JPH09213179A - Manufacture of vacuum bulb - Google Patents

Manufacture of vacuum bulb

Info

Publication number
JPH09213179A
JPH09213179A JP2074396A JP2074396A JPH09213179A JP H09213179 A JPH09213179 A JP H09213179A JP 2074396 A JP2074396 A JP 2074396A JP 2074396 A JP2074396 A JP 2074396A JP H09213179 A JPH09213179 A JP H09213179A
Authority
JP
Japan
Prior art keywords
insulating container
vacuum valve
heating
manufacturing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2074396A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥富
Masako Nakabashi
昌子 中橋
Mikio Okawa
幹夫 大川
Miho Maruyama
美保 丸山
Takashi Kusano
貴史 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBAFU ENG KK
Toshiba Corp
Original Assignee
SHIBAFU ENG KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBAFU ENG KK, Toshiba Corp filed Critical SHIBAFU ENG KK
Priority to JP2074396A priority Critical patent/JPH09213179A/en
Publication of JPH09213179A publication Critical patent/JPH09213179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve joining performance and reduce lowering of operating characteristics and restrike characteristics by specifying heating/cooling speed in assembling. SOLUTION: In a heating process when the end part of an insulating container in which a pair of electrodes are arranged in such a state as freely contacted/separated with each other and a sealing metal which seals the insulating container with a lid body are joined together, they are heated at the temperature increase speed of 1-20 deg.C/min from work temperature of 600 deg.C to brazing. In a cooling process, they are cooled at the cooling speed of 0.5-30 deg.C/min from brazing work temperature to 400 deg.C. This process can optimize heating/cooling conditions in assembling and improve the joining performance of the end face of the insulating container with the sealing metal via a silver brazing material. Improving of joining strength after the joining treatment can reduce the lowering of the operation characteristics and restrike characteristics for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空バルブの製造
方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a vacuum valve.

【0002】[0002]

【従来の技術】一般に、真空バルブは、次のように構成
される。すなわち、例えば少なくとも純度が90%酸化ア
ルミ等で形成されるセラミックス製絶縁容器(外管)を
有し、内部には通電軸に接合された固定電極と、この対
向側に同じようにして通電軸に接合されベローズにより
接離可能な可動電極が配置されている。この絶縁容器の
両端は蓋体で封着金具により真空気密に封着され、真空
容器が形成される。また、電流を遮断するために電極を
開閉すると、接触子間には金属粒子からなるアークが形
成される。このアークは低いアーク電圧で電流を維持す
ると共に周囲に高速度で拡散するが、絶縁容器の内面に
アークの金属粒子が付着すると好ましくないことから、
電極の周囲にはアークシールドが設けられ、絶縁容器の
取付部材と接合されている。
2. Description of the Related Art Generally, a vacuum valve is constructed as follows. That is, for example, it has a ceramic insulating container (outer tube) formed of at least 90% purity aluminum oxide, etc., and inside it has a fixed electrode joined to the current-carrying shaft and the current-carrying shaft in the same way on the opposite side And a movable electrode which is joined to and is separable by a bellows. Both ends of this insulating container are vacuum-tightly sealed with a lid by sealing metal fittings to form a vacuum container. Further, when the electrodes are opened and closed to cut off the current, an arc composed of metal particles is formed between the contacts. This arc maintains the current at a low arc voltage and diffuses at high speed to the surroundings, but it is not preferable that the metal particles of the arc adhere to the inner surface of the insulating container,
An arc shield is provided around the electrodes and is joined to the mounting member of the insulating container.

【0003】一般にセラミックスは優れた耐熱性、絶縁
性、気密性を有する為、その特性を生かして上述した真
空バルブの絶縁容器など電気部品材料として用いられて
いる。
In general, ceramics have excellent heat resistance, insulation, and airtightness, and are used as electrical component materials such as the insulating container of the above-mentioned vacuum valve by taking advantage of their characteristics.

【0004】特に、真空バルブのセラミックス製外管の
場合、内部を真空に維持する為に、厳密に気密性を長期
にわたり保ち得るものでなければならない。しかしなが
ら、一般にセラミックス製絶縁容器と金属とでは、熱膨
張係数が大きく異なる為、その両者の熱膨張係数差に起
因して熱応力がしばしば発生する。これらの熱応力はセ
ラミックスに亀裂を発生させやすいという問題がある。
そこで、この様な熱応力の発生を低減させる為に、なる
べくセラミックスの熱膨張係数に近い金属を用いた接合
方法が検討されている。この様な目的に使用される金属
としては、鉄基合金、特にインバー系合金、エリンバ系
合金、または通称コバール、42アロイなどと呼ばれるF
e−Ni系、Fe−Ni−Co系合金など鉄基低熱膨張
係数合金があげられる。
Particularly, in the case of a ceramic outer tube of a vacuum valve, in order to maintain a vacuum inside, it is necessary to strictly maintain hermeticity for a long period of time. However, since the ceramics insulating container and the metal generally differ greatly in thermal expansion coefficient, thermal stress often occurs due to the difference in thermal expansion coefficient between the two. These thermal stresses tend to cause cracks in ceramics.
Therefore, in order to reduce the occurrence of such thermal stress, a joining method using a metal as close as possible to the coefficient of thermal expansion of ceramics has been studied. Examples of metals used for such purposes include iron-based alloys, particularly Invar-based alloys, Erinba-based alloys, or F alloys commonly called Kovar or 42 alloy.
Examples include iron-based low coefficient of thermal expansion alloys such as e-Ni-based and Fe-Ni-Co-based alloys.

【0005】ところで、セラミックス製絶縁容器と封着
金属とを、銀ロウ材を介して接合するに際して、一般に
はセラミックス部材の端面(表面)に通称モリブデン・
マンガン法(Mo−Mn法)と呼ばれるMo、W、Mn
粉末を含むペーストをあらかじめ塗布して、加湿雰囲気
中で1400℃以上の高温度熱処理を施して、セラミックス
製絶縁容器の表面をメタライズし、その後Niメッキを
施しさらにロウ材を用いて接合を行うという高価な手法
が多く行われている。
By the way, when the ceramic insulating container and the sealing metal are joined via a silver brazing material, generally, the end face (surface) of the ceramic member is commonly called molybdenum.
Mo, W, Mn called manganese method (Mo-Mn method)
It is said that paste containing powder is applied in advance, high temperature heat treatment of 1400 ° C or more is performed in a humidified atmosphere to metallize the surface of the ceramic insulating container, and then Ni plating is performed and then a brazing material is used for bonding. Many expensive methods are used.

【0006】[0006]

【発明が解決しようとする課題】ところで、最近活性金
属と呼ばれるTi等の金属と銀ロウ(Ag−Cu)の様
な金属銀ロウ材を組合わせて用いる方法が注目されてい
る。この方法は、Ti、Zrなど周期率表のIVA、V
A属など活性な金属がセラミックスとの反応性が高い作
用を利用して接合を行うもので、代表的活性金属として
Ag−Cu−Ti、Ag−Cu−Zr、Cu−Ti系ロ
ウ材が挙げられる。
By the way, recently, a method of combining a metal such as Ti, which is called an active metal, and a metallic silver brazing material such as silver brazing (Ag-Cu) has been attracting attention. This method uses IVA, V of the periodic table such as Ti and Zr.
Bonding is performed by utilizing the action of active metals such as group A having high reactivity with ceramics, and representative active metals include Ag-Cu-Ti, Ag-Cu-Zr, and Cu-Ti brazing materials. To be

【0007】これらの活性金属ロウ材を金属とセラミッ
クスとの接合部に合金、積層体など種々の状態で載置し
て、真空な不活性雰囲気中で加熱する事で、両者の接合
が良好に行えるものである。この方法によれば、これら
ロウ材の融点がAg−Cu系で約 780℃、Cu−Ti系
で約 870℃程度であって、全般に低い為、Mo−Mn法
により低温で且つ少ない接合工程で接合ができ、高い接
合強度が得られることが特徴である。
By placing these active metal brazing materials in various states such as alloys and laminated bodies on the joint between metal and ceramics and heating them in a vacuum inert atmosphere, the two can be joined well. It can be done. According to this method, the melting points of these brazing materials are about 780 ° C. for Ag—Cu type and about 870 ° C. for Cu—Ti type, which are generally low. It is characterized in that it can be joined with and high joint strength can be obtained.

【0008】しかしながら、無作為に取出した無処理の
複数個のセラミックス製絶縁容器を用い、封着金具とし
て前記の鉄基低熱膨張係数合金(以下鉄基合金)を使用
し、この封着金具に十分な除歪熱処理を与えてから真空
バルブの接合に使用したとしても、酸化アルミセラミッ
クス製絶縁容器と封着金具との界面近傍にはある程度の
残留応力が存在する。これが主因となって、特に気密性
や再点弧発生にばらつき現象や不規則発生が見られた。
このことから、セラミックス製絶縁容器自体の状態が前
記気密性や再点弧発生にばらつき現象や不規則な発生に
影響を及ぼしていることが推察された。本発明の目的
は、接合性を改善し、長期間にわたって遮断特性と再点
弧特性が低下するのを低減できる真空バルブの製造方法
を提供することにある。
[0008] However, a plurality of randomly selected untreated ceramic insulating containers are used, and the iron-based low thermal expansion coefficient alloy (hereinafter referred to as iron-based alloy) is used as the sealing metal fitting. Even if the vacuum valve is used after being subjected to sufficient heat treatment for strain relief, some residual stress exists in the vicinity of the interface between the aluminum oxide ceramic insulating container and the sealing metal fitting. The main reason for this was the occurrence of irregularity and irregularity in airtightness and reignition.
From this, it was inferred that the state of the ceramic insulating container itself influences the airtightness and the occurrence of restriking in a variation phenomenon and an irregular occurrence. An object of the present invention is to provide a method of manufacturing a vacuum valve, which can improve the bondability and can reduce the deterioration of the breaking characteristic and the re-ignition characteristic over a long period of time.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、内部に一対の電極が接離可能に配置された
絶縁容器の端部と、絶縁容器を蓋体で封着する封着金具
との間にロウ材を介挿載置し、真空中で全体を排気しな
がら絶縁容器と封着金具とを気密封着する真空バルブの
製造方法において、 600℃〜ロウ付作業温度までを1〜
20℃/分の昇温速度で加熱する加熱工程と、ロウ付作業
温度〜 400℃までを 0.5〜30℃/分の冷却速度で冷却す
る冷却工程とを備えたことを要旨とする。
In order to achieve the above object, the present invention provides an end portion of an insulating container in which a pair of electrodes are arranged so that they can come into contact with and separate from each other, and a sealing for sealing the insulating container with a lid. A method of manufacturing a vacuum valve in which a brazing material is placed between the metal fittings and the insulating container and the metal fittings are hermetically sealed while exhausting the whole in a vacuum. 1 to
The gist of the present invention is to have a heating step of heating at a temperature rising rate of 20 ° C / min and a cooling step of cooling the brazing working temperature to 400 ° C at a cooling rate of 0.5 to 30 ° C / min.

【0010】真空遮断器において、電流遮断後真空バル
ブ内で閃絡が発生し接点間が再び導通状態になる(その
後放電は継続しない)現象を再点弧と呼び、この発生メ
カニズムは未解明であるが、電気回路が一度電流遮断状
態となった後に導通状態に急激に変化する為、異常過電
圧が発生しやすい。特にコンデンサバンクの遮断時に再
点弧を発生させる実験によれば、極めて大きな過電圧の
発生や、過大な高周波電流が流れる為、再点弧の発生抑
制が求められている。
In the vacuum circuit breaker, a phenomenon in which a flashover occurs in the vacuum valve after the current is cut off and the contacts are brought into a conductive state again (the discharge does not continue thereafter) is called re-ignition, and the mechanism of occurrence is unclear. However, an abnormal overvoltage is likely to occur because the electric circuit suddenly changes to the conductive state after the current is cut off. Particularly, according to an experiment in which re-ignition is generated when the capacitor bank is cut off, an extremely large overvoltage is generated and an excessive high-frequency current flows, so that suppression of re-ignition is required.

【0011】上記した様に、再点弧現象の発生メカニズ
ムは未だ知られていないが、本発明者らの実験観察によ
れば、再点弧は真空バルブ内の接点/接点間、接点/ア
ークシールド間でかなり高い頻度で発生している。その
為本発明者らは、例えば接点がアークを受けた時に放出
される突発性ガスの抑制、接点表面形態の最適化など、
再点弧の発生抑制に極めて有効な技術を明らかにし、再
点弧発生数を大幅に低減化した。しかし、近年の真空バ
ルブに対する高耐電圧要求、大電流遮断化要求、小形化
要求には上記接点の改良のみでは既に限界と考えられ、
これら以外においても改良最適化が必要となってきた。
すなわち、本発明者らは、セラミックス製絶縁容器外
管、接点、アークシールド、金属蓋体、通電軸、封着金
具、ベローズなど各構成部材を適宜真空バルブ内へ封着
したり取外ししたりしながら模擬再点弧発生実験を行っ
たところ、直接アークを受ける接点、アークシールドを
除くと、セラミックス製絶縁容器の状態が重要であると
の知見を得た。さらに、複数個のセラミックス製絶縁容
器を組合わせて真空バルブを作り再点弧発生状況を観察
したところ、接点及び接点材料を最適化した上で、真空
バルブ内で最も表面積の大きいセラミックス製絶縁容器
の最適化を加える事が有益であることも見出だした。す
なわち詳細に解析した結果、(イ)セラミックス製絶縁
容器の端面の状態、(ロ)セラミックス製絶縁容器表面
に付着、吸着し、まだ除去しきれていないガスや水分な
どの異物、(ハ)セラミックスと封着金具との組合わせ
によって接合界面に発生する応力などな関与しているこ
とが判った。
As described above, although the mechanism of occurrence of the re-ignition phenomenon is not yet known, according to the experiments and observations made by the present inventors, re-ignition is caused by the contact / contact between the vacuum valves and the contact / arc. It occurs quite frequently between shields. Therefore, the present inventors, for example, suppression of sudden gas emitted when the contact receives an arc, optimization of the contact surface morphology,
The technology that is extremely effective in suppressing the re-ignition has been clarified, and the number of re-ignitions has been significantly reduced. However, the recent demands for high withstand voltage, high current interruption, and miniaturization of vacuum valves are considered to be already limited by the improvement of the above contacts.
In addition to these, improvement optimization has become necessary.
That is, the inventors of the present invention appropriately seal or remove each component such as a ceramic insulating container outer tube, a contact, an arc shield, a metal lid, a current carrying shaft, a metal fitting, and a bellows into a vacuum valve. However, when a simulated re-ignition generation experiment was conducted, it was found that the condition of the ceramic insulating container is important, except for the contact and arc shield that receive the direct arc. Furthermore, when a vacuum valve was created by combining a plurality of ceramics insulating containers and the re-ignition occurrence situation was observed, after optimizing the contacts and contact materials, the ceramics insulating container with the largest surface area in the vacuum valve It has also been found to be beneficial to add an optimization of. In other words, as a result of detailed analysis, (a) the state of the end surface of the ceramic insulating container, (b) foreign matter such as gas or moisture that has adhered to, adsorbed on the surface of the ceramic insulating container, and has not been removed yet (c) ceramics It was found that the stress generated at the joint interface is involved due to the combination of and the sealing metal fitting.

【0012】観察の結果では、(イ)の容器端面の状態
では、あらかじめ仕上げられた表面粗度が影響し、電流
遮断開閉回数の比較的初期から再点弧現象の発生がみら
れる特徴がある。この様な場合には、容器端面と封着金
具との接合において、ロウ材の流れが阻害されている状
況が観察された。表面粗度が不適当の時には、接合処理
の後の接合強度にばらつきと強さ不足の現象が見られ、
更に気密性に対しても好ましくなく再点弧発生頻度に対
しても好ましくない影響を与えた。
As a result of the observation, in the state of the container end face of (a), the pre-finished surface roughness has an effect, and the re-ignition phenomenon occurs from the relatively early stage of the current interruption switching number. . In such a case, it was observed that the flow of the brazing material was hindered at the joining of the container end face and the sealing metal fitting. When the surface roughness is unsuitable, there are variations in the bonding strength after bonding and insufficient strength is observed.
Further, it has an unfavorable effect on the airtightness and the frequency of re-ignition.

【0013】一方(ロ)のセラミックス容器表面の異物
は、電流遮断開閉回数の初期から中期に多く発生した。
この様な場合にはセラミックス表面には、黒色の影が写
っている。組立て時の熱処理時に付着するよりも量的に
は更に前の工程で既に付着していることも判明した。使
用前にあらかじめ 800℃以上に加熱処理する加熱処理工
程を与えることが効果があった。微小×線分析によれ
ば、この処理のあとではセラミックス表面に存在してい
た異物が処理前より大幅に減少していた。
On the other hand, a large amount of foreign matter on the surface of the ceramic container (b) was generated in the early to middle stages of the number of times of opening and closing the current.
In such a case, a black shadow appears on the ceramic surface. It was also found that they were already attached in the previous step in terms of quantity compared to the ones attached during the heat treatment during assembly. It was effective to give a heat treatment step of heat treatment to 800 ° C or more before use. According to the micro x-ray analysis, the foreign matter existing on the ceramic surface after this treatment was significantly reduced from that before the treatment.

【0014】また(ハ)の接合界面の応力の関係では、
電流遮断回数の経過の比較的後半に発生したが、特に開
閉動作を与えずただ放置しておいただけでもその後開閉
させると、再点弧現象の発生が見られた。この様な場合
には接合部界面近傍に極めて微細ではあるがミクロクラ
ックの進展が見られた。遮断回数の経過によって真空リ
ークを呈する真空バルブも見られた。真空バルブの組立
て時の加熱、冷却時の条件を最適化することによって、
ミクロクラックの進展を軽減化できる傾向にあった。
Further, in the relationship of stress at the joint interface of (C),
It occurred in the comparatively latter half of the passage of the number of times of the current interruption, but the re-ignition phenomenon was observed when it was opened and closed even if it was left alone without giving the opening and closing action. In such a case, the development of microcracks was observed in the vicinity of the joint interface, although it was extremely fine. Some vacuum valves showed a vacuum leak depending on the number of times of interruption. By optimizing the heating and cooling conditions when assembling the vacuum valve,
There was a tendency to reduce the progress of microcracks.

【0015】以上のことから、再点弧現象の発生の時期
は、電流遮断回数の進展に対して見掛け上では、関係な
く見えるが、上記(イ)(ロ)(ハ)の様に各発生の時
期によってその原因は異なっている事が判明した。この
ことが各真空バルブ毎に再点弧現象の発生にばらつきが
生じていた重要な原因と考えられた。
From the above, the timing of occurrence of the re-ignition phenomenon appears to be irrelevant to the progress of the number of times of current interruption, but each occurrence occurs as in (a), (b) and (c) above. It turned out that the cause differs depending on the time. This was considered to be an important cause for the occurrence of the re-ignition phenomenon for each vacuum valve.

【0016】従って、本発明者らの研究によれば、再点
弧の各発生の時期の総てを抑制もしくは軽減化するに
は、あらかじめ絶縁容器に加熱処理工程を与える事、セ
ラミックス製絶縁容器の端面粗度を最適化する事の上、
重要なのは真空バルブ組立て時の加熱冷却条件の最適化
を図ることであるのが判明し、本発明に至った。
[0016] Therefore, according to the research conducted by the present inventors, in order to suppress or reduce all the timings of each occurrence of re-ignition, a heat treatment process should be applied to the insulating container in advance. After optimizing the end surface roughness of
It was found that what is important is to optimize the heating and cooling conditions when assembling the vacuum valve, and the present invention has been completed.

【0017】[0017]

【発明の実施の形態】以上に本発明の実施例を詳細に説
明する。本発明の要旨は、活性金属ロウ材を用いた真空
バルブの封着金具とセラミックス製絶縁容器の接合にお
いて、真空バルブの再点弧現象発生の抑制軽減化の為
に、真空バルブの組立て工程の内の特に気密封着工程に
適切な管理を与える事と及び構成部材の内の特にセラミ
ックス製絶縁容器に適切な管理を与える事にあり、これ
らを重畳させることでその効果を得るものである。従っ
て、セラミックス製絶縁容器に対する一連の管理が重要
なポイントとなる。特性評価の条件を示す。
Embodiments of the present invention will be described in detail above. The gist of the present invention is to attach a vacuum valve sealing metal fitting using an active metal brazing material to a ceramic insulating container in order to reduce the occurrence of re-ignition phenomenon of the vacuum valve in order to reduce the vacuum valve assembly process. In particular, the proper control is given to the air-tight sealing process and the proper control is given to the ceramic insulating container among the constituent members, and the effect is obtained by superposing these. Therefore, a series of management for the ceramic insulating container is an important point. The conditions for characteristic evaluation are shown.

【0018】(1)遮断特性;前記した各条件で製造し
た直径70mmの接点を装着した遮断テスト用実験バルブを
開閉装置に取り付けると共に、ベーキング、電圧エージ
ング等を与えた後、24kv、50Hzの回路に接続し1kAずつ
電流を増加しながら遮断限界を真空バルブ3本につき比
較評価した。尚、実施例1の結果のみは、真空バルブ3
本の平均値であり、他の数値は実施例1の値を 100とし
た時の比較値をバラツキ幅を持って示した。遮断テスト
前後の実験バルブについてリークテストの実施、遮断テ
スト後の実験バルブについて破壊して、アークの拡がり
の程度も観察し遮断性能の判断の一助とした。
(1) Breaking characteristics: An experimental valve for breaking test equipped with a 70 mm diameter contact manufactured under each of the above-mentioned conditions was attached to a switchgear, and after baking, voltage aging, etc., a circuit of 24 kv, 50 Hz Was connected to each other and the breaking limit was compared and evaluated for three vacuum valves while increasing the current by 1 kA. In addition, only the result of the first embodiment is the vacuum valve 3
The values are average values of the book, and other numerical values are shown with a range of variation when the value of Example 1 is set to 100. A leak test was performed on the experimental valve before and after the breaking test, and the experimental valve after the breaking test was destroyed, and the extent of arc spread was also observed to help judge the breaking performance.

【0019】(2)再点弧特性;直径30mm、厚さ5mmの
円板状接点片を、ディマウンタブル型真空バルブに装着
し、24kV× 500Aの回路を2000回遮断した時の再点弧発
生頻度を2台の遮断器(真空バルブとして6本)のバラ
ツキ値を考慮して表示した。
(2) Re-ignition characteristics: Re-ignition when a disc-shaped contact piece having a diameter of 30 mm and a thickness of 5 mm is mounted on a demountable type vacuum valve and a circuit of 24 kV x 500 A is cut off 2000 times. The frequency of occurrence was displayed in consideration of the variation values of the two circuit breakers (six vacuum valves).

【0020】(3)銀ろう付け性の評価;真空バルブの
組立て工程(銀ろう付け工程)後の真空バルブの一部に
ついて、銀ろうの付着の状況の目視的所見及び接合部界
面の金属顕微鏡によるミクロ的観察結果から判断した。
(3) Evaluation of silver brazing property: Visual observation of adhesion state of silver brazing and metallurgical microscope of joint interface on a part of the vacuum valve after the vacuum valve assembling process (silver brazing process). It was judged from the microscopic observation result by.

【0021】(実施例1〜5、比較例1〜2)端面の平
均表面粗さを約 1.5μmに研磨した外直径6.7cm 、内直
径 5.6cm、高さ10cmのセラミックス製絶縁容器(主成
分:AL23 )を用意した。セラミックス製絶縁容器
に対して組立て前に1650℃の前加熱処理を施した。
(Examples 1 to 5 and Comparative Examples 1 and 2) An insulating ceramics container (main component) having an outer diameter of 6.7 cm, an inner diameter of 5.6 cm, and a height of 10 cm, which was ground to have an average surface roughness of about 1.5 μm. : AL 2 O 3 ) was prepared. The ceramic insulating container was preheated at 1650 ° C before assembly.

【0022】封着金具として、板厚さ2mmの42%Ni−
Fe合金を用意した。活性金属を含むロウ材として、厚
さ 0.1mmの72%Ag−Cu− 0.5%Ti合金板を用意し
た。なお、本実施例で使用する活性金属を含むロウ材と
しては、この合金板に限る事なく実施は可能であり、活
性金属の供給方法としては、例えば金属箔面上にTiを
供給する方法、すなわちアークメルトしたTiターゲッ
トを活性金属源とし、加熱手段としてアーク放電、イオ
ンプレーティング、電子衝撃、スパッタリング等を適宜
選択または組合わせて、蒸発またはイオン化させたTi
を前記金属箔(Cu箔)面上まで誘導する。蒸発または
イオン化させる為の注入エネルギーを制御しながら、金
属箔面上でのTi粒子の平均粒子直径を例えば0.01〜20
μmの範囲とし、作業時間を制御しながら、Cu金属箔
面上でのTi粒子の量を例えば約1mg/cm2 被着させる
ようにしても良い。また、Ti薄板とCu板との複合体
であっても良い。また、Ti粉を直接セラミックス製絶
縁容器端面に載置又は塗布する方法であっても良い。い
ずれの場合でも、同等の信頼性を得て実施が可能であ
る。
As a sealing metal fitting, 42% Ni- with a plate thickness of 2 mm
An Fe alloy was prepared. As a brazing material containing an active metal, a 72% Ag-Cu-0.5% Ti alloy plate having a thickness of 0.1 mm was prepared. The brazing material containing the active metal used in this example can be carried out without being limited to this alloy plate, and the method of supplying the active metal includes, for example, a method of supplying Ti on the metal foil surface, That is, Ti melted or ionized by using an arc-melted Ti target as an active metal source and appropriately selecting or combining arc discharge, ion plating, electron impact, sputtering, etc. as a heating means.
To the surface of the metal foil (Cu foil). While controlling the implantation energy for vaporizing or ionizing, the average particle diameter of Ti particles on the metal foil surface is, for example, 0.01 to 20.
The range of μm may be set, and the amount of Ti particles on the Cu metal foil surface may be deposited, for example, about 1 mg / cm 2 while controlling the working time. Further, it may be a composite of a Ti thin plate and a Cu plate. Alternatively, the Ti powder may be directly placed on or applied to the end face of the ceramic insulating container. In any case, it can be implemented with equal reliability.

【0023】活性金属を含まないロウ材として、厚さ
0.1mmの72%Ag−Cu合金板を用意した。中間層、拡
散防止材として、厚さ1mmのCu板を用意した。これ
は、製造条件などによって適宜割愛したり又は板厚さを
増減して実施した。
As a brazing material containing no active metal,
A 0.1 mm 72% Ag-Cu alloy plate was prepared. A Cu plate having a thickness of 1 mm was prepared as the intermediate layer and the diffusion preventing material. This was carried out by appropriately omitting it according to manufacturing conditions or by increasing or decreasing the plate thickness.

【0024】次いで、上記用意した活性金属を含むロウ
材、活性金属を含まないロウ材、必要により中間層、拡
散防止材など各部材を被接合物間(セラミックス製絶縁
容器の端面と封着金具)に気密封着接合が可能のように
配置して、5×10-4Paの真空雰囲気で封着金具とセラミ
ックス製絶縁容器との気密封着工程に供する。この場合
の気密封着工程は、1加熱工程、2加熱保持工程、3冷
却工程により構成される。まず、接合の為の加熱温度と
その保持時間を 850℃×5分に一定とし(2加熱保持工
程)、さらに加熱保持工程終了後の冷却を 850℃(T
m;最高加熱温度)から 400℃までの温度区間の冷却速
度を特に2℃/分に一定とし(3冷却工程)上で、前記
被接合物が室温から加熱保持温度 850℃に至るまでの昇
温過程の特に 600℃から 850℃迄の温度区間(1加熱工
程)での加熱速度を、 0.5℃/分から 120℃/分まで制
御した真空バルブを製作した(実施例1〜5、比較例1
〜2)。次に、評価条件(表1)に基づく評価結果を表
2に示し(実施例1〜5、比較例1〜2)、具体的に説
明する。
Next, the brazing material containing the active metal prepared above, the brazing material containing no active metal, and if necessary, each member such as the intermediate layer and the diffusion preventive material are connected between the objects to be joined (the end face of the ceramic insulating container and the sealing metal fitting). ) So that airtight bonding can be performed, and subjected to the airtight bonding process between the metal fitting and the ceramic insulating container in a vacuum atmosphere of 5 × 10 −4 Pa. In this case, the hermetically sealing step comprises 1 heating step, 2 heating holding step, and 3 cooling step. First, the heating temperature and the holding time for joining are kept constant at 850 ° C x 5 minutes (2 heating and holding step), and further cooling after the heating and holding step is finished at 850 ° C (T
m; maximum heating temperature) to 400 ° C, the cooling rate is kept constant at 2 ° C / min (3 cooling steps), and the temperature of the object to be joined is increased from room temperature to the heating and holding temperature of 850 ° C. A vacuum valve was manufactured in which the heating rate was controlled from 0.5 ° C./min to 120 ° C./min in the temperature process (1 heating step) from 600 ° C. to 850 ° C. (Examples 1 to 5 and Comparative Example 1).
~ 2). Next, the evaluation results based on the evaluation conditions (Table 1) are shown in Table 2 (Examples 1 to 5 and Comparative Examples 1 and 2) and will be specifically described.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】24kV、50Hzの回路を1kAずつ電流を増加し
ながら遮断させた時、再点弧なしでアーク時間が1ミリ
秒以内で遮断に成功した時の電流値によって判断した遮
断性能は、加熱工程における加熱速度が 0.5℃/分(比
較例1)と1〜20℃/分(実施例1〜3)の範囲では、
比較対象とした実施例1の特性と同等の良好な遮断特性
を示した。しかし、遮断性能的には問題のなかった加熱
速度が 0.5℃/分(比較例1)で、接点表面の組成変動
が原因と考えられる接触抵抗の増加と耐溶着特性の低下
現象が認められ好ましくなかった。
When the circuit of 24 kV, 50 Hz is interrupted while increasing the current by 1 kA, the interruption performance judged by the current value when the interruption is successful within 1 ms without re-ignition is When the heating rate in the process is 0.5 ° C./min (Comparative Example 1) and 1 to 20 ° C./min (Examples 1 to 3),
It showed a good interruption characteristic equivalent to that of the comparative example. However, the heating rate was 0.5 ° C./min (Comparative Example 1), which had no problem in terms of breaking performance, and an increase in contact resistance and a decrease in welding resistance, which are thought to be caused by compositional variations on the contact surface, were observed. There wasn't.

【0028】24kV× 500Aの回路を2000回遮断した時の
再点弧発生頻度によって判断した再点弧特性も同様に、
加熱工程における加熱速度が 0.5℃/分(比較例1)と
1〜20℃/分(実施例1〜3)の範囲では、比較対象と
した実施例1の特性と同等の良好な特性を示した。な
お、加熱速度が 0.5分/分(比較例1)では許容範囲に
はあったが、遮断回数の経過と共に気密性の低下の傾向
が見られた。加熱工程における加熱速度が 120℃/分
(比較例2)では、表2の様にばらつき幅が大きく、著
しく気密性の低下の傾向も見られている。
Similarly, the re-ignition characteristic judged by the frequency of re-ignition when the circuit of 24 kV × 500 A is interrupted 2000 times is also the same.
When the heating rate in the heating step is in the range of 0.5 ° C./min (Comparative Example 1) and 1 to 20 ° C./min (Examples 1 to 3), good characteristics equivalent to those of Example 1 as a comparison target are exhibited. It was When the heating rate was 0.5 min / min (Comparative Example 1), it was within the allowable range, but the airtightness tended to decrease with the lapse of the number of interruptions. When the heating rate in the heating step is 120 ° C./min (Comparative Example 2), the variation range is large as shown in Table 2, and the airtightness tends to be remarkably lowered.

【0029】上記した様に、加熱工程における加熱速度
が1〜20℃/分の範囲において、遮断性能、再点弧特性
とも好ましい範囲であることを示している。参考評価と
して、あらかじめ気密封着工程を経た後の真空バルブの
全てに対して、Heリークディテクターを使用して気密
性の評価を実施した。目安として、リーク量が5×10
-10 (Torr・ L/sec )以下を合格とした。加熱工程で
の加熱速度を 120℃/分とした比較例2の一部のバルブ
にのみ不合格が存在したが、他の実施例1〜5、比較例
1のバルブは合格の範囲であった。
As described above, when the heating rate in the heating step is in the range of 1 to 20 ° C./minute, it is shown that both the breaking performance and the re-ignition characteristic are in the preferable range. As a reference evaluation, the airtightness was evaluated using a He leak detector for all of the vacuum valves that had undergone the airtight sealing process in advance. As a guide, the leak amount is 5 x 10
A value of -10 (Torr · L / sec) or less was regarded as a pass. There was a failure only in some of the valves of Comparative Example 2 in which the heating rate in the heating step was 120 ° C./minute, but the valves of other Examples 1 to 5 and Comparative Example 1 were in the acceptable range. .

【0030】更に、上記気密性の評価の後の真空バルブ
を用いて、セラミックス製絶縁容器の両端に0〜 120KV
のインパルス電圧を10回印加し、絶縁破壊を示したとき
の電圧値、絶縁破壊回数を評価する耐電圧特性を評価し
た。目安として、絶縁破壊電圧値が95KVで絶縁破壊回数
がゼロの場合を合格とした。加熱工程での加熱速度を12
0℃/分とした比較例2の一部のバルブにのみ不合格の
バルブが存在したが、他の実施例1〜5、比較例1のバ
ルブは合格の範囲であった。この様な参考評価からも、
真空バルブの信頼性に対して、加熱工程での加熱速度の
重要性が示唆される。
Further, by using the vacuum valve after the evaluation of the airtightness, 0 to 120 KV is applied to both ends of the ceramic insulating container.
Impulse voltage was applied 10 times, and the withstand voltage characteristics for evaluating the voltage value and the number of times of dielectric breakdown when dielectric breakdown was evaluated were evaluated. As a guide, the case where the dielectric breakdown voltage value was 95KV and the number of dielectric breakdowns was zero was passed. The heating rate in the heating process is 12
Only some of the valves of Comparative Example 2 at 0 ° C./min had rejected valves, but the valves of other Examples 1 to 5 and Comparative Example 1 were in the acceptable range. From such a reference evaluation,
The importance of the heating rate in the heating process is suggested for the reliability of the vacuum valve.

【0031】なお、上記した実施例1〜3、比較例1〜
2では、加熱工程において加熱速度の制御すべき温度区
間を 600℃から加熱保持温度 850℃に至るまでについて
示したが、実質的には 750℃から 850℃の範囲を所定の
加熱速度に制御しても、前記同様に安定した遮断特性、
再点弧発生特性を示している(実施例4、5)。
The above-mentioned Examples 1 to 3 and Comparative Examples 1 to 1
In Section 2, the temperature range in which the heating rate should be controlled in the heating process was shown from 600 ° C to the heating and holding temperature of 850 ° C, but in practice, the range of 750 ° C to 850 ° C was controlled to the prescribed heating rate. However, the same stable blocking characteristics as above,
The characteristics of re-ignition are shown (Examples 4 and 5).

【0032】(実施例6〜7、比較例3〜4)上記実施
例1〜5、比較例1〜2では、気密封着工程での特に1
加熱工程における保持温度に至るまでの加熱速度につい
てその重要性を示した。しかし、前記加熱速度を所定の
好ましい速度範囲にしたとしても、その後の2加熱保持
工程(保持温度、保持時間)が適切でないと、比較例3
〜4の様に遮断特性、再点弧特性の信頼性が十分でな
い。例えば、保持温度においては、活性金属を含むロウ
材として0.1 〜5%Tiを含む72Ag−Cuロウ材を使
用し、活性金属を含まないロウ材として72Ag−Cuロ
ウ材を使用した時には、そのロウ付け作業温度はTi量
により変動するが、最低でも約 700℃を必要とし、 900
℃程度までの間とする事が望ましい。また、活性金属を
含むロウ材として 0.5〜5%Tiを含む60Cu−Mnを
使用し、活性金属を含まないロウ材として72Ag−Cu
ロウ材を使用した時には、そのロウ付け作業温度につい
てもTi量により変動するが、前述のものよりさらに高
く最低でも約 900℃を必要とし、1000℃程度までの間と
する事が望ましい。本実施例では、保持温度として 850
℃を選択し、加熱保持時間の効果を調査したところ、保
持時間が1分(比較例3)では外見上溶けた活性ロウ材
の流れが均一でなく局所的に固まりも存在する。また、
接合部界面の金属顕微鏡観察でも、セラミックス表面上
にロウ材が良く濡れていないミクロ部分が見られ、気密
性の観点からも好ましくない。比較対象とする実施例1
と比べ再点弧特性に異常が多いことも判明した。
(Examples 6 to 7 and Comparative Examples 3 to 4) In Examples 1 to 5 and Comparative Examples 1 and 2 described above, particularly 1 in the airtight sealing process is used.
The importance of the heating rate up to the holding temperature in the heating process was shown. However, even if the heating rate is set within a predetermined preferable rate range, if the subsequent two heating and holding steps (holding temperature, holding time) are not appropriate, Comparative Example 3
As shown in ~ 4, the reliability of the breaking characteristic and the restriking characteristic is not sufficient. For example, at the holding temperature, when a 72Ag-Cu brazing material containing 0.1 to 5% Ti is used as a brazing material containing an active metal and a 72Ag-Cu brazing material containing no active metal is used, the brazing material Although the attachment work temperature varies depending on the Ti content, at least about 700 ° C is required, and 900
It is desirable to set the temperature within about ℃. Further, 60Cu-Mn containing 0.5 to 5% Ti is used as a brazing material containing an active metal, and 72Ag-Cu is used as a brazing material containing no active metal.
When a brazing material is used, the brazing temperature of the brazing material also varies depending on the amount of Ti, but it is higher than that described above and requires at least about 900 ° C, preferably up to about 1000 ° C. In this embodiment, the holding temperature is 850
When the temperature was selected and the effect of the heating and holding time was investigated, when the holding time was 1 minute (Comparative Example 3), the flow of the melted active brazing material was not uniform in appearance and local solidification was present. Also,
Even when the joint interface is observed with a metallurgical microscope, a micro portion where the brazing material is not well wetted is seen on the ceramic surface, which is not preferable from the viewpoint of airtightness. Example 1 to be compared
It was also found that there were many abnormalities in the restriking characteristics compared to.

【0033】これに対して保持時間が3分、60分(実施
例6、7)では、接合部界面の金属顕微鏡観察によれ
ば、セラミックス表面に対して活性ロウ材の流れは均一
で良好な接合状態を示した。比較対象とする実施例1と
同等以上の遮断特性と再点弧特性を示した。
On the other hand, when the holding time is 3 minutes and 60 minutes (Examples 6 and 7), the flow of the active brazing material on the surface of the ceramic is uniform and good according to the observation with a metallurgical microscope at the joint interface. The joined state was shown. The breaking characteristics and the re-ignition characteristics equal to or higher than those of the comparative example 1 were shown.

【0034】なお、保持時間が 120分(比較例4)で
は、セラミックス表面に対して活性ロウ材の流れは均一
で良好な接合状態を示したが、一方でロウ材成分中のC
uや特にAgの選択的蒸発の為、ロウ付け後の接合部表
面は外見上凹凸のある表面状態となった。比較対象とす
る実施例1と比べ遮断特性と再点弧特性とも低下した。
以上のことから、加熱工程における加熱速度条件を1〜
20℃/分なる条件を選択した時には、加熱保持工程にお
ける保持時間は少なくとも3分を必要とする。
When the holding time was 120 minutes (Comparative Example 4), the flow of the active brazing material was uniform with respect to the surface of the ceramic and a good bonding state was shown, while the C in the brazing material component was
Due to the selective evaporation of u and especially Ag, the surface of the joint after brazing had an uneven surface appearance. Both the breaking characteristic and the restriking characteristic were lower than those of the comparative example 1.
From the above, the heating rate condition in the heating step is 1 to
When the condition of 20 ° C./minute is selected, the holding time in the heating and holding step requires at least 3 minutes.

【0035】(実施例8〜9、比較例5〜6)上記実施
例1〜7、比較例1〜4では、3冷却工程において所定
冷却区間での冷却速度を2℃/分に一定とした場合を示
したが、冷却速度は2℃/分に限ることなく、 0.5℃/
分(実施例8)〜30℃/分(実施例9)の範囲内で表2
の如く安定した遮断特性と再点弧特性を発揮する事を確
認した。
(Examples 8 to 9 and Comparative Examples 5 to 6) In the above Examples 1 to 7 and Comparative Examples 1 to 4, the cooling rate in the predetermined cooling section in the 3 cooling steps was kept constant at 2 ° C / min. However, the cooling rate is not limited to 2 ° C / min.
Table 2 within the range of min (Example 8) to 30 ° C / min (Example 9).
It has been confirmed that stable cutoff characteristics and re-ignition characteristics are exhibited.

【0036】しかし、冷却速度が 0.1℃/分(比較例
5)では、ロウ付け後の接合部表面は、外見上凹凸のあ
る表面状態となったのみならずロウ材組成の変動が著し
く、ロウ材成分の一部分がアークシールド部分に付着す
るなどが起因となって、遮断特性、再点弧特性に影響を
与えている。特に、再点弧発生確率においては、良好な
0%から好ましくないレベルにある 2.6%のバルブまで
広いばらつき幅を示した。
However, when the cooling rate was 0.1 ° C./min (Comparative Example 5), the surface of the joint after brazing had an apparently uneven surface state and the brazing material composition fluctuated remarkably. A part of the material component adheres to the arc shield part, which affects the breaking characteristics and the restriking characteristics. In particular, the re-ignition probability showed a wide variation range from a good 0% to a 2.6% valve, which is at an unfavorable level.

【0037】また、冷却速度が 120℃/分(比較例6)
では、ロウ付後の接合部界面近傍の断面組織観察によれ
ば、セラミックス表面に対して活性ロウ材の流れは均一
で良好な濡れ状態を示したが、ミクロ的亀裂が多数存在
しているのが認められた。これが原因として、一部のバ
ルブでは遮断テスト不能となった。更に参考評価とし
て、気密封着工程後の真空バルブに対して実施したHe
リークディテクターを使用した気密性評価においても、
一部のバルブにリーク量が好ましくなく大きな8×10-7
0 (Torr・L/sec )を示し、著しいリーク量を示し
た。これらは(比較例5、6)、比較対象とする実施例
と比べ遮断特性と再点弧特性とも低下した(表2)。
The cooling rate was 120 ° C./min (Comparative Example 6).
According to the observation of the cross-sectional structure near the interface of the joint after brazing, the flow of the active brazing material was uniform and showed good wetting with respect to the ceramic surface, but there were many microcracks. Was recognized. This caused some valves to fail the shutoff test. Further, as a reference evaluation, He performed on the vacuum valve after the air-sealing process.
Even in the airtightness evaluation using the leak detector,
Large amount of leak in some valves is not desirable 8 × 10-7
0 (Torr · L / sec) and a remarkable leak amount. These (Comparative Examples 5 and 6) had lower cut-off characteristics and restriking characteristics as compared with the comparative examples (Table 2).

【0038】以上のことから、加熱工程における加熱速
度条件を1〜20℃/分なる条件を選択し、冷却工程にお
いて所定冷却区間での冷却速度は、 0.5℃/分〜30℃/
分の範囲内で安定した遮断特性と再点弧特性を発揮する
事が判った。
From the above, the heating rate condition in the heating step is selected to be 1 to 20 ° C./minute, and the cooling rate in the predetermined cooling section in the cooling step is 0.5 ° C./minute to 30 ° C./minute.
It was found that stable breaking and re-ignition characteristics were exhibited within the range of minutes.

【0039】(実施例10〜12、比較例7〜8)上記実施
例1〜9、比較例1〜6では、セラミックス製絶縁容器
(外管端面)の端部調整工程において、総てその平均表
面粗さ(Rave. )をあらかじめ 1.5μmに一定とした場
合を示したが、本実施例では平均表面粗さを 1.5μmに
限ることなく、0.05〜10μmの範囲において安定した遮
断特性と再点弧特性を発揮する(表2)。しかし、セラ
ミックス製絶縁容器端面の平均表面粗さが、0.05μm以
下(比較例7)の時には、表2の如く遮断特性、再点弧
特性共に好ましい特性範囲であったが、特殊の仕上げ作
業技術を必要とするなど量産性、経費的の観点から除外
する。また、平均表面粗さが 100μm(比較例8)で
は、ロウ材の流れが不均一になると共に、ロウ材の使用
量も多く必要としたり、封着金具との間に空間が発生し
たりして好ましくなく、気密性の観点からも好ましくな
い。一部の真空バルブには真空リークが認められ、遮断
性能においてテスト不能となった。再点弧特性において
も、 0.4〜 5.8%と著しくばらつき幅を示した(比較例
7、8)。これに対し平均表面粗さ(Rave. )が0.05〜
10μm(実施例10〜12)では、比較対象とする実施例1
と比べ遮断特性と再点弧特性とも良好な特性を示した。
(Examples 10 to 12 and Comparative Examples 7 to 8) In Examples 1 to 9 and Comparative Examples 1 to 6 described above, in the end adjusting step of the ceramic insulating container (end face of the outer tube), all of them are averaged. The case where the surface roughness (Rave.) Is fixed to 1.5 μm in advance is shown. However, in the present embodiment, the average surface roughness is not limited to 1.5 μm, and stable breaking characteristics and re-pointing are possible in the range of 0.05 to 10 μm. Exhibits arc characteristics (Table 2). However, when the average surface roughness of the end surface of the ceramic insulating container was 0.05 μm or less (Comparative Example 7), both the breaking characteristics and the re-ignition characteristics were within the preferable characteristic ranges as shown in Table 2, but a special finishing work technique was used. It is excluded from the viewpoint of mass productivity and cost. Further, when the average surface roughness is 100 μm (Comparative Example 8), the flow of the brazing material becomes non-uniform, a large amount of the brazing material is required, and a space is generated between the brazing material and the metal fitting. Is not preferable, and is also not preferable from the viewpoint of airtightness. A vacuum leak was found on some vacuum valves, making them untestable in terms of barrier performance. Also in the re-ignition characteristic, the variation range was remarkably 0.4 to 5.8% (Comparative Examples 7 and 8). On the other hand, the average surface roughness (Rave.) Is 0.05-
In 10 μm (Examples 10 to 12), Example 1 to be compared
Comparing with, the breaking characteristics and restriking characteristics were good.

【0040】(実施例13〜14、比較例9)前記実施例1
〜12、比較例1〜8では、セラミックス製絶縁容器に対
して、気密封着工程に供する前に、特に1650℃の温度で
の前加熱処理工程を与えたものを使用した。本実施例で
は、この前加熱処理工程での温度は、 600℃以上の処理
で遮断特性と再点弧特性の安定性に対して十分の効果を
発揮した(実施例13〜14)。これに対し、前加熱処理工
程の温度が 400℃の時には効果がなく、遮断特性と再点
弧特性とも著しいばらつきを示した(比較例9)。
(Examples 13 to 14 and Comparative Example 9) The above Example 1
In each of Comparative Examples 1 to 8 and Comparative Examples 1 to 8, a ceramic insulating container was subjected to a preheat treatment step at a temperature of 1650 ° C. before being subjected to the airtight sealing step. In this example, the temperature in the pre-heat treatment step showed a sufficient effect on the stability of the breaking property and the restriking property by the treatment at 600 ° C or higher (Examples 13 to 14). On the other hand, when the temperature of the pre-heat treatment step was 400 ° C., there was no effect, and there were remarkable variations in the breaking characteristics and restriking characteristics (Comparative Example 9).

【0041】(実施例15〜19、比較例10)前記実施例1
〜14、比較例1〜9では、真空バルブの組立て(気密封
着工程)において、使用した活性金属を含むロウ材は72
%Ag−Cu− 0.5%Tiを代表ロウ材として示した
が、本実施例では、使用し得る活性金属を含むロウ材
は、これに限ることなくTi、Zr、Hf、V、Crの
少なくとも1種を合計 0.1〜5重量%含むAg又はAg
・Cuを主成分とするロウ材、例えば72%Ag−Cu−
0.1%Tiロウ材、72%Ag−Cu−5%Tiロウ材、7
2%Ag−Cu− 0.5%Zrロウ材、72%Ag−Cu−
0.1%Hfロウ材、72%Ag−Cu− 0.1%Crロウ材
であっても、ほぼ比較対象とする実施例1と比べ遮断特
性と再点弧特性とも同等の好ましい特性を示した(実施
例15〜19)。しかし、参考として示したこれら活性金属
を含まない72%Ag−Cuロウ材では、セラミックス製
絶縁容器表面への濡れ性が得られず接合不良となった。
著しい真空リークも認められて好ましくない。遮断特性
と再点弧特性とも著しいばらつきを示した(比較例1
0)。
(Examples 15 to 19, Comparative Example 10) The above Example 1
14 to Comparative Examples 1 to 9, the brazing filler metal containing the active metal used in the vacuum valve assembly (airtight sealing step) was 72%.
% Ag-Cu-0.5% Ti is shown as a representative brazing material, but the brazing material containing an active metal that can be used is not limited to this, and at least one of Ti, Zr, Hf, V and Cr is used. Ag or Ag containing 0.1 to 5% by weight in total
-A brazing material containing Cu as a main component, for example, 72% Ag-Cu-
0.1% Ti brazing material, 72% Ag-Cu-5% Ti brazing material, 7
2% Ag-Cu- 0.5% Zr brazing material, 72% Ag-Cu-
Even with the 0.1% Hf brazing material and the 72% Ag-Cu-0.1% Cr brazing material, the breaking characteristics and the re-ignition characteristics were almost the same as those of the comparative example 1 (Examples). 15-19). However, with the 72% Ag-Cu brazing material containing no active metals shown as a reference, the wettability to the surface of the ceramic insulating container was not obtained, resulting in poor bonding.
A remarkable vacuum leak is also recognized, which is not preferable. Both the breaking characteristic and the restriking characteristic showed remarkable variations (Comparative Example 1
0).

【0042】なお、表2の評価結果には、遮断特性と再
点弧特性と共に参考に評価した気密性、接合性をも加味
して真空バルブとしての総合評価結果を示している。一
方、実施例1〜19、比較例1〜10では、活性金属を含ま
ないロウ材として、Ag−Cuの例を示したが、これに
限ることなくAg−Cu−In、Ag−Cu−Sn、C
u−Mnよりなるロウ材であっても目的を達成する。ま
た、活性金属を含むロウ材の形態として、板状のロウ材
を利用したものを示したが、活性金属の供給は板状に限
ることなく粉状、膜状、箔状の状態であっても目的を達
成する。更に、上記した実施例、比較例での封着金具
は、CuまたはNiなどを被覆したSUS304 、42アロ
イ又はコバールなど鉄基合金あるいは鉄基低熱膨張係数
合金について示したが、Cu−Ni基合金(Ni70Wt%
以下、Cu100 Wt%含む)よりなる封着金具であっても
同等の特性を得た。
The evaluation results of Table 2 show the comprehensive evaluation results as a vacuum valve in consideration of the airtightness and the bondability evaluated together with the breaking characteristic and the restriking characteristic. On the other hand, in Examples 1 to 19 and Comparative Examples 1 to 10, Ag-Cu was used as an example of the brazing material containing no active metal. However, the brazing material is not limited to Ag-Cu-In and Ag-Cu-Sn. , C
Even the brazing material made of u-Mn achieves the purpose. Further, as the form of the brazing material containing the active metal, the one using the plate-shaped brazing material is shown, but the supply of the active metal is not limited to the plate shape, but may be powder, film or foil. Also achieve the purpose. Further, as the sealing metal fittings in the above-mentioned Examples and Comparative Examples, the iron-based alloy or the iron-based low thermal expansion coefficient alloy such as SUS304, 42 alloy or Kovar coated with Cu or Ni was shown. (Ni70Wt%
The same characteristics were obtained even with a sealing metal fitting made of Cu100 Wt%.

【0043】また、絶縁容器外管と封着金具、通電軸と
電極、アークシールドと取付部材など、ロウ材を必要と
する箇所を本発明の製造方法を用いて同時に行えば同様
の効果が得られると共に、接合作業が1回で済み、低コ
スト化が実現できる。このとき、通電軸と電極について
のみ予め接合しておくと、接合の信頼性は著しく向上す
る。
Further, the same effect can be obtained by simultaneously using the manufacturing method of the present invention at the locations where the brazing material is required, such as the outer tube of the insulating container and the sealing metal fitting, the current-carrying shaft and the electrode, the arc shield and the mounting member. At the same time, only one joining operation is required, and cost reduction can be realized. At this time, if only the current-carrying shaft and the electrodes are previously bonded, the reliability of the bonding is significantly improved.

【0044】[0044]

【発明の効果】以上のように本発明によれば、内部に一
対の電極が接離可能に配置された絶縁容器の端部と、絶
縁容器を蓋体で封着する封着金具との間にロウ材を介挿
載置し、真空中で全体を排気しながら絶縁容器と封着金
具とを気密封着する真空バルブの製造方法において、 6
00℃〜ロウ付作業温度までを1〜20℃/分の昇温速度で
加熱する加熱工程と、ロウ付作業温度〜 400℃までを
0.5〜30℃/分の冷却速度で冷却する冷却工程とを備え
たので、接合性を改善し、長期間にわたって遮断特性と
再点弧特性が低下することを低減することができる。
As described above, according to the present invention, between the end portion of the insulating container in which the pair of electrodes are arranged so that they can be contacted and separated from each other, and the sealing metal member for sealing the insulating container with the lid. In a method for manufacturing a vacuum valve, in which a brazing material is placed on the insulating container and the insulating container and the sealing metal fitting are hermetically sealed while exhausting the whole in a vacuum,
The heating process of heating from 00 ℃ to the brazing work temperature at a temperature rising rate of 1 to 20 ℃ / min and the brazing work temperature to 400 ℃
Since the cooling step of cooling at a cooling rate of 0.5 to 30 ° C./min is provided, it is possible to improve the bondability and reduce deterioration of the breaking characteristics and the re-ignition characteristics over a long period of time.

フロントページの続き (72)発明者 大川 幹夫 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 丸山 美保 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中工場内Front Page Continuation (72) Inventor Mikio Okawa 1 Toshiba Town, Fuchu City, Tokyo Inside the Fuchu Factory, Toshiba Corporation (72) Inventor Miho Maruyama 1 Komukai Toshiba Town, Kawasaki City, Kanagawa Prefecture Toshiba Research & Development Co., Ltd. Inside the Center (72) Inventor Takashi Kusano 1st Toshiba Town, Fuchu City, Tokyo Inside the Fuchu Factory, Toshiba Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内部に一対の電極が接離可能に配置され
た絶縁容器の端部と、前記絶縁容器を蓋体で封着する封
着金具との間にロウ材を介挿載置し、真空中で全体を排
気しながら前記絶縁容器と封着金具とを気密封着する真
空バルブの製造方法において、 600℃〜ロウ付作業温度
までを1〜20℃/分の昇温速度で加熱する加熱工程と、
ロウ付作業温度〜 400℃までを 0.5〜30℃/分の冷却速
度で冷却する冷却工程とを備えたことを特徴とする真空
バルブの製造方法。
1. A brazing material is inserted and placed between an end of an insulating container in which a pair of electrodes are arranged so as to be able to come into contact with and separate from each other and a sealing metal member for sealing the insulating container with a lid. In a method for manufacturing a vacuum valve in which the insulating container and the sealing metal fitting are hermetically sealed while exhausting the whole in a vacuum, heating is performed at a temperature rising rate of 1 to 20 ° C / min from 600 ° C to the brazing working temperature. Heating step to
A method for manufacturing a vacuum valve, comprising: a brazing process temperature to 400 ° C; and a cooling step of cooling at a cooling rate of 0.5 to 30 ° C / min.
【請求項2】 内部に通電軸に接合された一対の電極が
接離可能に配置され、この電極周囲にアークシールドが
設けられた絶縁容器の端部と、前記絶縁容器を蓋体で封
着する封着金具との間にロウ材を介挿載置し、真空中で
全体を排気しながら前記絶縁容器と封着金具とを気密封
着する真空バルブの製造方法において、600℃〜ロウ付
作業温度までを1〜20℃/分の昇温速度で加熱する加熱
工程と、ロウ付作業温度〜 400℃までを 0.5〜30℃/分
の冷却速度で冷却する冷却工程とを有し、前記通電軸と
電極、前記アークシールドとその取付部材についても両
者間にロウ材を介挿載置して真空中で全体を排気するも
のとし、前記絶縁容器と封着金具との気密封着、前記通
電軸と電極及び前記アークシールドとその取付部材の接
合とを併せて行うようにしたことを特徴とする真空バル
ブの製造方法。
2. A pair of electrodes joined to a current-carrying shaft are arranged inside so as to be able to come into contact with and separate from each other, and an end portion of an insulating container provided with an arc shield around the electrodes and the insulating container are sealed with a lid. In a method for manufacturing a vacuum valve, in which a brazing material is placed between the sealing metal fitting and the sealing metal fitting, and the insulating container and the sealing metal fitting are hermetically sealed while exhausting the whole in a vacuum, 600 ° C. A heating step for heating up to the working temperature at a temperature rising rate of 1 to 20 ° C./min; and a cooling step for cooling the brazing working temperature to 400 ° C. at a cooling rate of 0.5 to 30 ° C./min. The current-carrying shaft and the electrode, the arc shield and its mounting member are also placed with a brazing material interposed therebetween to exhaust the whole in a vacuum, and the airtight seal between the insulating container and the sealing metal fitting, Make sure that the current-carrying shaft and electrode, and the arc shield and its mounting member are joined together. A method for manufacturing a vacuum valve, characterized in that
【請求項3】 前記通電軸と電極の接合については、真
空振囲気を含む不活性雰囲気中で予め接合しておくこと
を特徴とする請求項2記載の真空バルブの製造方法。
3. The method for manufacturing a vacuum valve according to claim 2, wherein the current-carrying shaft and the electrode are bonded in advance in an inert atmosphere containing a vacuum atmosphere.
【請求項4】 前記加熱工程では、少なくとも3分は温
度を少なくとも 700℃として加熱を保持するようにした
ことを特徴とする請求項1〜請求項3のいずれかに記載
の真空バルブの製造方法。
4. The method of manufacturing a vacuum valve according to claim 1, wherein in the heating step, the temperature is kept at least 700 ° C. for at least 3 minutes to maintain the heating. .
【請求項5】 前記加熱工程では少なくとも 750〜 850
℃までを1〜20℃/分の昇温速度で加熱し、前記冷却工
程では少なくとも 900〜 400℃までを 0.5〜30℃/分の
冷却速度で冷却するようにしたことを特徴とする請求項
1〜請求項4のいずれかに記載の真空バルブの製造方
法。
5. The heating step is at least 750 to 850.
The method is characterized in that heating is performed up to ℃ at a temperature rising rate of 1 to 20 ℃ / min, and in the cooling step, at least 900 to 400 ℃ is cooled at a cooling speed of 0.5 to 30 ℃ / min. The method for manufacturing a vacuum valve according to any one of claims 1 to 4.
【請求項6】 前記絶縁容器の端部の平均表面粗さを0.
05〜10μmにしておくことを特徴とする請求項1〜請求
項5のいずれかに記載の真空バルブの製造方法。
6. The average surface roughness of the end portion of the insulating container is 0.
The vacuum valve manufacturing method according to any one of claims 1 to 5, wherein the vacuum valve is made to have a thickness of 05 to 10 µm.
【請求項7】 前記絶縁容器を 600〜1700℃に加熱して
おく前記熱処理工程を有することを特徴とする請求項1
〜請求項6のいずれかに記載の真空バルブの製造方法。
7. The heat treatment step of heating the insulating container to 600 to 1700 ° C.
~ The method for manufacturing a vacuum valve according to claim 6.
【請求項8】 前記ロウ材は、Ti、Zr、Hf、V及
びCrの内の少なくとも1種が 0.1〜5重量%含まれる
Ag又はAg・Cuを主成分とするものであることを特
徴とする請求項1〜請求項7のいずれかに記載の真空バ
ルブの製造方法。
8. The brazing material is mainly composed of Ag or Ag.Cu containing 0.1 to 5 wt% of at least one of Ti, Zr, Hf, V and Cr. The method for manufacturing a vacuum valve according to any one of claims 1 to 7.
【請求項9】 Ag−Cu、Ag−Cu−In、Ag−
Cu−Sn及びCu−Mnの内の少なくとも1種のロウ
材料も備えたことを特徴とする請求項8記載の真空バル
ブの製造方法。
9. Ag-Cu, Ag-Cu-In, Ag-
9. The method of manufacturing a vacuum valve according to claim 8, further comprising at least one brazing material selected from Cu-Sn and Cu-Mn.
JP2074396A 1996-02-07 1996-02-07 Manufacture of vacuum bulb Pending JPH09213179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074396A JPH09213179A (en) 1996-02-07 1996-02-07 Manufacture of vacuum bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074396A JPH09213179A (en) 1996-02-07 1996-02-07 Manufacture of vacuum bulb

Publications (1)

Publication Number Publication Date
JPH09213179A true JPH09213179A (en) 1997-08-15

Family

ID=12035682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074396A Pending JPH09213179A (en) 1996-02-07 1996-02-07 Manufacture of vacuum bulb

Country Status (1)

Country Link
JP (1) JPH09213179A (en)

Similar Documents

Publication Publication Date Title
JP2941682B2 (en) Vacuum valve and method of manufacturing the same
EP0343663A2 (en) Vacuum interrupter contacts and process for producing the same
JPH09213179A (en) Manufacture of vacuum bulb
JPH1092276A (en) Vacuum valve and its manufacture
JP6983370B1 (en) Manufacturing method of electrical contacts
JP2002208335A (en) Vacuum bulb contact point and its manufacturing method
JP3251779B2 (en) Manufacturing method of contact material for vacuum valve
JPH08245275A (en) Production of laminated brazing filler metal and joining method
JPS6215716A (en) Contact for vacuum breaker electrode
JPS6359216B2 (en)
JPH056292B2 (en)
JP2001357760A (en) Vacuum valve
JP2695951B2 (en) Manufacturing method of vacuum airtight device
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH0325821A (en) Contact for vacuum valve
JPH0785755A (en) Manufacture of vacuum valve
JPH04132127A (en) Contact point for vacuum bulb
JP2692945B2 (en) Contact material for vacuum valve
JPS603822A (en) Electrode material of vacuum interrupter and method of producing same
JP2642386B2 (en) Vacuum valve and method of manufacturing the same
JPH0474810B2 (en)
JPH09231884A (en) Vacuum valve
JPH0471286B2 (en)
JPH01264127A (en) Manufacture of vacuum valve
JPH1173859A (en) Vacuum valve

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Effective date: 20050606

Free format text: JAPANESE INTERMEDIATE CODE: A7424