JPH0325821A - Contact for vacuum valve - Google Patents

Contact for vacuum valve

Info

Publication number
JPH0325821A
JPH0325821A JP16165789A JP16165789A JPH0325821A JP H0325821 A JPH0325821 A JP H0325821A JP 16165789 A JP16165789 A JP 16165789A JP 16165789 A JP16165789 A JP 16165789A JP H0325821 A JPH0325821 A JP H0325821A
Authority
JP
Japan
Prior art keywords
contact
intermediate layer
vacuum valve
electrode
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16165789A
Other languages
Japanese (ja)
Inventor
Seiji Chiba
千葉 誠司
Isao Okutomi
功 奥富
Keisei Seki
経世 関
Atsushi Yamamoto
敦史 山本
Mitsutaka Honma
三孝 本間
Shigeaki Sekiguchi
関口 薫旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16165789A priority Critical patent/JPH0325821A/en
Publication of JPH0325821A publication Critical patent/JPH0325821A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To control low the generation frequency of arc by forming an intermediate layer made of the metal having a melting temperature higher than that of the high conductive component of a contact for Ag-Cu group vacuum valve on the junction surface of the contact and an electrode. CONSTITUTION:A metal intermediate layer 11 is provided on the electrode function surface of a contact substrate 10 made of the Ag-Cu alloy including the firing-proof component in the high conductive component with a plating method such as a chemical method or an electrical method or an ion plating method. Fe, Co, Ni and Cr are desirably used as the material for the intermediate layer. The desired proper degree of the junction material against Cu or Ag is more than 1 weight %. The described intermediate layer is thereby comprised between the junction surface of the contact substrate and the junction material (wax material) to prevent a contact of the contact and the melted junction material to be generated at the time of junction of the contact to the electrode.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、接点基体の少なくとも電極との接合面に、金
属中間層を備えた真空バルブ用接点に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a contact for a vacuum valve, which includes a metal intermediate layer on at least the surface of a contact base that is bonded to an electrode.

(従来の技術) 第3図は、従来の一般的な真空バルブの構或を示したも
のであり、円筒状の絶縁容器20と、その両端面に封止
金具21.22を介して装着された金属製の端板23,
24とで容器が構威され、内部に遮断室25が形成され
ている。この遮断室25内には端板23を気密に貫通し
て第1の導電棒26が固定され、端板24を貫通して第
2の導電棒27が軸方向に可動可能に設けられている。
(Prior Art) FIG. 3 shows the structure of a conventional general vacuum valve, which includes a cylindrical insulating container 20 and a valve attached to both end surfaces of the container through sealing fittings 21 and 22. metal end plate 23,
24 constitutes a container, and a cutoff chamber 25 is formed inside. A first conductive rod 26 is fixed in the cutoff chamber 25 by passing through the end plate 23 in an airtight manner, and a second conductive rod 27 is provided so as to be movable in the axial direction by penetrating the end plate 24. .

第1の導電棒26と第2の導電棒27の対向端には、接
点28がついた固定電極29と、接点30がついた可動
電極31がある。第2の導電棒27と端板24との間に
は、気密のためにベローズ34が取付けられている。ま
た、このベローズ34には両接点28.30間のアーク
蒸気から保護するためにベローズ力バー35が没けられ
ている。
At opposite ends of the first conductive rod 26 and the second conductive rod 27, there are a fixed electrode 29 with a contact 28 and a movable electrode 31 with a contact 30. A bellows 34 is attached between the second conductive rod 27 and the end plate 24 for airtightness. A bellows force bar 35 is also sunk into the bellows 34 to protect it from arc vapor between the contacts 28,30.

さらに、絶縁容器20をアーク蒸気から保謹するために
アークシールド36が設けられ、開閉動作は図示しない
駆動機構と導電棒27で行なわれる。
Further, an arc shield 36 is provided to protect the insulating container 20 from arc vapor, and opening and closing operations are performed by a drive mechanism and a conductive rod 27 (not shown).

ここで、固定電極29と可動電極3】の詳細を、可動電
極1の例で第4図を参照して説明する。
Here, the details of the fixed electrode 29 and the movable electrode 3 will be explained using an example of the movable electrode 1 with reference to FIG.

可動電極31は導電棒27に対しては、ろう付部32を
介して取付けられ、また、ろう付部33を介して接点3
0が取付けられている。
The movable electrode 31 is attached to the conductive rod 27 via a brazed portion 32, and is attached to the contact point 3 via a brazed portion 33.
0 is attached.

従来、このような接点材料としては、CuBi系、Cu
−Te系、Cu−W系、Cu−WC系、Ag−W系、A
g−WC系、Cu−Cr系、Cu−Tt系等の合金材料
が、目的に応じて適宜使いわけられている。
Conventionally, such contact materials include CuBi series and Cu.
-Te system, Cu-W system, Cu-WC system, Ag-W system, A
Alloy materials such as g-WC, Cu-Cr, and Cu-Tt are used as appropriate depending on the purpose.

(発明が解決しようとする課題) 一般に真空遮断器用接点は、水素還元雰囲気山あるいは
窒素ないし真空雰囲気中において電極とのろう付けが行
われる。
(Problems to be Solved by the Invention) In general, contacts for vacuum circuit breakers are brazed with electrodes in a hydrogen reducing atmosphere or a nitrogen or vacuum atmosphere.

ところで、従来、接点材料の構成成分である導電性成分
として、Ag−Cu合金が用いられている接点において
は、電極と接点とをろう付けする工程で、接合材料の溶
融に導かれて接点の構成成分であるAg−Cu合金が外
部に流れ出るという問題がある。このようにして流れ出
たAg−Cu合金は、電極の表面に凹凸を形威したり、
付着することによって表面を荒れた状態にする。
By the way, in conventional contacts where Ag-Cu alloy is used as a conductive component that is a constituent of the contact material, during the process of brazing the electrode and the contact, the contact is melted due to the melting of the bonding material. There is a problem that the constituent Ag-Cu alloy flows out. The Ag-Cu alloy that flows out in this way creates unevenness on the surface of the electrode,
By adhering to the surface, it leaves the surface rough.

この様に荒れた表面を有する電極では、再点弧特性の面
で真空バルブに必要とされる遮断性能か得られず、また
信頼性の点ても大きな問題点をriしていた。
With such an electrode having a rough surface, it was not possible to obtain the shutoff performance required for a vacuum valve in terms of restriking characteristics, and there was also a major problem in terms of reliability.

本発明は上述した従来の技術の問題点に鑑みてなされも
のであり、品質、特に耐電圧の面で信頼性の高い真空バ
ルブ用接点を提供することを目的としている。
The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to provide a contact for a vacuum valve that is highly reliable in terms of quality, particularly in terms of withstand voltage.

〔発明の構成〕[Structure of the invention]

(課題を解決するための千一段) 本発明の真空バルブ用接点は、AgおよびCuからなる
高導電性成分に耐弧性成分を含有させてなるA g −
 C u系真空バルブ用接点であって、該接点を構成す
る前記高導電性成分の少なくとも1種に対して1重量%
以上の固溶度を有し、かつ、前記高導電成分よりも高い
融解温度を有する金属からなる中間層が、前記接点の少
なくとも電極との接合面に形威されてなることを特徴と
している。
(101 Steps to Solve the Problem) The vacuum valve contact of the present invention is made by adding an arc-resistant component to a highly conductive component made of Ag and Cu.
A Cu-based vacuum valve contact, 1% by weight based on at least one of the highly conductive components constituting the contact.
The present invention is characterized in that an intermediate layer made of a metal having a solid solubility above and a melting temperature higher than that of the high conductivity component is formed on at least the joint surface of the contact with the electrode.

本発明の真空バルブ用接点は、第′1図および第2図に
示すように、接点基体10とこの接点基体10の電極接
合面に、金属の中間層11を、化学法、電気法あるいは
イオンブレーティングl去等のメッキ法で設けることに
より得られる。
As shown in FIGS. 1 and 2, the vacuum valve contact of the present invention has a metal intermediate layer 11 formed between a contact base 10 and an electrode bonding surface of the contact base 10 by a chemical method, an electric method, or an ion method. It can be obtained by providing it by a plating method such as brating.

接点基体の接合面と接合材料(たとえばロウ+4)との
間に、上記のような中間層を備えることによって、電極
に接点を接合する際に生じる接点とI容融した接合材料
との接触を極力防rL−することか可能となる。したが
って、溶融金属(接合材料)との接触に起因するところ
の、接点構成成分であるAg−Cu合金の接点からの流
出を効果的に防止することができる。そしてこれにより
、溶融金属の接触による腐蝕及び溶融金属の付着等によ
る電極面における凹凸の発生を防止することができる。
By providing the above-described intermediate layer between the bonding surface of the contact base and the bonding material (for example, wax +4), contact between the contact and the melted bonding material that occurs when bonding the contact to the electrode can be prevented. It becomes possible to prevent rL- as much as possible. Therefore, it is possible to effectively prevent the Ag-Cu alloy, which is a component of the contact, from flowing out of the contact due to contact with molten metal (joining material). This makes it possible to prevent corrosion caused by contact with molten metal and the occurrence of irregularities on the electrode surface due to adhesion of molten metal.

前記接点基体に設ける中間層の金属は、接点基体及び接
合材料となじみが良いことが重要である。
It is important that the metal of the intermediate layer provided on the contact base has good compatibility with the contact base and the bonding material.

接合材料は導電率の面からCuおよびAgを主成分とす
る合金が使われる。したがって中間層の金属としてCu
またはAgと固溶度を有するものが好ましい。また、接
点と溶融し接点材料との接触を少なくする点から、接合
材料よりも高融点であり、厚さが少なくとも1μm以上
であることが好ましい。
From the viewpoint of electrical conductivity, an alloy containing Cu and Ag as main components is used as the bonding material. Therefore, Cu as the metal of the intermediate layer
Alternatively, those having solid solubility with Ag are preferable. Further, from the viewpoint of melting the contact and reducing contact with the contact material, it is preferable that the material has a higher melting point than the bonding material and has a thickness of at least 1 μm or more.

このよう・な観点で、本発明の中間層の材料としては、
Fe,Co、N1およびC『が特に好ましく用いられる
。また、上述したCuまたはAgに対する固溶度として
は1重量%以上であることが望ましい。
From this point of view, the material for the intermediate layer of the present invention is as follows:
Fe, Co, N1 and C' are particularly preferably used. Further, the solid solubility in Cu or Ag mentioned above is preferably 1% by weight or more.

また、本発明の接点は、AgおよびCuを高導電性成分
とし、これに耐弧成分を含有させてなるが、高導電性成
分の含有量としては、AgとCuとの総計量が25〜6
5重量%であり、AgとCuとの総計量中に占めるAg
の比率が40〜80重量%であることが好ましい。
Further, the contact of the present invention is made of Ag and Cu as highly conductive components and contains an arc-resistant component. 6
Ag is 5% by weight and accounts for the total weight of Ag and Cu.
It is preferable that the ratio is 40 to 80% by weight.

さらに、耐弧性成分は、TiSZr、VSNb,T a
 s C r、MO、WおよびLaの炭化物および(ま
たは)ホウ化物が好ましく用いられ、これらの耐弧性成
分の含有量としては、35〜75重量%の範囲が好まし
い。
Furthermore, the arc-resistant components are TiSZr, VSNb, Ta
Carbides and/or borides of sCr, MO, W, and La are preferably used, and the content of these arc-resistant components is preferably in the range of 35 to 75% by weight.

このように、本発明の真空バルブ用接点は、これを電極
にろう付した場合、接合材料の溶融に伴う接点構成成分
の流出が起こらず、流出に起因する電極の表面荒れを防
止できることから、再点弧特性の低下が起こらず、した
がって、信頼性の高い真空バルブを得ることができる。
As described above, when the vacuum valve contact of the present invention is brazed to an electrode, the contact components do not leak due to melting of the bonding material, and surface roughening of the electrode due to leakage can be prevented. No deterioration of restriking characteristics occurs, and therefore a highly reliable vacuum valve can be obtained.

(実施例) 本発明の接点を、製造方法に即して具体的に説明する。(Example) The contact of the present invention will be specifically explained in accordance with the manufacturing method.

まず、所定量のWCとCO粉末、及びAgとCu粉末(
またはAg−Cu合金粉末)を用意し、これらを混合す
る。その後加圧成形して粉末成形体を得る。
First, predetermined amounts of WC and CO powder, and Ag and Cu powder (
or Ag-Cu alloy powder) and mix them. Thereafter, the powder compact is obtained by pressure molding.

引続き、この粉末成形体を、たとえば露点が−50℃以
下の水素雰囲気、あるいは真空度が1.3X10−’P
a以下で所定温度、例えば1150℃×IH『にて仮焼
結し、仮焼結体を得る。
Subsequently, this powder compact is placed in a hydrogen atmosphere with a dew point of -50°C or lower, or a vacuum degree of 1.3X10-'P.
Preliminary sintering is performed at a predetermined temperature, for example, 1150° C.×IH, at a temperature lower than a, to obtain a preliminarily sintered body.

引続き、この仮焼結体の残存空孔中に所定量および所定
比率のAg−Cuを1150℃×IH『の条件で溶浸し
Ag−Cu−Co−WC合金を得る。溶浸は主として水
素中で行うが、真空仲でも可能である。
Subsequently, a predetermined amount and predetermined ratio of Ag-Cu is infiltrated into the remaining pores of this pre-sintered body under the conditions of 1150°C x IH'' to obtain an Ag-Cu-Co-WC alloy. Infiltration is primarily carried out in hydrogen, but it is also possible in a vacuum.

Coを配合しないAg−Cu−WC合金製逍h゛法、C
oを他金属に置換えた合金の製遣方法、及びWCを他の
炭化物または硼化物で置換えた合金の製造方沃について
も上記とほぼ同様である。
Ag-Cu-WC alloy manufacturing method without Co, C
The method for producing an alloy in which O is replaced with another metal, and the method for producing an alloy in which WC is replaced by another carbide or boride, are almost the same as described above.

実施例−1〜3、比較例−1〜2 再点弧特性を調査するために、前述した方広で第1表に
示した接点を作製するにあたって、接合材と接点の接合
面との間(接点面を除く仝而)に、中間層(Ni)のな
い場合(比較例−1)及び同中間層の厚さを0.  2
、1.0,4.0、15.0μm(比較例−2、実施例
−1〜3)とした場合の各々について用意した。
Examples 1 to 3, Comparative Examples 1 to 2 In order to investigate restriking characteristics, when producing the aforementioned square contacts shown in Table 1, the difference between the bonding material and the bonding surface of the contact was (Excluding the contact surface), when there is no intermediate layer (Ni) (Comparative Example-1) and the thickness of the intermediate layer is 0. 2
, 1.0, 4.0, and 15.0 μm (Comparative Example-2, Examples-1 to 3).

後述する方法で測定した再点弧特性を下記第1表に示す
The restriking characteristics measured by the method described below are shown in Table 1 below.

その結果によると中間層の厚さが08 2μm(比較例
−2)では再点弧特性が著しく劣り、中間層のない場合
(比較例−1)と大差なかった。
According to the results, when the thickness of the intermediate layer was 0.82 μm (Comparative Example-2), the restriking characteristics were significantly inferior, and there was no significant difference from the case without the intermediate layer (Comparative Example-1).

これに対して、中間層の厚さが1μm以上(′A施例−
1〜3)の場合は再点弧特性に異状はなかった。評価後
の実施例−1〜3について電極表面の観察を行ったとこ
ろ、電極面への接点成分又は接合材(Ag−Cu)の付
着は認められなかった。
On the other hand, if the thickness of the intermediate layer is 1 μm or more (Example 'A-
In cases 1 to 3), there was no abnormality in the restriking characteristics. When the electrode surfaces of Examples 1 to 3 after evaluation were observed, no contact component or bonding material (Ag-Cu) was observed to be attached to the electrode surfaces.

一方、比較例−1.2の電極表面などに多量のAg−C
u成分の付着による凹凸が見られ、電極表面のみならず
、接点側面にもAg−Cuの流出、付着が見られた。
On the other hand, a large amount of Ag-C was found on the electrode surface of Comparative Example-1.2.
Unevenness due to the adhesion of the u component was observed, and outflow and adhesion of Ag-Cu were observed not only on the electrode surface but also on the contact side.

比較例−1.2では、これらが原因となって再点弧特性
の低下ならびにばらつきの原因となったものと考えられ
る。
In Comparative Example 1.2, these factors are thought to have caused the deterioration and dispersion of restriking characteristics.

以上によって、接点と電極との接合には、1μm以上の
中間層の介挿が有効であることか分かった。
From the above, it was found that insertion of an intermediate layer of 1 μm or more is effective for joining the contact and the electrode.

実施例−5〜7、比較例−3〜4 前記した実施例=1〜3、比較例−1〜2ては、導電性
成分の含有量(Ag+Cu)を4 0 w t Oo近
傍及びその比率(Ag/Ag十Cu)を72wt%近傍
とした場合について述べたが、中間層を介挿して再点弧
特性を向上させるための本発明技術は、第1表に示した
ように他の或分(大施例−5〜7、比較例−3〜4)に
於いてもa効であったが、他の電気特性(温度上昇特性
)が4本性成分の量(AI+(:u)に依Ijシている
ため、本発明の適用は接点材料中の導電性成分の含有量
が25〜6 5 w t%(実施例−5〜7)の場合に
眼定する。
Examples 5 to 7, Comparative Examples 3 to 4 In the above Examples 1 to 3 and Comparative Examples 1 to 2, the content of the conductive component (Ag+Cu) was around 40 wt Oo and the ratio thereof. Although we have described the case where (Ag/Ag+Cu) is around 72wt%, the present invention technology for improving restriking characteristics by inserting an intermediate layer can be applied to other methods as shown in Table 1. Although the a effect was also observed in the amount of the quadricomponent (AI+(:u)), the other electrical characteristics (temperature rise characteristics) Therefore, the application of the present invention is determined when the content of the conductive component in the contact material is 25 to 65 wt% (Examples 5 to 7).

すなわち、第1表に示すように導電性成分の含有3!(
Ag+Cu)が12.7wt%(比較例一3)では、後
述する方法で測定した温度上昇特性が、著しく高いこと
が分かったので、本発明技術を適用する接点からは除外
する。
That is, as shown in Table 1, the content of conductive components is 3! (
When Ag+Cu) was 12.7 wt% (Comparative Example 13), it was found that the temperature rise characteristics measured by the method described later were extremely high, so it was excluded from the contacts to which the technology of the present invention is applied.

尚、前記した実施例−1〜3、比較例−2では中間層の
材質としてNiを使川したが、Fe、Co,Cr(実施
例−5〜7)の場合でも第1表のように再点弧特性の維
持向上が見られる。
Although Ni was used as the material for the intermediate layer in Examples 1 to 3 and Comparative Example 2, Fe, Co, and Cr (Examples 5 to 7) were also used as shown in Table 1. Maintenance and improvement of restriking characteristics can be seen.

尚、導電性或分の含有量(Ag+Cu)が91.1wt
%(比較例−4)では、温度上昇特性が好ましく、かつ
再点弧特性も好ましい特性を示しているが、前記導電性
成分のm(Ag+Cu)が多すぎることに起因して、溶
着が多発するので本発明技術を適用する接点からは除外
する。
Furthermore, the conductive content (Ag+Cu) is 91.1wt.
% (Comparative Example-4), the temperature rise characteristics are favorable and the restriking characteristics are also favorable, but due to too much m (Ag+Cu) of the conductive component, welding occurred frequently. Therefore, it is excluded from the contacts to which the technology of the present invention is applied.

実施例−8〜]0、比較例−5〜6 中間層を介挿する本発明技術は、再点弧抑制に対して実
施例−8〜10及び比較例−5に示すように極めて有効
であることが分かった。
Examples 8 to 10] 0, Comparative Examples 5 to 6 The technique of the present invention, which involves inserting an intermediate layer, is extremely effective in suppressing restriking, as shown in Examples 8 to 10 and Comparative Example 5. I found out something.

しかし、前記実施例−5〜7、比較例−3〜4に於いて
述べたように他の電気特性への影響を配慮する必要があ
り、第1表のように裁断電流特性に対しては、導電性成
分のAgとCuとの比率(Ag/Ag十Cu)が40.
0wt%以上の接点が好ましい。したがって、本発明技
術を適用する接点材料のA g / A g 十C u
の比率は、40.Owt%以上に限定される。
However, as mentioned in Examples 5 to 7 and Comparative Examples 3 to 4, it is necessary to consider the influence on other electrical characteristics, and as shown in Table 1, the cutting current characteristics , the ratio of conductive components Ag and Cu (Ag/Ag+Cu) is 40.
Contacts with a content of 0 wt% or more are preferred. Therefore, A g / A g + C u of the contact material to which the technology of the present invention is applied
The ratio is 40. It is limited to Owt% or more.

尚、導電性成分中のAgとCuの比率(Ag/Ag+C
u)が92.7wt%(比較例−6)のように、Agの
比率が大きい場合は、再点弧発生の頻度に著しいばらつ
きが見られ、まれに高い発生率を示すので好ましくない
。したがって本発明技術は接点材料中の導電性成分の比
率が40,0〜80.Owt%のものに限定する。
In addition, the ratio of Ag and Cu in the conductive component (Ag/Ag+C
When u) is 92.7 wt% (Comparative Example-6), when the proportion of Ag is large, the frequency of restrike occurrence varies significantly, and the occurrence rate is rarely high, which is not preferable. Therefore, the technology of the present invention has a ratio of conductive components in the contact material of 40.0 to 80.0. Limited to Owt%.

実施fl−11〜14 前記した実施例−1〜10、比較例−1〜6は、接点材
料の耐弧性成分として、WCについて示したが、本発明
技術は他の耐弧材料よりなる接点材料、例えばMo2C
−C『3C2等の炭化物(実施例−11〜12)、又他
の耐弧材料よりなるIrC点材料、例えばTiB −Z
rB2等の硼化物2 (実施例−13〜14)に於いても再点弧発生の抑制に
は有効である。
Implementation fl-11 to fl-14 Although the above-mentioned Examples 1 to 10 and Comparative Examples 1 to 6 have shown WC as an arc-resistant component of the contact material, the present technology can be applied to contacts made of other arc-resistant materials. material, e.g. Mo2C
-C' IrC point material made of carbide such as 3C2 (Examples 11 to 12), or other arc-resistant material, such as TiB -Z
Boride 2 such as rB2 (Examples 13 and 14) is also effective in suppressing the occurrence of restriking.

これまで述べた実施例−1〜10、比較例−1〜6は、
中間層に接合材料(ロウ材料)の主成分であるAg−C
uより融点の高い成分(Fe、NiSCOなど)を使用
した場合を示したが、中間層としてAIを使用した場合
、AIの低融点性のため電極面へのAg,Cr,Alな
どが流田、促進される結果、再点弧発生頻度は0.  
6〜1.8%と高く、その抑制の効果が劣る。又、上記
は接合材料と固溶度を有する金属を中間層として使用し
た場合を示しているが、Wを中間層として使用した場合
、接合材料の主成分であるAg・Cuとの固定度が低い
ことに起因し、接点の脱落が見られた。
Examples-1 to 10 and Comparative Examples-1 to 6 described so far are as follows:
Ag-C, which is the main component of the bonding material (wax material), is used in the intermediate layer.
The case where components (Fe, NiSCO, etc.) with a higher melting point than u are used is shown, but when AI is used as the intermediate layer, Ag, Cr, Al, etc. may flow onto the electrode surface due to the low melting point of AI. , as a result, the re-ignition frequency is 0.
It is as high as 6 to 1.8%, and its suppression effect is poor. In addition, the above shows the case where a metal having solid solubility with the bonding material is used as the intermediate layer, but when W is used as the intermediate layer, the degree of fixation with Ag/Cu, which is the main component of the bonding material, is Contacts were observed to fall off due to the low temperature.

したがって中間層が具備する条件として、・9:−Δ性
成分(Ag−Cu)よりも溶融点が高く、かつ導電性成
分の何れかに溶M度を持つことか必背である。
Therefore, the intermediate layer must have a melting point higher than that of the -9:-Δ component (Ag-Cu) and a degree of solubility in any of the conductive components.

以上説明した実施例−1〜14及び比較例−2〜6に於
いては、本発明技術であるψ間層の介神条件としては、
第1表に示したように接点而を除く全面に中間層を備え
る方法としたが、接含面と接合材料との間のみに中間層
を介神しても、ほぼ同等の効果が得られる。
In Examples 1 to 14 and Comparative Examples 2 to 6 described above, the intervention conditions for the ψ interlayer, which is the technology of the present invention, are as follows:
As shown in Table 1, we used the method of providing an intermediate layer on the entire surface except for the contact points, but almost the same effect can be obtained by providing an intermediate layer only between the contact surface and the bonding material. .

次に計価方法について述べる。Next, we will discuss the accounting method.

再点弧特性 径30IIIII1厚さ5mmの円板状接点片を、ディ
マウンタプル形真空バルブに装着し、6KVx500A
の回路を2000回しゃ断したI′l!Iの再点弧発生
頻度を測定し、2台のしゃ断、器(バルブとして6本)
のばらつき幅(最大および最小)で示した。接点の装着
に際しては、ベーキング加熱(450℃、30分)を行
った。
A disc-shaped contact piece with a restriking characteristic diameter of 30III1 and a thickness of 5mm is attached to a demounted pull type vacuum valve, and a 6KV x 500A
I'l cut off the circuit 2000 times! Measure the frequency of restrike of
It is shown as the variation width (maximum and minimum). When attaching the contacts, baking heating (450° C., 30 minutes) was performed.

尚、接点の電極への取つけは、72Ag−Cuロウ材を
使用して水素雰囲気中800℃で接合したものである。
The contacts were attached to the electrodes using 72Ag-Cu brazing material at 800° C. in a hydrogen atmosphere.

温度特性 一方、温度上昇特性は、上記と同じ電極条件の電極を対
向させ、10−3Paの真空容器のなかで、接触力50
0kgで40OAを1時間連続通電させたときの最高温
度を可動軸部で求めた。尚、温度は周囲温度約25℃を
含んGものであり、かつ竃極の取りつけるホルダーの熱
容量の影響も含んだ比較値である。
Temperature characteristics On the other hand, the temperature rise characteristics are as follows: electrodes with the same electrode conditions as above are placed facing each other, and a contact force of 50
The maximum temperature was determined at the movable shaft when a current of 40 OA was applied continuously for 1 hour at 0 kg. Note that the temperature is a G value that includes the ambient temperature of approximately 25° C., and is a comparative value that also includes the influence of the heat capacity of the holder to which the stove is attached.

電流さい断特性 各接点を取付けて10−3Pa以下に排気した組立て式
真空バルブを製作し、この装置を0.8+n/秒の開極
速度で開極させ遅れ小電流をしゃ断した時のさい断電流
を測定した。しゃ断電流は20A(実効値) 、50H
zとした。開極位相はランダムに行い500回しゃ断さ
れたときのさい断電流を接点数3個につき測定しそのば
らつき幅で示した。
Current cutting characteristics A prefabricated vacuum valve with each contact attached and evacuated to 10-3 Pa or less was manufactured, and this device was opened at an opening speed of 0.8+n/sec to cut off a small current with a delay. The current was measured. Breaking current is 20A (effective value), 50H
I made it z. The opening phase was randomly determined, and the cutting current when the contacts were cut off 500 times was measured for three contacts, and the width of the variation was shown.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように、本発明の真空バルブ用接点におい
ては、接点の少なくとも面に特定のψ間層が介挿される
ように構成されているので、再点弧発生頻度を低く抑制
することができ品質の向上においてすぐれた効果を有し
ている。
As detailed above, the vacuum valve contact of the present invention is configured such that a specific ψ interlayer is inserted on at least the surface of the contact, so that the frequency of restriking can be suppressed to a low level. It has an excellent effect on improving product quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第2図は、本発明の丈施例を示す真空バル
ブ用接点の縦断面図、第3図は真空バルブの縦断面図、
第4図は第3図の真空バルブの電極部分の拡大断面図で
ある。 10・・・接点基体、11・・・巾間層、20・・・絶
縁容器、21・・・封止金具、25・・・遮断室、26
・・・導電棒、27・・・導電棒、28・・・接点、2
9・・・固定電極、30・・・接点、31・・・可動電
極、34・・・ベローズ、35・・・ベローズ力バー、
36・・・アークシールド、32・・・ろう付部、33
・・・ろう付部。
1 and 2 are longitudinal cross-sectional views of a contact for a vacuum valve showing an embodiment of the present invention, and FIG. 3 is a longitudinal cross-sectional view of a vacuum valve.
FIG. 4 is an enlarged sectional view of the electrode portion of the vacuum valve of FIG. 3. DESCRIPTION OF SYMBOLS 10... Contact base, 11... Width layer, 20... Insulating container, 21... Sealing metal fitting, 25... Breaking chamber, 26
... Conductive rod, 27... Conductive rod, 28... Contact, 2
9... Fixed electrode, 30... Contact, 31... Movable electrode, 34... Bellows, 35... Bellows force bar,
36...Arc shield, 32...Brazing part, 33
...Brazing part.

Claims (1)

【特許請求の範囲】 1、AgおよびCuからなる高導電性成分に耐弧性成分
を含有させてなるAg−Cu系真空バルブ用接点であっ
て、該接点を構成する前記高導電性成分の少なくとも1
種に対して1重量%以上の固溶度を有し、かつ、前記高
導電成分よりも高い融解温度を有する金属からなる中間
層が、前記接点の少なくとも電極との接合面に形成され
てなることを特徴とする、真空バルブ用接点。 2、前記高導電性成分の含有量は、Agと Cuとの総計量(Ag+Cu)が25〜65重量%であ
り、AgとCuとの総計量中に占めるAgの比率〔Ag
/(Ag+Cu)〕が40〜80重量%であり、前記耐
弧性成分の含有量は、35〜75重量%である、請求項
1の真空バルブ用接点。 3、前記耐弧性成分の一部または全部が、 Ti、Zr、V、Nb、Ta、Cr、MoまたはLaの
炭化物からなる、請求項1の真空バルブ用接点。 4、前記耐弧性成分が、Ti、Zr、V、 Nb、Ta、Cr、Mo、WまたはLaの硼化物からな
る、請求項1の真空バルブ用接点。 5、前記接点が、補助成分として、Co、 NiおよびFeの少なくとも1種を1重量%以下含有す
る、請求項1〜4のいずれか1項の真空バルブ用接点。 6、前記中間層が、Fe、Co、NiおよびCrの少な
くとも1種からなる、請求項1〜5のいずれか1項の真
空バルブ用接点。 7、前記中間層の厚さが、1μm以下である、請求項1
の真空バルブ用接点。
[Claims] 1. A contact for an Ag-Cu vacuum valve comprising a highly conductive component consisting of Ag and Cu containing an arc-resistant component, wherein the highly conductive component constituting the contact comprises: at least 1
An intermediate layer made of a metal having a solid solubility in the species of 1% by weight or more and a melting temperature higher than that of the highly conductive component is formed at least on the joint surface of the contact with the electrode. A contact for a vacuum valve, which is characterized by: 2. The content of the highly conductive component is such that the total weight of Ag and Cu (Ag+Cu) is 25 to 65% by weight, and the proportion of Ag in the total weight of Ag and Cu [Ag
/(Ag+Cu)] is 40 to 80% by weight, and the content of the arc-resistant component is 35 to 75% by weight, the contact for a vacuum valve according to claim 1. 3. The vacuum valve contact according to claim 1, wherein part or all of the arc-resistant component is made of a carbide of Ti, Zr, V, Nb, Ta, Cr, Mo, or La. 4. The vacuum valve contact according to claim 1, wherein the arc-resistant component comprises a boride of Ti, Zr, V, Nb, Ta, Cr, Mo, W or La. 5. The contact for a vacuum valve according to any one of claims 1 to 4, wherein the contact contains at least 1% by weight of at least one of Co, Ni, and Fe as an auxiliary component. 6. The vacuum valve contact according to any one of claims 1 to 5, wherein the intermediate layer is made of at least one of Fe, Co, Ni, and Cr. 7. Claim 1, wherein the thickness of the intermediate layer is 1 μm or less.
Contacts for vacuum valves.
JP16165789A 1989-06-23 1989-06-23 Contact for vacuum valve Pending JPH0325821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16165789A JPH0325821A (en) 1989-06-23 1989-06-23 Contact for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16165789A JPH0325821A (en) 1989-06-23 1989-06-23 Contact for vacuum valve

Publications (1)

Publication Number Publication Date
JPH0325821A true JPH0325821A (en) 1991-02-04

Family

ID=15739354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16165789A Pending JPH0325821A (en) 1989-06-23 1989-06-23 Contact for vacuum valve

Country Status (1)

Country Link
JP (1) JPH0325821A (en)

Similar Documents

Publication Publication Date Title
JP3598195B2 (en) Contact material
JPH0561338B2 (en)
WO1985001148A1 (en) Electrode of vacuum breaker
JP3597544B2 (en) Contact material for vacuum valve and manufacturing method thereof
JPH0325821A (en) Contact for vacuum valve
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JPH10255603A (en) Contact material for vacuum valve
JP2889344B2 (en) Contact for vacuum valve
JP2695902B2 (en) Contact for vacuum valve
JP2695951B2 (en) Manufacturing method of vacuum airtight device
JPS6359216B2 (en)
JP2001357760A (en) Vacuum valve
JP3790055B2 (en) Contact material for vacuum valves
JP3302121B2 (en) Manufacturing method of vacuum valve
JP3206336B2 (en) Contact of vacuum circuit breaker and method of manufacturing the same
JPH056292B2 (en)
JPH1092276A (en) Vacuum valve and its manufacture
EP0123475A1 (en) Method of joining a contact to an electrode
JP2642386B2 (en) Vacuum valve and method of manufacturing the same
JPH02119022A (en) Vacuum valve
JPH09213179A (en) Manufacture of vacuum bulb
JP2693591B2 (en) Manufacturing method of vacuum airtight device
JPH0474810B2 (en)
JPH09231884A (en) Vacuum valve
JPH0779014B2 (en) Vacuum valve manufacturing method