JP3206336B2 - Contact of vacuum circuit breaker and method of manufacturing the same - Google Patents

Contact of vacuum circuit breaker and method of manufacturing the same

Info

Publication number
JP3206336B2
JP3206336B2 JP25592594A JP25592594A JP3206336B2 JP 3206336 B2 JP3206336 B2 JP 3206336B2 JP 25592594 A JP25592594 A JP 25592594A JP 25592594 A JP25592594 A JP 25592594A JP 3206336 B2 JP3206336 B2 JP 3206336B2
Authority
JP
Japan
Prior art keywords
contact
metal
container
vacuum
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25592594A
Other languages
Japanese (ja)
Other versions
JPH08124462A (en
Inventor
正幸 古沢
久次 篠原
正一 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25592594A priority Critical patent/JP3206336B2/en
Publication of JPH08124462A publication Critical patent/JPH08124462A/en
Application granted granted Critical
Publication of JP3206336B2 publication Critical patent/JP3206336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空しゃ断器に用いら
れ、低さい断電流値と良好な電流しゃ断性能を持つ接点
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact used in a vacuum circuit breaker and having a low breaking current value and good current breaking performance.

【0002】[0002]

【従来の技術】図3は真空しゃ断器に用いられる真空バ
ルブの要部構成を示す模式断面図である。図3におい
て、真空バルブは絶縁性を確保するためのセラミックま
たはガラス製の絶縁筒1の両端に、金属製の上部フラン
ジ2aと下部フランジ2bとを気密接合することによ
り、真空容器を形成している。この容器内に、接触と開
離を行なうことができる一対の接点、即ち可動接点3a
と固定接点4aが配置してある。可動接点3aには、断
面T字状の可動側通電ロッド3bの一端が取り付けら
れ、可動側通電ロッド3bの他端は、上部フランジ2a
に接合されたベローズ5の中心を通って、上部フランジ
2aから真空容器の外部へ突き出ており、可動接点3a
と可動側通電ロッド3bで可動接触子を形成する。
2. Description of the Related Art FIG. 3 is a schematic sectional view showing a main part of a vacuum valve used in a vacuum circuit breaker. In FIG. 3, a vacuum valve is formed by hermetically joining a metal upper flange 2a and a lower flange 2b to both ends of a ceramic or glass insulating cylinder 1 for ensuring insulation properties. I have. In this container, a pair of contacts capable of performing contact and separation, that is, a movable contact 3a
And the fixed contact 4a. One end of a movable-side energizing rod 3b having a T-shaped cross section is attached to the movable contact 3a, and the other end of the movable-side energizing rod 3b is connected to an upper flange 2a.
Through the center of the bellows 5 joined to the outside of the vacuum vessel from the upper flange 2a, the movable contact 3a
The movable contact 3 is formed with the movable-side conducting rod 3b.

【0003】固定接点4aの方は、断面I字状の固定側
通電ロッド4bの一端が取り付けられ、固定側通電ロッ
ド4bの他端が下部フランジ2bを通り、容器外部で下
部フランジ2bに接合されており、固定接点4aと固定
側通電ロッド4bで固定接触子を形成する。可動接点
3aは容器が真空を保持した状態で固定接点4bと接離
可能であり、可動接触子および固定接触子を通じて
電流の通電としゃ断を行なうことができる。ベローズ5
の下端で可動側通電ロッド4aとの間に設けてあるベロ
ーズカバー6は、電流開閉時のアークによってベローズ
5が損傷を受けないように保護するものであり、真空容
器内壁に設けたアークシールド7は、ベローズカバー6
と同様に絶縁筒1を保護するためのものである。
The fixed contact 4a has one end of a fixed-side energizing rod 4b having an I-shaped cross section attached thereto, and the other end of the fixed-side energizing rod 4b passes through the lower flange 2b and is joined to the lower flange 2b outside the container. The fixed contact 4 is formed by the fixed contact 4a and the fixed-side energizing rod 4b. The movable contact 3a can be brought into contact with and separated from the fixed contact 4b in a state where the container holds a vacuum, and current can be supplied and cut off through the movable contact 3 and the fixed contact 4 . Bellows 5
A bellows cover 6 provided between the lower end of the bellows and the movable side conducting rod 4a protects the bellows 5 from being damaged by an arc at the time of opening and closing the current. An arc shield 7 provided on the inner wall of the vacuum vessel is provided. Is bellows cover 6
This is for protecting the insulating tube 1 in the same manner as described above.

【0004】このような構成を有する真空バルブの真空
容器は、上部フランジ2a,下部フランジ2b,可動側
通電ロッド3b,固定側通電ロッド4bのいずれかの一
部を貫通して取り付けられる排気パイプ8により、容器
全体を加熱しながら、図示してない真空ポンプを用い
て、10-2Pa(パスカル)以下の圧力まで排気する。
図3は排気パイプ8を固定側通電ロッド4bに取り付け
て、容器を真空に排気する例を示している。真空排気し
た後は、排気パイプ8を容器外部の所定の個所で封止す
ることにより、真空バルブが完成される。このようにし
て、作製された真空バルブは、高真空を保持したまま、
伸縮自在なベローズ5により、可動接点3aと固定接点
4aとの接離を可能としている。
[0004] The vacuum vessel of the vacuum valve having such a configuration is provided with an exhaust pipe 8 which is attached through a part of any of the upper flange 2a, the lower flange 2b, the movable energizing rod 3b, and the fixed energizing rod 4b. While the entire container is heated, a vacuum pump (not shown) is used to evacuate the container to a pressure of 10 −2 Pa (Pascal) or less.
FIG. 3 shows an example in which the exhaust pipe 8 is attached to the fixed-side energizing rod 4b and the container is evacuated to a vacuum. After the evacuation, the evacuation pipe 8 is sealed at a predetermined location outside the container, thereby completing the vacuum valve. In this way, the manufactured vacuum valve maintains a high vacuum,
The movable contact 3a and the fixed contact 4a can be contacted and separated by the extendable bellows 5.

【0005】ここで用いられる可動接点3aと固定接点
4aは、真空バルブの構成部品の中で最も重要であり、
これらの接点を構成する接点材料には以下の特性を具備
していることが要求される。 電流しゃ断特性が優れ
ていること。 さい断電流値が低いこと。
The movable contact 3a and the fixed contact 4a used here are the most important components of the vacuum valve,
The contact material constituting these contacts is required to have the following characteristics. Excellent current interruption characteristics. Low breaking current value.

【0006】 耐アーク,耐溶着特性が優れているこ
と。 耐電圧特性が優れていること。 接触抵抗が
低く、通電容量が大きいこと。 吸蔵ガス量が少ない
こと。 製造方法が簡単で安価であること。
[0006] It has excellent arc and welding resistance. Excellent withstand voltage characteristics. Low contact resistance and large current carrying capacity. The amount of stored gas is small. The manufacturing method is simple and inexpensive.

【0007】しかし、これらの必要な特性の中には、相
反する接点材料の特性を必要とするものがあるので、単
一の金属ではこれら必要特性を満足させることはでき
ず、通常は二元またはそれ以上の多元合金が用いられ
る。また、接点材料は真空しゃ断器の用途によって使い
分けられており、これまでCu−Cr系,Cu−Bi
系,Cu−W系,Wc−Ag系など、各種の合金が用い
られている。
However, since some of these required properties require properties of contradictory contact materials, a single metal cannot satisfy these required properties. Or more multi-element alloys are used. In addition, contact materials are properly used depending on the use of the vacuum circuit breaker.
Various alloys such as a Cu-based alloy, a Cu-W-based alloy, and a Wc-Ag-based alloy have been used.

【0008】これら合金のうち、電流しゃ断特性を確保
し、しかも電流さい断値が低い低サージ形真空しゃ断器
用の接点材料として、Cu−Bi合金,Cu−Cr−B
i合金,Cu−Bi−Te合金などが使用される。ま
た、低融点金属はBiやTeの他に、PbやSeなどを
含むものもある。このような合金を通常の真空溶解法で
製造すると、低融点金属の含有量が製造過程における揮
発により少なくなることや、低融点金属が揮散して加熱
炉の汚損を生ずるなどの問題があり、これを避けるため
に、真空溶解法より低い温度の焼結法により製造する
と、空孔が残存し真密度の合金が得らない。合金中に
残存する空孔は接点形状に加工する際にガスを吸着しや
すく、ガスを吸着した接点材料を用いて真空バルブを製
作する場合は、接点材料から吸着ガスを放出させ、この
ガスを排除する必要があるため、真空バルブ内部の真空
度を安定させるまでにかなりの時間を必要とする。
[0008] Among these alloys, Cu-Bi alloy and Cu-Cr-B are used as contact materials for a low surge type vacuum circuit breaker which secures current breaking characteristics and has a low current breaking value.
i-alloy, Cu-Bi-Te alloy or the like is used. Some low-melting metals include Pb and Se in addition to Bi and Te. When such an alloy is manufactured by a normal vacuum melting method, there is a problem that the content of the low-melting-point metal decreases due to volatilization in the manufacturing process, and the low-melting-point metal volatilizes to cause fouling of the heating furnace. to avoid this, when prepared by a sintering method of a temperature lower than the vacuum melting method, vacancies alloy remaining true density is not obtained, et al. The holes remaining in the alloy are easy to adsorb gas when processing into the contact shape, and when manufacturing a vacuum valve using the contact material that adsorbed the gas, release the adsorbed gas from the contact material and release this gas. Because of the necessity of elimination, it takes a considerable time to stabilize the degree of vacuum inside the vacuum valve.

【0009】そこで、Bi,Te,Pb,Seなどの低
融点金属を多量に含むCu−Bi合金やCu−Cr−B
i合金などを、所望の組成を有ししかも空孔の存在しな
い完全に緻密な状態製造するには、高温と高圧の相乗
効果が得られる熱間静水圧プレス[以下、HIP(Ho
t Isostatic Pressing)と略称す
る]を利用するのが有効である。HIPは既に広く知ら
れた技術であり、その概要を図4を参照して説明する。
Therefore, Cu-Bi alloys and Cu-Cr-B containing a large amount of low melting point metals such as Bi, Te, Pb, Se, etc.
In order to produce an i-alloy or the like in a completely dense state having a desired composition and having no pores, a hot isostatic press [hereinafter, referred to as HIP (Ho), which provides a synergistic effect of high temperature and high pressure.
abbreviation of t Isostatic Pressing) is effective. HIP is a widely known technique, and its outline will be described with reference to FIG.

【0010】図4はHIP処理装置の要部構成を示す模
式断面図であり、不活性ガスの供給経路を矢印で示す。
図4において、この装置は、高圧容器9の中に断熱材1
0およびヒーター11が配置され、これらの全体が外部
構造体12に収められており、被処理体13を高圧容器
9の蓋14の上に置かれた台上に載せ、これを高温高圧
のガス雰囲気によって加熱加圧するものである。加圧の
方法は、一般にArやN2 などの不活性ガス15を、ガ
ス圧縮機16により加圧して高圧容器9内に充填し、容
器9内を加圧することにより行なう。同時に高圧容器9
内のヒーター11の加熱により、内部に充填された不活
性ガス15の膨張でさらに圧力を上昇させることができ
る。このHIP処理の特徴は、ガス圧を用いるので任意
の形状の被処理体13に等方的な圧力を加えることがで
きることにある。したがって、粉末や加圧成形体または
焼結された被処理体13を金属製の容器内に入れ、真空
に排気してHIP処理を行なうことにより、被処理体1
3を真密度にまで緻密にすることが可能である。
FIG. 4 is a schematic cross-sectional view showing the configuration of a main part of the HIP processing apparatus, and the supply path of the inert gas is indicated by an arrow.
In FIG. 4, the apparatus includes a heat insulating material 1 in a high-pressure vessel 9.
0 and a heater 11 are arranged, the whole of which is housed in an external structure 12. The object 13 is placed on a table placed on a lid 14 of a high-pressure container 9, and the high-temperature and high-pressure gas is Heating and pressurizing is performed depending on the atmosphere. In general, pressurization is performed by filling an inert gas 15 such as Ar or N 2 into the high-pressure container 9 by pressurizing the gas with a gas compressor 16 and pressurizing the container 9. At the same time high pressure vessel 9
By the heating of the heater 11 inside, the pressure can be further increased by the expansion of the inert gas 15 filled therein. The feature of the HIP processing is that since the gas pressure is used, an isotropic pressure can be applied to the object 13 having an arbitrary shape. Therefore, the object to be processed 1 is placed in a metal container, evacuated to vacuum, and subjected to HIP processing.
3 can be densified to the true density.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、真密度
が得られた接点は、接触子を形成するために、通電ロッ
ドに接合して一体化する必要があり、その接合手段に、
解決しなければならない問題がある。接合方法は、接点
と通電ロッドを直接ろう付けする方法と、接点と通電ロ
ッドの一部に塑性加工を施して、かしめによる機械的な
接合方法とがある。図5(a),(b)は接点と通電ロ
ッドの接合状態を表わす接触子の部分の模式的断面図で
あり、図5(a)はろう付けによる接合の場合を、そし
て図5(b)はかしめによる接合の場合をそれぞれ示し
ているが、ここでは説明の便宜上とくに可動接点と固定
接点の区別はしていない。
However, a contact having a true density must be joined to and integrated with a current-carrying rod in order to form a contact.
There are issues that need to be resolved. The joining method includes a method of directly brazing the contact and the current-carrying rod, and a method of mechanically joining the contact and the current-carrying rod by plastically processing a part of the contact and the current-carrying rod. 5 (a) and 5 (b) are schematic cross-sectional views of a contact portion showing a joining state of a contact and an energizing rod, FIG. 5 (a) shows a case of joining by brazing, and FIG. ) Shows the case of joining by caulking, respectively, but here, for convenience of explanation, the movable contact and the fixed contact are not distinguished.

【0012】図5(a)は、接点17aと通電ロッド1
8aを直接ろう付けし、ろう付け層19が形成された状
態を示しているが、低融点でしかも金属を脆弱化させる
傾向を持つBiやTeを多量に含む接点17aをろう付
けする場合、ろう材が液相となる以前に液相となったこ
れらの金属成分が、ろう材が溶融したところでこの中に
侵入するため、ろう付け層19が脆弱なものとなり、真
空しゃ断器の開閉振動や、大電流をしゃ断したときの衝
撃により、接点17aが脱落してしまい、真空バルブの
致命的な欠陥を発生する。
FIG. 5 (a) shows the contact 17a and the energizing rod 1
8a is directly brazed to form a brazing layer 19, but when brazing a contact 17a having a low melting point and containing a large amount of Bi or Te which tends to weaken the metal, Since these metal components which have been in a liquid phase before the material is in a liquid phase penetrate into the brazing material when the brazing material is melted, the brazing layer 19 becomes brittle, and the opening and closing vibration of the vacuum circuit breaker, The contact when the large current is cut off causes the contact 17a to fall off, causing a fatal defect in the vacuum valve.

【0013】一方、図5(b)は、接点17bと通電ロ
ッド18bの一部を塑性加工し、これら両者をかしめて
機械的に接合し、かしめ部20が形成された状態を示し
ているが、この場合、軽くかしめると、塑性加工を受け
て硬化した通電ロッド18bのかしめ部20は、真空バ
ルブの製造過程における加熱排気の際に400〜500
℃に加熱され、通電ロッド18bの素材として一般に用
いられる高純度のCu棒が完全に焼鈍状態となり、かし
め部20の強度が低下する。接合強度の低下した接触子
は、真空しゃ断器の開閉振動により、接点17bと通電
ロッド18bの間に緩みが生ずる。また、余りに強くか
しめると接点17b自体を損傷させる恐れがあるので、
かしめの条件を厳密に設定しなければならない。
On the other hand, FIG. 5 (b) shows a state in which the contact 17b and a part of the conducting rod 18b are plastically worked, and these are caulked and mechanically joined to form the caulked portion 20. In this case, when caulking lightly, the caulking portion 20 of the current-carrying rod 18b which has been subjected to plastic working and hardened causes the caulking portion 20 to be 400 to 500 at the time of heating and evacuation in the manufacturing process of the vacuum valve.
C., the high-purity Cu rod generally used as a material for the current-carrying rod 18b is completely annealed, and the strength of the caulked portion 20 is reduced. The contact having reduced bonding strength is loosened between the contact 17b and the energizing rod 18b due to the opening and closing vibration of the vacuum circuit breaker. Also, if swaged too strongly, the contact 17b itself may be damaged.
The crimping conditions must be set strictly.

【0014】本発明は上述の点に鑑みてなされたもので
あり、その目的は、所望の組成と真密度を有し、通電ロ
ッドと強固に接合可能な真空しゃ断器の接点を提供する
ことにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a contact of a vacuum circuit breaker having a desired composition and a true density, which can be firmly joined to an energizing rod. is there.

【0015】[0015]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の真空しゃ断器の接点は、粉末成形体をH
IP処理により作製し、処理後、粉末成形体を入れるC
u製金属容器の一部を残した複合材として接点を形成
し、残った金属容器部に通電ロッドをろう付けする。
電ロッドのろう付けを行う時期は、HIP処理後、金属
容器のろう付け部分を残して除去した後でも、除去する
前でもよい。
In order to solve the above-mentioned problems, a contact point of a vacuum circuit breaker of the present invention is a method in which a powder compact is made of H.
Made by IP processing, and after processing, put powder compact
A contact is formed as a composite material leaving a part of the u-made metal container, and an energizing rod is brazed to the remaining metal container. Through
The time for brazing the electric rod is after the HIP treatment,
Remove even after removing the brazed part of the container
It may be before.

【0016】[0016]

【作用】上記のように、本発明の真空しゃ断器の接点
は、HIP処理により作製するので所望の合金組成と真
密度が得られ、通電ロッドとのろう付け面をCu製の金
属容器の底面に相当する部分としたために、ろう付けは
本来の導電材料同士で行なわれるから、接触子の接点と
通電ロッドは強固な接合状態となる。
As described above, since the contacts of the vacuum circuit breaker of the present invention are manufactured by HIP processing, a desired alloy composition and a true density can be obtained. Therefore, since the brazing is performed between the original conductive materials, the contact point of the contactor and the current-carrying rod are in a strong joint state.

【0017】[0017]

【実施例】以下、本発明を実施例に基づき説明する。本
発明の接点は、粉末の成形体をHIP処理して作製する
が、その過程を図1(a)〜(c)の模式断面図を参照
して説明する。まず、重量比でCu−25Cr−20B
iの割合に混合した粉末を、約294MPaで加圧成形
した成形体21aをCu製の金属容器22に充填する。
このとき金属容器22は、側面の肉厚より底面の厚さの
方を大きくする。例えば、底面の厚さは3mm程度、側
面の肉厚はその1/2程度とするのが適当である。これ
は、HIP処理により底部が変形すると、通電ロッドと
のろう付けが困難になるので、それを防ぐためである。
これとは別に、金属製パイプ23を取り付け、断面がT
字形を呈する蓋24を作製しておき、成形体21aを充
填した金属容器22の上部に、蓋24を接合する[図1
(a)]。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. The contact of the present invention is produced by subjecting a powder compact to HIP processing. The process will be described with reference to the schematic cross-sectional views of FIGS. 1 (a) to 1 (c). First, Cu-25Cr-20B in weight ratio
A compact 21a obtained by press-molding the powder mixed at a ratio of i at about 294 MPa is filled in a metal container 22 made of Cu.
At this time, the thickness of the bottom surface of the metal container 22 is larger than the thickness of the side surface. For example, it is appropriate that the thickness of the bottom surface is approximately 3 mm and the thickness of the side surface is approximately 1/2. This is for preventing the bottom portion from being deformed by the HIP process, because it becomes difficult to braze the current-carrying rod.
Separately, a metal pipe 23 is attached and the section is T
A lid 24 having a letter shape is prepared, and the lid 24 is joined to the upper part of the metal container 22 filled with the molded body 21a [FIG.
(A)].

【0018】次に、蓋24を取り付けた金属容器22
を、図示してない電気炉に装入し、200〜300℃に
加熱しながら、図示してない真空排気装置を用いて、金
属製パイプ23から金属容器22内部を真空排気した
後、金属製パイプ23の一部で内面を圧着させ、封止部
25を形成する。この過程で、加熱温度を200〜30
0℃に設定したのは、200℃以下では成形体21aに
含まれているガスを十分に除去することができず、した
がって、得られる接点を用いた真空バルブの内部を排気
するとき、安定な真空度に到達するまでの時間がかかる
のを避けるためであり、300℃を超えると、Biが揮
散して合金配合比に変化をきたし、所望の合金組成が得
られないからである[図1(b)]。
Next, the metal container 22 to which the lid 24 is attached
Is charged into an electric furnace (not shown), and while heating to 200 to 300 ° C., the inside of the metal container 22 is evacuated from the metal pipe 23 using a vacuum evacuation device (not shown). The inner surface is pressure-bonded with a part of the pipe 23 to form the sealing portion 25. In this process, the heating temperature is set to 200 to 30.
The reason why the temperature is set to 0 ° C. is that the gas contained in the molded body 21a cannot be sufficiently removed at a temperature of 200 ° C. or less, and therefore, when the inside of the vacuum valve using the obtained contact is evacuated, a stable This is because it takes a long time to reach the degree of vacuum. If the temperature exceeds 300 ° C., Bi volatilizes, causing a change in the alloy composition ratio, and a desired alloy composition cannot be obtained [FIG. (B)].

【0019】次いで、これをHIP処理装置の高圧容器
26に装填し、Ar雰囲気で温度500〜1000℃,
圧力約69〜196MPaのもとに、30〜120分間
保持する。ここで温度500〜1000℃としたのは、
500℃以下ではBi粉末が溶融し凝固しても、非常に
微細なために、得られる接点を用いた真空バルブのさい
断電流値が、その平均値では500℃以上の場合とほぼ
同等であるのに、100回の測定で異常値とみられる値
が数回発生しているからであり、また、1000℃を超
えると、成形体21aの主成分であるCuや、Cu製の
金属容器22が溶融する恐れがあるからである。HIP
処理を終了した後、金属容器22と焼結合金21bを高
圧容器26から取り出す。高圧容器26内の矢印は、焼
結合金21bに等方的に圧力が加わることを示すもので
ある。Cuが主成分の成形体21aとCu製の金属容器
22は、接触させて加熱または加圧すると、両者の原子
が拡散しやすくなるが、HIP処理は前述の如く高温高
圧の相乗効果があるので、原子の相互拡散は極めて顕著
となり、所定時間を経過後、接触部は一体となって十分
な強度を持つようになる。[図1(c)]。
Next, this is charged into the high pressure vessel 26 of the HIP processing apparatus, and the temperature is 500 to 1000 ° C. in an Ar atmosphere.
The pressure is maintained at about 69 to 196 MPa for 30 to 120 minutes. Here, the temperature of 500 to 1000 ° C.
If the Bi powder is melted and solidified at a temperature of 500 ° C. or less, the breaking current value of the vacuum valve using the obtained contact is almost the same as that of a temperature of 500 ° C. or more at an average value because the obtained powder is extremely fine. However, this is because a value considered to be an abnormal value occurs several times in 100 measurements, and when the temperature exceeds 1000 ° C., Cu as the main component of the molded body 21a or the metal container 22 made of Cu This is because there is a risk of melting. HIP
After the processing is completed, the metal container 22 and the sintered alloy 21b are taken out of the high-pressure container 26. Arrows in the high-pressure vessel 26 indicate that pressure is applied to the sintered alloy 21b isotropically. When the molded body 21a containing Cu as a main component and the metal container 22 made of Cu are brought into contact with each other and heated or pressed, the atoms of both become easy to diffuse. However, since the HIP treatment has a synergistic effect of high temperature and high pressure as described above, The interdiffusion of atoms becomes extremely remarkable, and after a lapse of a predetermined time, the contact portions integrally have sufficient strength. [FIG. 1 (c)].

【0020】通常のHIP処理では、金属容器と被処理
体を取り出した後、金属容器を切削などにより除去し、
被処理体のみを緻密で高強度な部材として用いるのが普
通であるが、本発明では、とくに金属容器22の一部を
そのまま残し、これをろう付け面として利用する点に特
徴がある。即ち、本発明の接点は、HIP処理と後加工
によって、焼結合金にCu板を貼り合わせたクラッド型
の複合材料として形成され、そのCu板に相当する部分
で通電ロッドとのろう付けを行なうことに特徴を有す
る。
In a normal HIP process, after the metal container and the object to be processed are taken out, the metal container is removed by cutting or the like.
Normally, only the object to be processed is used as a dense and high-strength member, but the present invention is characterized in that a part of the metal container 22 is left as it is and used as a brazing surface. That is, the contact of the present invention is formed as a clad-type composite material in which a Cu plate is bonded to a sintered alloy by HIP processing and post-processing, and brazing with a current-carrying rod is performed at a portion corresponding to the Cu plate. It has a special feature.

【0021】図2はその様子を示す模式断面図であり、
図2(a)は通電ロッドとろう付けした状態、図2
(b)はこれを加工した状態を表わすが、ここでも、便
宜上、可動接点と固定接点の区別はしていない。図2
(a)は蓋24が付いたまま、Cu−25Cr−20B
i焼結合金21bが収容された金属容器22と、通電ロ
ッド27とを銀ろう付けし、ろう付け層28を形成した
状態を示し、図2(b)は、図2(a)の状態から、電
気的接触面となる部分の金属容器22を切削加工して除
去し、接触子を形成したことを示すものである。この工
程では、はじめに焼結合金21bと金属容器22の方を
切削加工した後、これを通電ロッド27と銀ろう付けし
てもよい。ただ、この場合は焼結合金21bの表面の一
部が露出したままとなるので、銀ろう付け温度における
Biの蒸発による組成のずれ、またはろう付け炉の汚染
などの問題が生ずることもあり、実際には銀ろう付けを
行なった後に、切削加工を施す方が有利であることが多
い。
FIG. 2 is a schematic sectional view showing this state.
FIG. 2A shows a state in which the current-carrying rod is brazed and FIG.
(B) shows a state in which this is processed, but also here, for convenience, the movable contact and the fixed contact are not distinguished. FIG.
(A) Cu-25Cr-20B with lid 24 attached
FIG. 2B shows a state in which the metal container 22 containing the i-sintered alloy 21b and the energizing rod 27 are brazed with silver to form a brazing layer 28. FIG. This indicates that the metal container 22 at the portion serving as the electrical contact surface was cut and removed to form a contact. In this step, first, the sintered alloy 21b and the metal container 22 may be cut and then brazed to the energizing rod 27 and silver. However, in this case, since a part of the surface of the sintered alloy 21b remains exposed, there may be a problem such as a shift in composition due to evaporation of Bi at a silver brazing temperature or contamination of a brazing furnace. In practice, it is often advantageous to perform cutting after silver brazing.

【0022】このように、本発明の接点は、製造終了時
点で、極めて密度の高い焼結合金と、元来展伸材である
導電材料のCuとが一体となっており、そのCu側で通
電ロッドとろう付けするものであるから、接点が非常に
強固に接合された接触子を得ることができる。次に、こ
のようにして作製した本発明の接点について、Cu−2
5Cr−20Bi焼結合金の密度を測定したところ、真
密度に対して99.8%以上に達していた。これは、粉
末混合→加圧成形(294〜491MPa)→焼結(5
00〜900℃)という工程で得られる従来の焼結合金
の密度が、真密度に対して96.5〜98.5%であ
り、さらに491〜785MPaの加圧を行なっても、
密度の上昇は極く僅かであるのに比べて、十分な値であ
る。また、本発明の接点の焼結合金は、倍率100倍程
度の顕微鏡で断面組織を観察すると、HIP処理を施し
たために空孔が全くみられないか、極めて微小な空孔が
僅かに観察されるに過ぎないことも確かめられた。しか
も、組成分析によれば、低融点金属であるBiの含有量
は、はじめの配合値と変わっていない。
As described above, at the end of production, the contact of the present invention is formed by integrating an extremely high-density sintered alloy with Cu, which is a conductive material which is originally a wrought material, on the Cu side. Since the brazing is performed with the current-carrying rod, it is possible to obtain a contact having very strong contacts. Next, regarding the contact of the present invention thus produced, Cu-2
When the density of the 5Cr-20Bi sintered alloy was measured, it reached 99.8% or more with respect to the true density. This is because powder mixing → pressure molding (294 to 491 MPa) → sintering (5
The density of the conventional sintered alloy obtained in the process of (00 to 900 ° C.) is 96.5 to 98.5% with respect to the true density, and even when a pressure of 491 to 785 MPa is applied,
The increase in density is a sufficient value compared to a very small increase. When the cross-sectional structure of the sintered alloy of the contact point of the present invention was observed with a microscope having a magnification of about 100, no voids were observed at all, or very minute voids were slightly observed due to the HIP treatment. It was also confirmed that it was nothing more than mere. In addition, according to the composition analysis, the content of Bi, which is a low-melting metal, has not changed from the initial blending value.

【0023】次に、図2(b)に示す接触子を用いて、
図3に示した真空バルブを組み立てたが、その真空排気
工程における真空バルブ内部の真空度が安定するまでの
時間は、従来の粉末冶金法で作製した焼結合金を用いた
接触子の真空バルブに比べて1/2〜1/5程度であ
る。これは、真空排気工程で放出されるガスの種類は、
水分が主体であるが、その量は従来に比べて極めて少な
いからであり、本発明の接点が緻密で、内部に吸蔵する
ガスが殆どなく、接点表面に吸着したガスが除去された
後は、真空バルブ内部の真空度は直ちに安定状態となる
ことによるものである。そして、真空排気の完了した真
空バルブについて、7.2KV/20KAでしゃ断試験
と、しゃ断試験後に10Aを通電したときのさい断電流
値を測定した結果、しゃ断性能,さい断電流値とも異常
の発生はなく、また、しゃ断試験前後の真空度の変化も
みられなかった。
Next, using the contact shown in FIG.
Although the vacuum valve shown in FIG. 3 was assembled, the time required for the degree of vacuum inside the vacuum valve to stabilize in the evacuation step was determined by the contact vacuum valve using a sintered alloy manufactured by a conventional powder metallurgy method. Is about 1/2 to 1/5. This is because the type of gas released in the evacuation process is
Moisture is mainly contained, but the amount is extremely small compared to the conventional one.The contact of the present invention is dense, there is almost no gas occluded inside, and after the gas adsorbed on the contact surface is removed, The degree of vacuum inside the vacuum valve is due to a stable state immediately. Then, for the vacuum valve that has been completely evacuated, a breaking test was performed at 7.2 KV / 20 KA, and a breaking current value was measured when 10 A was energized after the breaking test. As a result, both the breaking performance and the breaking current value were abnormal. There was no change in the degree of vacuum before and after the cutoff test.

【0024】さらに、これら一連の試験終了後に、真空
バルブを解体して接触子の異常、即ち、Cu−25Cr
−20Bi焼結合金21bの脱落や緩み、金属容器22
と通電ロッド27との銀ろう付け部の異常などについて
調査したが、何ら異常は認められなかった。本発明の接
点はHIP処理に際して、はじめから焼結合金21bが
ろう付け面で既にCuと一体となっており、したがっ
て、焼結合金21bをCuを介在させることなく、直接
通電ロッド27にろう付けしたときにみられる欠陥を発
生することもない。
Further, after completion of the series of tests, the vacuum valve was disassembled and the contact was abnormal, that is, Cu-25Cr.
-20Bi sintered alloy 21b falling off or loose, metal container 22
An investigation was made of an abnormality at the silver brazing portion between the electrode and the current-carrying rod 27, but no abnormality was found. In the contact of the present invention, the sintered alloy 21b is already integrated with Cu on the brazing surface from the beginning at the time of the HIP processing. Therefore, the sintered alloy 21b is directly brazed to the current-carrying rod 27 without Cu. Also, no defects are observed.

【0025】[0025]

【発明の効果】さい断電流値が低く、しかもしゃ断性能
の良好な真空しゃ断器の真空バルブの接点材料は、低融
点金属を多量に含む合金が用いられるので、低融点金属
の含有量が所定の値に保たれ、空孔のない緻密な焼結合
金とするために、HIP処理を行なうのが有効である
が、本発明では、HIP処理の際に用いる金属容器をC
u製とすることにより、HIP処理後には、このCu製
の金属容器が焼結合金と一体として形成されるので、金
属容器の底面に相当する部分を、通電ロッドとのろう付
け面として利用し、真空バルブの接触子を作製すること
ができる。したがって、接点と通電ロッドとのろう付け
層に欠陥を生ずることなく、接点が極めて強固に接合さ
れた接触子が得られ、その結果、真空バルブの開閉振動
や短絡電流等の大きな電流をしゃ断したときでも、接点
接合部の緩みや接点の脱落等が起きなくなり、真空バル
ブの信頼性を高めることができる。
As the contact material of the vacuum valve of the vacuum circuit breaker having a low breaking current value and good breaking performance, an alloy containing a large amount of low melting point metal is used. In order to obtain a dense sintered alloy having no pores, it is effective to perform HIP processing. However, in the present invention, the metal container used for HIP processing is C
Since the metal container made of u is formed integrally with the sintered alloy after the HIP treatment, the portion corresponding to the bottom surface of the metal container is used as a brazing surface for the current-carrying rod. The contact of the vacuum valve can be manufactured. Therefore, a contact in which the contact was extremely firmly joined was obtained without causing a defect in the brazing layer between the contact and the current-carrying rod, and as a result, a large current such as an opening / closing vibration of a vacuum valve and a short-circuit current was cut off. Even at this time, loosening of the contact junction and dropping of the contact do not occur, and the reliability of the vacuum valve can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いるHIP処理工程を示し、それぞ
れ(a)は成形体を容器に装入して蓋をする状態、
(b)はこれを真空排気して封止した状態、(c)はさ
らに高圧容器内で加熱加圧する状態を表わす模式断面図
FIG. 1 shows HIP processing steps used in the present invention, wherein (a) shows a state in which a molded article is charged into a container and a lid is placed,
(B) is a schematic cross-sectional view showing a state in which it is evacuated and sealed, and (c) is a state in which it is further heated and pressurized in a high-pressure container.

【図2】本発明の接点を用いて接触子を作製する過程を
示し、それぞれ(a)はHIP処理のまま通電ロッドに
ろう付けした状態、(b)はこれを加工して接触子を形
成した状態を表わす模式断面図
FIGS. 2A and 2B show a process of fabricating a contact using the contact of the present invention. FIG. 2A shows a state where the contact is formed by brazing to a current-carrying rod while HIP processing is performed, and FIG. Schematic sectional view showing the state

【図3】真空しゃ断器用の真空バルブの要部構成を示す
模式断面図
FIG. 3 is a schematic cross-sectional view illustrating a main configuration of a vacuum valve for a vacuum circuit breaker.

【図4】HIP処理装置の要部構成を示す模式断面図FIG. 4 is a schematic sectional view showing a configuration of a main part of the HIP processing apparatus.

【図5】接点と通電ロッドを接合した接触子を示し、そ
れぞれ(a)はろう付けの場合、(b)はかしめの場合
を表わす部分模式断面図
FIGS. 5A and 5B are partial schematic cross-sectional views showing contacts in which a contact and an energizing rod are joined, wherein FIG. 5A shows a case of brazing and FIG. 5B shows a case of caulking;

【符号の説明】[Explanation of symbols]

1 絶縁筒 2a 上部フランジ 2b 下部フランジ 可動接触子 3a 可動接点 3b 可動側通電ロッド 固定接触子 4a 固定接点 4b 固定側通電ロッド 5 ベローズ 6 ベローズカバー 7 アークシールド 8 排気パイプ 9 高圧容器 10 断熱材 11 ヒーター 12 外部構造体 13 被処理体 14 蓋 15 不活性ガス 16 ガス圧縮機 17a 接点 17b 接点 18a 通電ロッド 18b 通電ロッド 19 ろう付け層 20 かしめ部 21a 成形体 21b 焼結合金 22 金属容器 23 金属製パイプ 24 蓋 25 封止部 26 高圧容器 27 通電ロッドDESCRIPTION OF SYMBOLS 1 Insulation cylinder 2a Upper flange 2b Lower flange 3 Movable contact 3a Movable contact 3b Movable side conducting rod 4 Fixed contact 4a Fixed contact 4b Fixed side conducting rod 5 Bellows 6 Bellows cover 7 Arc shield 8 Exhaust pipe 9 High pressure vessel 10 Heat insulating material DESCRIPTION OF SYMBOLS 11 Heater 12 External structure 13 Object to be processed 14 Lid 15 Inert gas 16 Gas compressor 17a Contact 17b Contact 18a Energizing rod 18b Energizing rod 19 Brazing layer 20 Caulked part 21a Molded body 21b Sintered alloy 22 Metal container 23 Metal Pipe 24 Lid 25 Sealing part 26 High-pressure vessel 27 Current-carrying rod

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−202813(JP,A) 特開 平6−39957(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-202813 (JP, A) JP-A-6-39957 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 33/66

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cuを主成分としこれに低融点金属の少な
くとも1種を含む粉末成形体をCu製金属容器に入れて
密封し、不活性ガスにより等方的に高圧を加える熱間静
水圧プレス処理を施した真空しゃ断器の接点であって、
前記熱間静水圧プレス処理に用いる前記Cu製金属容器
の一部を残した複合材として形成され、前記Cu製金属
容器の一部を残した複合材の底面に通電ロッドがろう付
けされてなることを特徴とする真空しや断器の接点。
1. A hot isostatic pressure in which a powder compact containing Cu as a main component and containing at least one low-melting-point metal is placed in a Cu metal container and sealed, and isotropically applied a high pressure with an inert gas. A contact of a vacuum circuit breaker that has been subjected to press processing,
Leaving a portion of the Cu-made metal container <br/> used for the hot isostatic pressing treatment is formed as a composite material, the Cu metal
A contact point for a vacuum or breaker, characterized in that a current-carrying rod is brazed to the bottom of the composite material leaving a part of the container .
【請求項2】請求項1の接点において、Cu製金属容器
は底面の厚さを側壁の厚さより大きくすることを特徴と
する真空しや断器の接点。
2. The contact according to claim 1, wherein the thickness of the bottom surface of the metal container made of Cu is larger than the thickness of the side wall.
【請求項3】Cuを主成分としこれに低融点金属の少な
くとも1種を含む粉末成形体をCu製金属容器に入れて
これを密封する工程と、この粉末成形体をCu製金属容
に密封したまま不活性ガス雰囲気中で等方的に高圧を
加える熱間静水圧プレス処理工程と、この熱間静水圧プ
レス処理した粉末成形体を密封したCu製金属容器の一
端に通電ロッドをろう付けした後、少なくともこのCu
製金属容器の通電ロッドのろう付け部分を残してこの
u製金属容器を除去する工程を有する真空しや断器の接
点の製造方法。
3. A process for the powder compact comprising at least one as a main component low-melting-point metal to seal this by taking into Cu metal container Cu, Cu metal contents of the powder compact
A hot isostatic pressing treatment step of adding isotropically high pressure sealed while in an inert gas atmosphere to a vessel, current supply rods on one end of the Cu metal containers sealed and hot isostatic pressing the powder compact After brazing, at least this Cu
The C leaving brazed portion of the energizing rod manufacturing metal containers
A method for manufacturing a contact point of a vacuum or a breaker, comprising a step of removing a u-made metal container .
【請求項4】Cuを主成分としこれに低融点金属の少な
くとも1種を含む粉末成形体をCu製金属容器に入れて
これを密封する工程と、この粉末成形体をCu製金属容
に密封したまま不活性ガス雰囲気中で等方的に高圧を
加える熱間静水圧プレス処理工程と、この熱間静水圧プ
レス処理した粉末成形体を密封したCu製金属容器の少
なくとも通電ロッドのろう付け部分を残してCu製金属
容器を除去した後、Cu製金属容器の前記通電ロッドの
ろう付け部分に通電ロッドをろう付けする工程を有する
真空しや断器の接点の製造方法。
4. A process for the powder compact comprising at least one as a main component low-melting-point metal to seal this by taking into Cu metal container Cu, Cu metal contents of the powder compact
A hot isostatic pressing treatment step of adding isotropically high pressure sealed while in an inert gas atmosphere vessel of at least energizing rod Cu metal containers sealed and hot isostatic pressing the powder compact Cu-made metal leaving brazing part
A method for producing a contact point of a vacuum or breaker, comprising a step of brazing an energizing rod to a brazing portion of the energizing rod of a Cu metal container after removing the container .
JP25592594A 1994-10-21 1994-10-21 Contact of vacuum circuit breaker and method of manufacturing the same Expired - Fee Related JP3206336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25592594A JP3206336B2 (en) 1994-10-21 1994-10-21 Contact of vacuum circuit breaker and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25592594A JP3206336B2 (en) 1994-10-21 1994-10-21 Contact of vacuum circuit breaker and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08124462A JPH08124462A (en) 1996-05-17
JP3206336B2 true JP3206336B2 (en) 2001-09-10

Family

ID=17285483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25592594A Expired - Fee Related JP3206336B2 (en) 1994-10-21 1994-10-21 Contact of vacuum circuit breaker and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3206336B2 (en)

Also Published As

Publication number Publication date
JPH08124462A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
US4836978A (en) Method for making vacuum circuit breaker electrodes
JP2941682B2 (en) Vacuum valve and method of manufacturing the same
EP0101024B1 (en) Contact material of vacuum interrupter and manufacturing process therefor
EP0155322B1 (en) Electrode of vacuum breaker
KR890002304B1 (en) Contact of vacuum interrupter and manufacturing process therefor
US3828428A (en) Matrix-type electrodes having braze-penetration barrier
EP0042152A1 (en) Vacuum circuit breaker
JP3206336B2 (en) Contact of vacuum circuit breaker and method of manufacturing the same
JP3597544B2 (en) Contact material for vacuum valve and manufacturing method thereof
HU191998B (en) Circuit breaker with vacuum chamber and method for making thereof
JPH0554208B2 (en)
JPH1012103A (en) Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
KR920004798B1 (en) Contact electrode material for vacuum interrupter and method of manufacturing the same
JPH09171746A (en) Vacuum circuit-breaker, vacuum valve and electric contact using same, and their manufacture
JP3106598B2 (en) Manufacturing method of electrode material
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
KR910006114B1 (en) Contact material of vacuum interrupter and manufacturing process therefor
JPS6359216B2 (en)
JPH06103858A (en) Manufacture of contact material for vacuum valve
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH0474810B2 (en)
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JP2555409B2 (en) Contact for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JP2002245908A (en) Electrode for vacuum valve used in vacuum breaker, method of manufacturing the electrode, vacuum valve, vacuum breaker, and electric contact for vacuum valve electrode
JP2000149732A (en) Vacuum breaker and vacuum bulb used in it and its electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees