; 2a is a target containing a large amount of transition metal; 2b
is a backing plate that holds this target 2a,
2C is a high frequency power source.

3は回転自在な第1の基体、4はこの第1の基体3上に
あって、かつ回転自在な第2の基体、5はこの第2の基
体4の円周部に固定され、かつ前記成膜源1.2に対向
する位置にあるディスク基板である。
3 is a rotatable first base; 4 is a rotatable second base on the first base 3; 5 is fixed to the circumference of the second base 4; This is a disk substrate located at a position facing the film forming source 1.2.

ディスク基板を保持する第1の基体3と第2の基体4に
おいて、第1の基体3の回転を公転として基準とする時
、第2の基体4の自転との自公転比率を1±0.2.3
±0.2.5±0.2.7±0.2.9±0.2の範囲
に設定する。すなわち、第2の基体4の自転が、1公転
毎に少しずつずれていくように設定する。
In the first base body 3 and the second base body 4 that hold the disk substrate, when the rotation of the first base body 3 is used as a reference, the rotation-revolution ratio with respect to the rotation of the second base body 4 is set to 1±0. 2.3
Set within the range of ±0.2.5±0.2.7±0.2.9±0.2. In other words, the rotation of the second base body 4 is set so as to deviate little by little every revolution.

6は真空の部屋であり、部屋6を数ミリTorrのアル
ゴン(Ar)雰囲気7にしである。また、この部屋6の
中にバッキングプレートlb、2bに保持された、ター
ゲラ)la、2aに対向させて被膜付着部材であるディ
スク基板5が配置されている。
6 is a vacuum room, and the room 6 is kept in an argon (Ar) atmosphere 7 of several milliTorr. Further, in this chamber 6, a disk substrate 5, which is a film-attaching member, is arranged so as to face the target plates 1a, 2a held by the backing plates 1b, 2b.

更に、成膜源1.2およびディスク基板5(あるいは、
第1、第2の基体3.4)との間は壁で仕切られており
、この壁には成膜源1,2よりそれぞれスパッターされ
るターゲットla、2aのスパッター位置に対応した第
1、第2の開口部1d。
Furthermore, a film forming source 1.2 and a disk substrate 5 (or
The first and second substrates 3.4) are separated by a wall, and this wall includes first and second targets la and 2a corresponding to the sputtering positions of the sputtering targets la and 2a sputtered from the film forming sources 1 and 2, respectively. Second opening 1d.

2dが穿設されている。2d is drilled.

そして、このディスク基板5をアース已に接続し、バッ
キングプレートlb、2bを10〜13詠の高周波電源
1c、2cに接続する。
Then, this disk substrate 5 is connected to the ground wire, and the backing plates lb and 2b are connected to high frequency power supplies 1c and 2c of 10 to 13 pins.

このようなスタッパリング装置によって、第1、第2の
基体3.4を自公転させ、その自公転の比率をたとえば
、3.2程度に設定し、Arイオンをターゲットla、
2aに衝突させてターゲットla。
With such a stappering device, the first and second base bodies 3.4 are rotated around their axis, the ratio of their rotation and revolution is set to, for example, about 3.2, and Ar ions are directed to the target la,
Collision with 2a and target la.

2aの分子を弾き飛ばし、その弾き飛ばされたターゲラ
)Ia、2aの分子をそれぞれの第1、第2の開口部1
d、2dを介してディスク基板5に付着させる。
The molecules of 2a are repelled, and the repelled molecules of Ia and 2a are inserted into the respective first and second openings 1.
It is attached to the disk substrate 5 via d and 2d.

この発明のように、ディスク基板5を保持する第1、第
2の基体3.4との自公転比を用いると、ディスク基板
5の軌道において、第1の基体3の進行方向と第2の基
体4の進行方向が逆になる場合は、第1の成膜源1ある
いは第2の成膜源2の上の滞在時間が長くなり(第3図
のX部、参照)、第1の基体3と第2の基体4の進行方
向が同じ場合は、滞在時間が短くなり(第3図のY部、
参照)、第2の基体4の自転が、1公転毎に少しずつず
れていくように動く。
As in this invention, if the rotation-revolution ratio of the first and second base bodies 3.4 holding the disk substrate 5 is used, in the orbit of the disk substrate 5, the traveling direction of the first base body 3 and the second base body 3. If the direction of movement of the substrate 4 is reversed, the time spent above the first deposition source 1 or the second deposition source 2 will be longer (see section X in Figure 3), and the first substrate 3 and the second base 4 travel in the same direction, the residence time becomes shorter (Y part in Figure 3,
), the rotation of the second base body 4 moves so as to be slightly shifted every revolution.

その結果、第4図に示す周期多層膜がディスク基板5に
成膜される。なお、図においては、成膜源1の膜と成膜
源2の膜との識別を容易にするために、成膜源lよりで
きた膜を塗り潰し部分にて表示し、成膜源2よりできた
膜を白色部分で表示する。
As a result, a periodic multilayer film shown in FIG. 4 is formed on the disk substrate 5. In the figure, in order to make it easier to distinguish between the film from deposition source 1 and the film from deposition source 2, the film formed from deposition source 1 is shown as a shaded area, and the film formed from deposition source 2 is shown as a shaded area. The resulting film is shown in white.

すなわち、第1の基体3の1公転毎に成膜源1と成膜源
2による膜が交互に1層ずつできるが、第3図に示すデ
ィスク基板5の軌道の特性により比率(厚さ)が少しず
つ変化する。そして、第4図に示すように、比較的に成
膜源1の影響が大きい層(第1層AH1第3層A2・・
・)と、成膜源2の影響が大きい層(第2層B1、第4
層B2・・・)とが積層された形の周期多量膜がディス
ク基板5に成膜されて光磁気ディスクが生成される。
That is, one layer of film is formed alternately by the film forming source 1 and the film forming source 2 for each revolution of the first substrate 3, but the ratio (thickness) varies depending on the characteristics of the orbit of the disk substrate 5 shown in FIG. changes little by little. As shown in FIG. 4, the layers (first layer AH1 third layer A2...
), and the layers that are greatly influenced by the deposition source 2 (second layer B1, fourth layer
A periodic multilayer film in which layers B2, . . . ) are laminated is formed on the disk substrate 5 to produce a magneto-optical disk.

なお、第1層A1のa、 b、  cや第2層B2の1
、m、nで示される微細な層構造は、それぞれの層の厚
さを1人(オングストローム)程度以下にすることで、
無くすことができる。
In addition, a, b, c of the first layer A1 and 1 of the second layer B2
The fine layer structure indicated by , m, and n can be created by reducing the thickness of each layer to about 1 angstrom or less.
It can be eliminated.

第5図は成膜源1のターゲット1aに26.5%のTb
を含む希土類金属多量材料(TbFeCo)を使用し、
成膜源2のターゲラ)2aに21.5%のTbを含む遷
移金属多量材料(TbFeCo)を使用して第1、第2
の基体3.4の自公転比を3.2程度にてスパッタリン
グした場合の組成の変化を示すものである。この図によ
れば、横軸の膜断面方向に沿って、遷移金属多量の磁性
膜(Tb22.5%)と希土類金属多量の磁性膜(Tb
25.8%)が交互に積層しているようすを示している
Figure 5 shows 26.5% Tb in target 1a of film deposition source 1.
Using a rare earth metal-rich material (TbFeCo) containing
A transition metal-rich material (TbFeCo) containing 21.5% Tb is used in the target layer 2a of the film forming source 2 to form the first and second layers.
This figure shows the change in composition when sputtering is performed at a rotation-revolution ratio of about 3.2 on a substrate 3.4. According to this figure, along the film cross-sectional direction on the horizontal axis, a magnetic film containing a large amount of transition metal (Tb22.5%) and a magnetic film containing a large amount of rare earth metal (Tb
25.8%) are alternately laminated.

第6図に示す成膜部分のC/N比・周波数特性図から明
らかなように、従来の希土類−遷移金属が均一な磁性膜
(第6図の■参照)に比べて、この発明による磁性膜(
第6図の■参照)は、カー回転角の大きな遷移金属多量
膜をカー効果で読み出す層に用いるために高いC/N比
が得られる。
As is clear from the C/N ratio/frequency characteristic diagram of the film-formed portion shown in Fig. 6, the magnetic properties of the present invention are significantly higher than the conventional magnetic film with uniform rare earth-transition metal (see ■ in Fig. 6). film(
6), a high C/N ratio can be obtained because a transition metal-rich film with a large Kerr rotation angle is used in the layer read out by the Kerr effect.

また、記録感度の良い遷移金属多量膜を加熱するために
、低いレーザパワーで書き込みができ、記録感度が高い
。さらに、遷移金属多量膜と希土類金属多量膜が交換結
合しているため、全体の磁化Msは小さ(なっており、
このため消去パワーは小さくて済み、消去感度が高い。
In addition, since the transition metal-rich film with high recording sensitivity is heated, writing can be performed with low laser power, resulting in high recording sensitivity. Furthermore, since the transition metal-rich film and the rare earth metal-rich film are exchange-coupled, the overall magnetization Ms is small.
Therefore, the erasing power is small and the erasing sensitivity is high.

さらにまた、交換結合により遷移金属多量膜の垂直異方
性が確保されるため、周波数特性は良い。
Furthermore, since the perpendicular anisotropy of the transition metal-rich film is ensured by exchange coupling, the frequency characteristics are good.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したように、記録層をスパッタリ
ングにより成膜する希土類多量の磁性膜の第1の成膜源
と、遷移金属多量の磁性膜の第2の成膜源とを用意し、
回転自在な第1の基体と、この第1の基体上にあって、
かつ回転自在な第2の基体と、この第2の基体の円周部
に保持され、かつ前記成膜源に対向する位置にあるディ
スク基板とを有し、前記第1の基体の回転を公転として
基準とする時、前記第2の基体の自転との自公転比率を
1±0.2.3六〇、2.5±0.2.7土0.2.9
±0.2の範囲に設定して第1、第2の基体を自公転し
ながら、光磁気ディスク基板上にスパッタリングし、周
期多層膜を成膜することにより、周期多層膜の光磁気デ
ィスクを簡便に、かつ大量に製造することができる。
As explained above, the present invention provides a first film formation source for forming a magnetic film containing a large amount of rare earth elements and a second film formation source for a magnetic film containing a large amount of transition metals for forming a recording layer by sputtering,
a rotatable first base; on the first base;
and a rotatable second base body, and a disk substrate held on a circumferential portion of the second base body and located at a position facing the film forming source, and the rotation of the first base body revolves around the rotation of the first base body. When using this as a reference, the rotation and revolution ratios of the second base body are 1±0.2.360, 2.5±0.2.7 and 0.2.9.
By sputtering and forming a periodic multilayer film on a magneto-optical disk substrate while rotating the first and second substrates within the range of ±0.2, a magneto-optical disk with a periodic multilayer film is formed. It can be easily produced in large quantities.

【図面の簡単な説明】 第1図はこの発明の一実施例であるスパッタリング装置
の構成図、第2図はディスク基板を保持する基体とディ
スク基板との配置説明図、第3図はこの基体とディスク
基板の自公転の動きの説明図、第4図はこの発明による
成膜部分の説明図、第5図はこの成膜部分のTb組成の
変化を示す表、第6図はこの成膜部分のC/N比・周波
数特性図である。 1・・・第1の成膜源、 1a・・・ターゲ・ノド、 1b・・・バッキングプレート、 1c・・・高周波電源、 1d・・・第1開口部、 2・・・第2の成膜源、 2a・・・ターゲット、 2b・・・バッキングプレート、 2c・・・高周波電源、 2d・・・第2開口部、 3・・・第1の基体、 4・・・第2の基体、 5・・・ディスク基板。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a configuration diagram of a sputtering apparatus which is an embodiment of the present invention, Fig. 2 is an explanatory diagram of the arrangement of a base body that holds a disk substrate and a disk substrate, and Fig. 3 is a diagram showing this base body. FIG. 4 is an explanatory diagram of the rotational and rotational movements of the disk substrate, FIG. 4 is an explanatory diagram of the film forming part according to the present invention, FIG. 5 is a table showing changes in the Tb composition of this film forming part, and FIG. It is a C/N ratio/frequency characteristic diagram of a part. DESCRIPTION OF SYMBOLS 1... First film formation source, 1a... Target/nod, 1b... Backing plate, 1c... High frequency power supply, 1d... First opening, 2... Second deposition source. Film source, 2a... Target, 2b... Backing plate, 2c... High frequency power supply, 2d... Second opening, 3... First base, 4... Second base, 5... Disk board.

Claims (1)

【特許請求の範囲】  光磁気ディスクの記録層として希土類金属多量の磁性
膜と遷移金属多量の磁性膜とを交互に積層された、周期
多層膜を有する光磁気ディスクのスパッタリング方法に
おいて、 前記記録層をスパッタリングにより成膜する希土類金属
多量の磁性膜の第1の成膜源(1)と、遷移金属多量の
磁性膜の第2の成膜源(2)とを用意し、回転自在な第
1の基体(3)と、この第1の基体(3)上にあって、
かつ回転自在な第2の基体(4)と、この第2の基体(
4)の円周部に保持され、かつ前記成膜源(1),(2
)に対向する位置にある光磁気ディスク基板(5)とを
有し、 前記第1の基体(3)の回転を公転として基準とする時
、前記第2の基体(4)の自転との自公転比率を1±0
.2,3±0.2,5±0.2,7±0.2,9±0.
2の範囲に設定して第1、第2の基体(3)、(4)を
自公転しながら、光磁気ディスク基板(5)上にスパッ
タリングし、周期多層膜を成膜することを特徴とする光
磁気ディスクのスパッタリング方法。
[Scope of Claims] A method for sputtering a magneto-optical disk having a periodic multilayer film in which a magnetic film containing a large amount of rare earth metal and a magnetic film containing a large amount of transition metal are alternately laminated as a recording layer of the magneto-optical disk, comprising the steps of: A first film forming source (1) for forming a magnetic film containing a large amount of rare earth metal by sputtering and a second film forming source (2) for forming a magnetic film containing a large amount of transition metal are prepared. on the base (3) and the first base (3),
and a rotatable second base (4);
4), and is held at the circumferential portion of the film forming source (1), (2).
), and when the rotation of the first base body (3) is used as a reference, the rotation of the second base body (4) is the same as the rotation of the second base body (4). Rotation ratio 1±0
.. 2,3±0.2,5±0.2,7±0.2,9±0.
The periodic multilayer film is formed by sputtering on the magneto-optical disk substrate (5) while rotating and revolving the first and second substrates (3) and (4) in a range of 2. sputtering method for magneto-optical disks.
JP6314790A 1990-03-14 1990-03-14 Sputtering method for magneto-optical disk Pending JPH03266239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6314790A JPH03266239A (en) 1990-03-14 1990-03-14 Sputtering method for magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6314790A JPH03266239A (en) 1990-03-14 1990-03-14 Sputtering method for magneto-optical disk

Publications (1)

Publication Number Publication Date
JPH03266239A true JPH03266239A (en) 1991-11-27

Family

ID=13220845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6314790A Pending JPH03266239A (en) 1990-03-14 1990-03-14 Sputtering method for magneto-optical disk

Country Status (1)

Country Link
JP (1) JPH03266239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765425A (en) * 1993-08-26 1995-03-10 Nec Corp Production of magneto-optical recording medium
WO2009081953A1 (en) * 2007-12-26 2009-07-02 Canon Anelva Corporation Sputtering apparatus, sputter film forming method, and analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765425A (en) * 1993-08-26 1995-03-10 Nec Corp Production of magneto-optical recording medium
WO2009081953A1 (en) * 2007-12-26 2009-07-02 Canon Anelva Corporation Sputtering apparatus, sputter film forming method, and analyzer
JP5259626B2 (en) * 2007-12-26 2013-08-07 キヤノンアネルバ株式会社 Sputtering apparatus, sputtering film forming method
JP2013174020A (en) * 2007-12-26 2013-09-05 Canon Anelva Corp Sputtering apparatus
US8877019B2 (en) 2007-12-26 2014-11-04 Canon Anelva Corporation Sputtering apparatus, sputter deposition method, and analysis apparatus

Similar Documents

Publication Publication Date Title
US4576699A (en) Magneto-optical recording medium and method of making same
US4287225A (en) Process of making a magnetic recording medium
Suits et al. Observation of laser‐written magnetic domains in amorphous TbFe films by Lorentz microscopy
US20050086679A1 (en) Magneto-optical recording medium and method for manufacturing the same
JPH03266239A (en) Sputtering method for magneto-optical disk
JPS6130017A (en) Manufacture of vertical magnetization thin oxide film
JPS595450A (en) Optical magnetic recording medium
JP2526906B2 (en) Magneto-optical recording medium
JPH0532817B2 (en)
JPS60237655A (en) Optomagnetic recording medium
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
EP0479109B1 (en) Process for fabrication of magneto-optic recording medium
JPH11120637A (en) Deposition method and production of optical disk
JPH0194552A (en) Manufacture of magneto-optical recording medium
JPH06122972A (en) Sputtering device
JPH0366048A (en) Production of magneto-optical recording medium
JP2763913B2 (en) Magnetic film and method of manufacturing the same
JPH0675304B2 (en) Magneto-optical recording medium
JPH07262630A (en) Magneto-optical recording medium and its production
JPS60145541A (en) Photomagnetic recording medium
JPS6286159A (en) Target material for sputtering
JPH056334B2 (en)
JPS62267946A (en) Production of recording medium for magneto-optical disk
JPH0462814A (en) Method for producing artificial grid film
JPH0410253A (en) Production of recording medium