JP2695951B2 - Manufacturing method of vacuum airtight device - Google Patents

Manufacturing method of vacuum airtight device

Info

Publication number
JP2695951B2
JP2695951B2 JP33276389A JP33276389A JP2695951B2 JP 2695951 B2 JP2695951 B2 JP 2695951B2 JP 33276389 A JP33276389 A JP 33276389A JP 33276389 A JP33276389 A JP 33276389A JP 2695951 B2 JP2695951 B2 JP 2695951B2
Authority
JP
Japan
Prior art keywords
vacuum
brazing
ppm
amount
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33276389A
Other languages
Japanese (ja)
Other versions
JPH03194814A (en
Inventor
功 奥冨
秀夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33276389A priority Critical patent/JP2695951B2/en
Publication of JPH03194814A publication Critical patent/JPH03194814A/en
Application granted granted Critical
Publication of JP2695951B2 publication Critical patent/JP2695951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、真空気密装置の製造方法に係り、特に、ろ
う付け構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a vacuum-tight device, and more particularly to an improvement in a brazing structure.

(従来の技術) 周知のように、従来から複数の部品の接合に用いられ
る接合材料には、優れた加工性と高い接合強度が要求さ
れている。
(Prior Art) As is well known, a bonding material conventionally used for bonding a plurality of components has been required to have excellent workability and high bonding strength.

例えば、半導体製造装置,撮像管,マグネトロン,真
空バルブなどは、真空気密封着部で閉塞した内部圧力10
-4Torr以下の真空容器と、そのなかの高度に洗浄化され
た部材とで構成している。すなわち、例えば、上記の真
空気密封着部を備えた装置の内部表面は、不必要な付着
物を制限する必要から、その製造工程と部材の選択は高
度に管理されている。
For example, a semiconductor manufacturing apparatus, an image pickup tube, a magnetron, a vacuum valve, and the like have an internal pressure 10
It consists of a vacuum container of -4 Torr or less and highly cleaned members. That is, for example, since the inner surface of the device provided with the above-mentioned vacuum-sealed attachment portion needs to limit unnecessary deposits, the manufacturing process and the selection of members are highly controlled.

そして、このような真空気密装置のろう付けに使われ
る銀ろう材には、従来から72Ag−Cu,65Ag−15Pd−Cu,6
4.8Ag−10Sn−Cuなどが用いられ、真空中や水素中で所
定の温度(例えば800℃前後)に加熱してろう付けする
ようにしている。その理由は、これらのろう材が蒸気圧
の特に高い元素、例えばZn,Cd,Pbなどを含んでいないの
で、ろう付けされた真空気密装置としての機能を長期間
に亘って維持できるからである。
Conventionally, silver brazing materials used for brazing such vacuum-tight devices include 72Ag-Cu, 65Ag-15Pd-Cu, 6
4.8Ag-10Sn-Cu or the like is used, and is heated to a predetermined temperature (for example, about 800 ° C.) in a vacuum or hydrogen to perform brazing. The reason is that since these brazing materials do not contain elements having a particularly high vapor pressure, such as Zn, Cd, and Pb, the function as a brazed vacuum hermetic device can be maintained for a long time. .

すなわち、蒸気圧の高い元素は、容易に蒸気状態とな
って、真空気密装置の内部空間の微小な間隙内にも侵入
して付着し、その結果、半導体製造装置では塵埃の供給
源となり、撮像管では解像度の低下、マグネトロンでは
マイクロ波電力の発振不良、真空バルブでは耐圧不良の
要因となる。
That is, an element having a high vapor pressure easily becomes a vapor state, penetrates and adheres to minute gaps in the internal space of the vacuum hermetic apparatus, and as a result, becomes a supply source of dust in a semiconductor manufacturing apparatus, and In a tube, the resolution is reduced, in a magnetron, the oscillation of the microwave power is poor, and in a vacuum valve, the pressure resistance is poor.

さて、気密封着機能の面からみると、各種の真空気密
装置のなかでも、真空バルブは最も厳しい。
By the way, from the viewpoint of hermetic sealing function, the vacuum valve is the most severe among various vacuum hermetic devices.

それは、真空バルブが内部にアーク温度に達する接点
を収納し、その接点がアークにさらされながら多頻度・
多数回の開閉運動をし、更にその開閉には熱的・機械的
衝撃が伴うこと、高電圧が印加され大電流が流される接
点間は開離時には耐電圧が要求されること、低接触抵抗
を維持するために接点表面は常に異物の付着がなく清浄
でなければならないこと、などのためである。
That is, the vacuum valve houses a contact that reaches the arc temperature inside, and the contact is frequently exposed to the arc.
Makes a large number of switching movements, and the opening and closing are accompanied by thermal and mechanical shocks; high voltage is applied between contacts where large currents flow; withstand voltage is required at the time of disconnection; low contact resistance This is because the contact surface must always be clean without foreign matter adhered in order to maintain the condition.

ところで、真空バルブは、内部圧力10-4Torr以下の真
空容器内に一対の接離自在の接点が対向して取付けら
れ、一方の接点には電路となる固定変通電軸が取付けら
れ、端板を気密に貫通して外部に導かれ、他方の接点に
は電炉となる可動変通電軸が取付けられ、ベローズを介
して他側の端板に取付けられ、真空状態で接点が開閉さ
れる。
By the way, the vacuum valve is provided with a pair of contactable and detachable contacts opposed to each other in a vacuum vessel having an internal pressure of 10 −4 Torr or less, and one of the contacts is provided with a fixed variable current-carrying shaft serving as an electric path. Is air-tightly guided to the outside, the other contact is provided with a movable variable conduction shaft serving as an electric furnace, and is attached to the other end plate via a bellows, and the contact is opened and closed in a vacuum state.

又、真空バルブを構成する主な材料としては、絶縁容
器にはアルミナ磁器が、通電軸には銅,ベローズにはス
テンレス鋼,端板にはアルミナ磁器と熱膨脹係数が近い
コバール(Fe−Co−Ni合金)が用いられている(真空バ
ルブ以外の真空気密容器においても材質的にはアルミナ
磁器,銅,ステンレス鋼,コバールが使われている)。
The main materials constituting the vacuum valve are alumina porcelain for the insulating container, copper for the current-carrying shaft, stainless steel for the bellows, and Kovar (Fe-Co- (Ni alloy) is used (alumina porcelain, copper, stainless steel, and Kovar are also used as materials for vacuum-tight containers other than vacuum valves).

しかも、これら構成部品の取付けは、その大部分が銀
ろう付けで行われている。
Moreover, most of these components are mounted by silver brazing.

(発明が解決しようとする課題) このように、真空気密装置の気密構成は、銀ろう付け
による付着によっているので、使われる銀ろう材の種類
と被接合部材間の漏れ性などによっては、気密性や強度
が下がって、長期の機能維持・寿命を損う恐れがある。
(Problems to be Solved by the Invention) As described above, the hermetic structure of the vacuum hermetic device is based on adhesion by silver brazing. Therefore, depending on the type of the silver brazing material used and the leakage between the members to be joined, etc. There is a possibility that the properties and strength will be reduced and the long-term function maintenance / life will be impaired.

例えば、ろう材料のなかには、燐銅ろう(JIS−Z−3
264)として、例えば4.8〜5.3%P−Cu(JIS記号B CuP
−1),6.8〜7.7%P,4.7〜6.3%Ag−Cu(同B CuP−4)
のように、多量(5〜8重量%)のPを含んだものがあ
るが、これらは本発明が対称としている真空気密装置の
封着用としては、Pの高い蒸気圧性に起因する真空気密
装置内部のPによる汚染と脆弱化などで、長期に亘る信
頼性維持の面から使えない。
For example, some brazing materials include phosphor copper brazing (JIS-Z-3
264), for example, 4.8-5.3% P-Cu (JIS symbol B CuP
-1), 6.8-7.7% P, 4.7-6.3% Ag-Cu (B CuP-4)
However, there are some which contain a large amount (5 to 8% by weight) of P as described above, and these are used for sealing a vacuum hermetic device which is symmetrical in the present invention. It cannot be used for long-term reliability maintenance due to contamination and weakening of internal P.

例えば、もし、ろう付け中にガスが放出されると、放
出と同じに金属粒や多量の金属蒸気も放出して、真空気
密装置の内面や微小隙間に侵入し付着する。
For example, if gas is released during brazing, metal particles and a large amount of metal vapor are also released in the same manner as the release, and penetrate and adhere to the inner surface and minute gaps of the vacuum-tight device.

すると、真空気密装置では、付着いた金属蒸気の金属
粒への電界集中で耐圧不良の要因になるだけでなく、放
出した後の凝縮したろう材中には、局部的に空孔や被接
合表面にろう材の濡れていない部分が残って接合力が下
がり、それが気密洩れの要因ともなる。
Then, in the vacuum hermetic device, the electric field concentration of the adhered metal vapor on the metal particles not only causes a failure in pressure resistance, but also causes the condensed brazing material after discharge to locally include holes or surfaces to be joined. The non-wetting portion of the brazing material remains, and the bonding strength is reduced, which causes airtight leakage.

そこで、本発明の目的は、長期に亘って真空気密性と
耐電圧特性を維持することができる信頼性の高い真空気
密装置の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a highly reliable vacuum hermetic device capable of maintaining vacuum hermeticity and withstand voltage characteristics for a long period of time.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、複数の構成部品をろう付けで接合する真空
気密装置の製造方法において、構成部品の接合部に1〜
300ppmの硼素、1〜15ppmの酸素、1〜15ppmの窒素、50
〜99重量%の銀、残部が銅とからなる合金の銀ろうを添
加し、真空又は水素雰囲気中において、加熱温度を該合
金の融解温度以上950℃以下で構成部品をろう付けで接
合するようにした真空気密装置の製造方法である。
(Means for Solving the Problems) The present invention relates to a method for manufacturing a vacuum-tight device for joining a plurality of components by brazing, wherein 1 to 1
300 ppm boron, 1-15 ppm oxygen, 1-15 ppm nitrogen, 50
-99% by weight of silver, the balance being copper, and adding a silver solder of an alloy, and joining the components by brazing at a heating temperature not lower than the melting temperature of the alloy and not higher than 950 ° C. in a vacuum or hydrogen atmosphere. This is a method for manufacturing a vacuum airtight device.

(作用) 従来のAg−Cu,Ag−Pd−Cu,Ag−Sn−Cu合金を使ったろ
う付け方法と異なり、気密内部への付着粒子が少なくな
り、耐電値などの特性が上がるだけでなく、接合部間の
濡れ性と接合強度も上がり、長期に亘って高気密性を維
持することができる。
(Function) Unlike the conventional brazing method using Ag-Cu, Ag-Pd-Cu, and Ag-Sn-Cu alloys, the number of particles adhered to the airtight interior is reduced, and not only properties such as electric withstand value are improved, but also The wettability between joints and the joint strength are increased, and high airtightness can be maintained for a long period of time.

すなわち、本発明は、使われるろう材の組成と温度が
ポイントである。このうち組成は、ろう材のB(硼素)
の存在とO(酸素),N(窒素)の量を管理することで、
接合時にろう材が溶融する瞬間に突発的に放出されるガ
ス放出を減らすことができる。
That is, the point of the present invention is the composition and temperature of the brazing filler metal used. The composition is B (boron)
By controlling the presence of O (oxygen) and N (nitrogen),
It is possible to reduce the outgassing that is suddenly released at the moment when the brazing material melts during joining.

すなわち、Bの量が1〜300ppm(0.001〜0.03重量
%)の場合には、他のO,Nとを所定範囲に管理すること
で、従来のような汚染(すなわち、高蒸気圧成分を含ま
ない)と脆弱化が解消され、O,N量の所定量範囲内への
管理も容易となり、安定したろう材を得ることができる
と共に、耐電圧特性などが上がる。このようにAg,Cuな
どにPなどの高蒸気圧成分が含まれると、真空気密装置
の封着用ろう材としては好ましくない。本発明は、気密
封着部の接合だけでなく、内部に収納される部材にもB,
O,Nを管理したろう材が使われるので、付着のための加
熱時の高蒸気圧成分の飛散・蒸発の抑制だけでなく、部
材に通電する場合には通電による発熱対策としても有効
である。
That is, when the amount of B is 1 to 300 ppm (0.001 to 0.03% by weight), by controlling other O and N in a predetermined range, the contamination as in the conventional case (that is, containing high vapor pressure components No), the embrittlement is eliminated, the management of O and N amounts within a predetermined range becomes easy, a stable brazing material can be obtained, and the withstand voltage characteristics and the like increase. If Ag, Cu or the like contains a high vapor pressure component such as P, it is not preferable as a brazing filler metal for a vacuum hermetic device. The present invention not only joins the hermetically sealed portion, but also applies
Since brazing material with controlled O and N is used, it is effective not only to suppress scattering and evaporation of high vapor pressure components during heating for adhesion, but also as a measure against heat generation by energizing when applying electricity to members .

更に、本発明は、ろう付け加熱温度を950℃以下とし
ている。これは、真空気密装置にステンレス鋼から形成
されたベローズが使われる場合、950℃以上の加熱によ
る結晶粗大化に伴う真空気密性の低下、ベローズの疲労
寿命の低下などの問題を考慮すると共に、Agの蒸発によ
る障害や熱膨脹率を揃え、真空気密装置に使われている
コバール材の結晶粒界へのろう材の侵入量を抑えるため
であり、950℃未満の材料を選んでいる。
Further, in the present invention, the brazing heating temperature is set to 950 ° C. or less. This is because when a bellows made of stainless steel is used for a vacuum hermetic device, it takes into account problems such as a reduction in vacuum hermeticity due to crystal coarsening due to heating at 950 ° C or more and a decrease in the fatigue life of the bellows, In order to equalize the obstacles due to the evaporation of Ag and the coefficient of thermal expansion, and to suppress the amount of brazing material entering the crystal grain boundaries of the Kovar material used in the vacuum sealing device, a material having a temperature of less than 950 ° C is selected.

(実施例) 以下、本発明の実施例について説明する。まず、表
は、本発明の真空気密装置の製造方法を真空バルブに適
用したときの銀ろう材料の組成,接合条件と二,三の評
価結果を対比させて示したものである。又、真空バルブ
の組立と、評価条件は、次のとおりである。
(Example) Hereinafter, an example of the present invention will be described. First, the table shows a comparison between the composition of the silver brazing material, the joining conditions, and a few evaluation results when the method for manufacturing a vacuum-tight device of the present invention is applied to a vacuum valve. The assembly of the vacuum valve and the evaluation conditions are as follows.

ここで、評価に使った真空バルブは、図に示すような
構成である。すなわち、同図において、真空バルブ1
は、アルミナ磁器製の円筒状の絶縁容器2の両端を、熱
膨脹係数がアルミナ磁器に近いコバール材(Fe−NiCo合
金)の端板3a,3bで気密に閉塞し、内部の圧力を10-4Tor
r以下とした気密容器内に、一対の接離自在に電極4a,4b
を取付けている。
Here, the vacuum valve used for the evaluation has a configuration as shown in the figure. That is, in FIG.
Means that both ends of a cylindrical insulating container 2 made of alumina porcelain are hermetically closed by end plates 3a and 3b made of Kovar material (Fe-NiCo alloy) having a thermal expansion coefficient close to that of alumina porcelain, and the internal pressure is reduced to 10 -4. Tor
r, a pair of electrodes 4a, 4b
Is installed.

そして、一方の電極4aには、銅材の固定側通電軸5aが
取付けられ、一方の端板を気密に貫通し、外部に導いて
電路を構成している。
A fixed-side conducting shaft 5a made of a copper material is attached to one of the electrodes 4a, penetrates one end plate in an airtight manner, and leads to the outside to form an electric circuit.

又、他方の電極4bには、電路となる可動側通電軸5bが
取付けられ、ステンレス鋼製のベローズ6を介して端板
3bに取付けられ、真空気密状態で電極4a,4bが接離自在
となっている。
A movable-side conducting shaft 5b serving as an electric path is attached to the other electrode 4b, and the end plate is connected via a bellows 6 made of stainless steel.
The electrodes 4a and 4b are attached to and detachable from each other in a vacuum-tight state.

なお、電極4a,4bの周囲には、筒状のアークシールド
7が配置され、電流遮断時に電極4a,4bから出る金属蒸
気による絶縁容器2の内壁面の汚損を防いでいる。
A cylindrical arc shield 7 is disposed around the electrodes 4a and 4b to prevent the inner wall surface of the insulating container 2 from being stained by metal vapor coming out of the electrodes 4a and 4b when current is interrupted.

この構成による真空バルブは、次のようにして組立て
た。すなわち、電極4bと通電軸5b,又電極4aと通電軸5a
をあらかじめ気密封着部の接合に使う銀ろう材よりも高
い融解温度のろう材、例えば5%Pd−Agで接合し、これ
ら接合した部材を、端板3a,3b、絶縁容器2とから成る
真空気密容器の中に、同表に示した各々の銀ろう材を端
板3aと絶縁容器2との間と、端板3bと絶縁容器2との間
にそれぞれ添加した後、他のベローズ6などとともに真
空中で加熱しながら同表に示した温度で気密封着した。
The vacuum valve having this configuration was assembled as follows. That is, the electrode 4b and the conducting shaft 5b, and the electrode 4a and the conducting shaft 5a
Are previously joined with a brazing material having a higher melting temperature than the silver brazing material used for joining the hermetically sealed portions, for example, 5% Pd-Ag, and these joined members are composed of end plates 3a, 3b and insulating container 2. After each of the silver brazing materials shown in the same table was added between the end plate 3a and the insulating container 2 and between the end plate 3b and the insulating container 2 in the vacuum-tight container, the other bellows 6 While being heated in a vacuum together with, for example, it was hermetically sealed at the temperature shown in the same table.

このようにして得られた真空バルブを後述する方法と
条件で、電気的評価として耐電圧試験、気密性評価とし
て洩れ試験、接合部の接合強度の評価として強度試験を
それぞれ実施した。
The vacuum valve thus obtained was subjected to a withstand voltage test as an electrical evaluation, a leak test as an airtightness evaluation, and a strength test as an evaluation of the bonding strength of a bonding portion under the methods and conditions described below.

気密封着部の評価は、前述のようにして組立て,接合
加熱処理をした直後に、真空バルブの両端に所定の電圧
を印加したときの放電電流の大小で内部に残ったガス量
の相対量を求めた。
The evaluation of the hermetically sealed portion is based on the relative amount of gas remaining inside due to the magnitude of the discharge current when a predetermined voltage is applied to both ends of the vacuum valve immediately after assembling and bonding heat treatment as described above. I asked.

又、接合強度の強制的評価は、真空バルブの可動軸2m
の高さから100Kgの金属塊を落して衝撃荷重を与えた
後、前述と同様の放電電流を求めた。
In addition, the compulsory evaluation of the joining strength is based on a 2 m
After applying a shock load by dropping a metal lump of 100 kg from the height of, the same discharge current as described above was obtained.

接合強度は、直接7mm,長さ50mmの銅材を軸方向に上下
に対向させ、その間に所定形状に製造した電極と同表に
示した銀ろう材を挟み、同表に示した接合条件でろう付
けを行った。その後、引張試験機で接合強度を測定し
た。同表には、その結果を実施例2の値を1.0とした相
対値で示している。
The bonding strength was directly 7 mm, 50 mm long copper material facing up and down in the axial direction, sandwiching the electrode manufactured in the specified shape and the silver brazing material shown in the table between them, under the bonding conditions shown in the table. Brazed. Then, the joining strength was measured with a tensile tester. In the same table, the results are shown as relative values with the value of Example 2 set to 1.0.

更に、耐電圧特性は、前述のようにして得た真空バル
ブを、電圧84kV・50Hz・遮断電流12kAの上限で100回遮
断して、再点孤発生確率を3本の真空バルブについて調
べた。なお、電極材料にはCu−Cr接点を接着した。
Further, with respect to the withstand voltage characteristics, the vacuum valve obtained as described above was cut off 100 times at the upper limit of the voltage of 84 kV, 50 Hz, and the cutoff current of 12 kA, and the recurrence occurrence probability was examined for three vacuum valves. Note that a Cu-Cr contact was bonded to the electrode material.

実施例1〜3,比較例1〜3 真空度10-4〜10-5Torrの雰囲気で、溶解中の72%Ag−
Cu合金の溶湯中に2%B−Cu母合金を所定量投入して所
定量のB,O,Nを含む銀ろう材を製作した。なお、B,O,N量
は、溶解中の真空度,溶解時間,溶解温度などを制御し
て変化させ、数値は分析で確認した。これらを約200μ
mの厚さに加工し、あらかじめNiメタライズを行った端
面のAl2O3磁器製の絶縁容器とコバール製端板との間に
挟み、4×10-5Torrの真空中で810℃×30分間気密封着
処理を行い、真空気密装置を作製した。
Examples 1-3, Comparative Examples 1-3 72% Ag-dissolved in an atmosphere with a degree of vacuum of 10-4 to 10-5 Torr.
A predetermined amount of a 2% B-Cu master alloy was put into a molten Cu alloy to produce a silver brazing material containing predetermined amounts of B, O, and N. The amounts of B, O, and N were changed by controlling the degree of vacuum, melting time, and melting temperature during melting, and the numerical values were confirmed by analysis. About 200μ
m, and sandwiched between an insulating container made of Al 2 O 3 porcelain and an end plate made of Kovar, which had been Ni metallized in advance and 810 ° C. × 30 in a vacuum of 4 × 10 -5 Torr. A vacuum sealing process was performed for a minute.

その結果、同表に示すように、銀ろう材中のBの量が
300ppm以下(実施例1〜3)では封着部の気密度、接合
強さ、再点孤発生確率の何れも好ましい範囲にあった
が、Bの量が2420ppm(比較例3)では気密封着部に微
小な欠陥が発生し、衝撃試験後そのトラブルが拡大する
と共に、再点孤も多発した。一方、銀ろう材中のOの量
が75ppm,35ppmのときは再点孤が増えた。特に、銀ろう
材中の残存Bの量が少ないとき(比較例1)は、O量を
充分減らせないとともに、再点孤が増え、強度がばらつ
いて好ましくない。この比較例1の真空バルブについて
再点孤特性評価後に解体したところ、真空バルブの内面
の一部に粒状のろう材(直径約0.1mm)が付着してい
た。これらは、再点孤の因子となるので、なるべく避け
ることが望ましい。このようなろう材の付着は、O量が
少ない実施例1〜3,比較例3では見られず、O量と関係
があるものと考えられる。
As a result, as shown in the table, the amount of B in the brazing silver was
In the case of 300 ppm or less (Examples 1 to 3), the airtightness, the bonding strength, and the probability of occurrence of re-sticking were all within the preferred ranges, but when the amount of B was 2420 ppm (Comparative Example 3), the hermetic sealing was performed. A small defect occurred in the part, the trouble increased after the impact test, and re-burning occurred frequently. On the other hand, when the amount of O in the silver brazing material was 75 ppm or 35 ppm, the re-lighting increased. In particular, when the amount of residual B in the silver brazing material is small (Comparative Example 1), the amount of O cannot be reduced sufficiently, re-incision increases, and the strength varies, which is not preferable. When the vacuum valve of Comparative Example 1 was disassembled after the evaluation of re-ignition characteristics, a granular brazing material (about 0.1 mm in diameter) was adhered to a part of the inner surface of the vacuum valve. It is desirable to avoid these as much as possible because they cause re-incarnation. Such adhesion of the brazing material is not observed in Examples 1 to 3 and Comparative Example 3 where the O amount is small, and it is considered that there is a relationship with the O amount.

従って、銀ろう材は、B量とO量とを同じに管理する
ことが必要で、その量は、B量は1〜300ppm、そのとき
のO量は、15ppm以下とする必要がある(実施例1〜3,
比較例1〜3の対比)。
Therefore, in the brazing silver material, it is necessary to control the amount of B and the amount of O in the same manner, and the amount of B must be 1 to 300 ppm, and the amount of O at that time must be 15 ppm or less. Examples 1-3,
Comparative examples 1 to 3).

実施例4〜7,比較例4 前述したのと同様にして製作した72%Ag−Cuについ
て、同表のような評価を行ったところ、N量が55ppmの
銀ろうについてはB量,O量が少ないのに、わずかな量で
はあるが衝撃試験後ろう層部に亀裂の発生が見られると
共に、再点孤も発生した(比較例4)が、N量が15ppm
以下(実施例4〜7)では、問題はなかった。従って、
銀ろう中のN量も上記と同様に同じに管理する必要があ
り、その量は15ppm(実施例5,7)が限度である。
Examples 4 to 7 and Comparative Example 4 The evaluation as shown in the table was performed on 72% Ag-Cu manufactured in the same manner as described above. Although the amount was small, cracks were observed in the brazing layer after the impact test, and re-burning occurred (Comparative Example 4), although the amount was small, but the N content was 15 ppm.
In the following (Examples 4 to 7), there was no problem. Therefore,
It is necessary to control the amount of N in the silver solder in the same manner as described above, and the amount is limited to 15 ppm (Examples 5 and 7).

実施例8〜17,比較例5〜8 実述した実施例1〜7は、銀ろう中のAgの量を約72%
とほぼ一定とした場合であるが、Agの量99%(実施例
8)でも、又、50%(実施例9)でもB,O,N量を同時に
管理することは有益である。しかし、Agの量が25%(比
較例5)の場合は、本発明の主旨である真空気密装置の
製造の観点からは、接合部に2層に別れる部分(組成の
不均一)が見られたので除いた。
Examples 8 to 17 and Comparative Examples 5 to 8 In Examples 1 to 7 described above, the amount of Ag in silver brazing was reduced to about 72%.
However, it is beneficial to control the amounts of B, O, and N at the same time even if the amount of Ag is 99% (Example 8) or 50% (Example 9). However, when the amount of Ag is 25% (Comparative Example 5), from the viewpoint of manufacturing a vacuum hermetic device, which is the gist of the present invention, a portion where the bonding portion is separated into two layers (uneven composition) is seen. Removed.

このような真空気密装置の製造に使われる銀ろう材
は、上述のB,O,N量を管理すれば、上記のAg−Cu以外に
もAg−Cu−Pd(実施例10〜12)の採用が有益である。こ
の系においても、該合金中のB量が多い1020ppm(比較
列6),O量が85ppm(比較例7),N量が多い65ppm(比較
例8)では、前述と同じ傾向、すなわち、気密封着部の
洩れや再点孤が多発して好ましくない。
The silver brazing material used in the production of such a vacuum hermetic device can be made of Ag-Cu-Pd (Examples 10 to 12) in addition to the above-mentioned Ag-Cu by controlling the B, O, and N amounts described above. Adoption is beneficial. Also in this system, when the B content in the alloy is 1020 ppm (Comparative row 6), the O content is 85 ppm (Comparative example 7), and the N content is 65 ppm (Comparative example 8), the same tendency as described above is obtained. Leakage and re-arcing of the sealing portion frequently occur, which is not preferable.

同様にB,O,N量を管理すれば、Ag−Cu−Sn,Ag−Cu−Sn
−Ni,Ag−Cu−Sn−In,Ag−Ni,Ag−Cu−Inを採用した真
空バルブの製造が可能である(実施例13〜17)。
Similarly, if the amounts of B, O and N are controlled, Ag-Cu-Sn, Ag-Cu-Sn
It is possible to manufacture a vacuum valve employing -Ni, Ag-Cu-Sn-In, Ag-Ni, Ag-Cu-In (Examples 13 to 17).

実施例18 前述した実施例1〜17、比較例1〜8は、すべて真空
気密封着部への適用であったが、B,O,Nを管理した銀ろ
うの適用は、真空気密装置の内蔵部材の接合にも、真空
気密容器内部の汚染も減らすうえで同じく有益である。
また、このような箇所の接合は、水素雰囲気で行うこと
もでき(実施例18)、実施例2で用いた銀ろう材を通電
軸と電極との接合に適用したところ、再点孤の発生もみ
られなかった。
Example 18 The above-described Examples 1 to 17 and Comparative Examples 1 to 8 were all applied to the vacuum-sealed attachment portion, but the application of silver brazing in which B, O, and N were controlled was applied to a vacuum-tight device. The joining of the internal members is equally beneficial in reducing contamination inside the vacuum tight container.
Further, the bonding at such a portion can be performed in a hydrogen atmosphere (Example 18). When the silver brazing material used in Example 2 is applied to the bonding between the current-carrying shaft and the electrodes, re-burning occurs. I couldn't find any.

なお、銀ろう材中にNiを添加してもよい。しかし、Ni
は、ろう材の融解温度が少量添加で著しく上がるので、
その温度が950℃を超えないよう注意が必要である。
Note that Ni may be added to the silver brazing material. But Ni
Because the melting temperature of the brazing material rises significantly with the addition of a small amount,
Care must be taken that the temperature does not exceed 950 ° C.

〔発明の効果〕 以上説明したように本発明によれば、複数の構成部品
をろう付けで接合する真空気密装置の製造方法におい
て、B,O,Nの含有量を所定の範囲に管理された銀ろうを
用いて、この銀ろうの溶融温度以上、950℃以下に加熱
して構成部品を接合し、銀ろうの溶融時におけるガスの
放出を抑えたので、電気的・機械的および気密特性が優
れ、寿命の長い真空気密装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, in the method of manufacturing a vacuum-tight device for joining a plurality of components by brazing, the contents of B, O, and N are controlled in a predetermined range. Using a silver solder, the components were joined by heating to above the melting temperature of the silver solder and below 950 ° C, and the release of gas during the melting of the silver solder was suppressed. It is possible to obtain a vacuum-tight device that is excellent and has a long life.

【図面の簡単な説明】[Brief description of the drawings]

図は本発明の真空気密装置の製造方法の適用例を示す縦
断面図である。 1……真空バルブ、2……絶縁容器 3a,3b……端板、4a,4b……電極 5a,5b……通電軸 6……ベローズ
The figure is a longitudinal sectional view showing an application example of the manufacturing method of the vacuum airtight device of the present invention. 1 ... Vacuum valve, 2 ... Insulating container 3a, 3b ... End plate, 4a, 4b ... Electrode 5a, 5b ... Electrical shaft 6 ... Bellows

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の構成部品をろう付けで接合する真空
気密装置の製造方法において、前記構成部品の接合部に
1〜300ppmの硼素、1〜500ppmの酸素、1〜15ppmの窒
素、50〜99重量%の銀、残部が銅とからなる合金の銀ろ
うを添加し、真空又は水素雰囲気中において、加熱温度
を該合金の融解温度以上950℃以下で前記構成部品をろ
う付けで接合することを特徴とする真空気密装置の製造
方法。
1. A method for manufacturing a vacuum-tight device for joining a plurality of components by brazing, wherein a bonding portion of the components has 1 to 300 ppm of boron, 1 to 500 ppm of oxygen, 1 to 15 ppm of nitrogen, 50 to 50 ppm of nitrogen. Adding 99% by weight of silver and silver braze of an alloy consisting of copper and joining the components by brazing in a vacuum or hydrogen atmosphere at a heating temperature not lower than the melting temperature of the alloy and not higher than 950 ° C. A method for manufacturing a vacuum tight device.
JP33276389A 1989-12-25 1989-12-25 Manufacturing method of vacuum airtight device Expired - Fee Related JP2695951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33276389A JP2695951B2 (en) 1989-12-25 1989-12-25 Manufacturing method of vacuum airtight device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33276389A JP2695951B2 (en) 1989-12-25 1989-12-25 Manufacturing method of vacuum airtight device

Publications (2)

Publication Number Publication Date
JPH03194814A JPH03194814A (en) 1991-08-26
JP2695951B2 true JP2695951B2 (en) 1998-01-14

Family

ID=18258569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33276389A Expired - Fee Related JP2695951B2 (en) 1989-12-25 1989-12-25 Manufacturing method of vacuum airtight device

Country Status (1)

Country Link
JP (1) JP2695951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626104B (en) * 2018-06-22 2024-04-30 佛山科学技术学院 Evacuating-proof device

Also Published As

Publication number Publication date
JPH03194814A (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US5687472A (en) Method of manufacturing a vacuum interrupter
CA1241989A (en) Fixed electrode and bellows seals for vacuum contactor
EP0155322B1 (en) Electrode of vacuum breaker
US4500383A (en) Process for bonding copper or copper-chromium alloy to ceramics, and bonded articles of ceramics and copper or copper-chromium alloy
US5109145A (en) Vacuum interrupter contacts and process for producing the same
JP2695951B2 (en) Manufacturing method of vacuum airtight device
JP2693591B2 (en) Manufacturing method of vacuum airtight device
JPH08293753A (en) Piezoelectric oscillator and manufacture of the same
JP4643149B2 (en) Brazing material
JP4782386B2 (en) Bonding materials for vacuum valves
KR870000722B1 (en) Process for bonding copper or coppoer-chromium alloy to ceramics
US4310736A (en) Vacuum circuit interrupter
JP4610206B2 (en) Vacuum vessel
JPS6215716A (en) Contact for vacuum breaker electrode
JPH042020A (en) Manufacture of vacuum interrupter
JPS59175521A (en) Method of producing vacuum bulb
JPH0520981A (en) Vacuum circuit breaker
EP0123475A1 (en) Method of joining a contact to an electrode
JPH0325821A (en) Contact for vacuum valve
JP2001357760A (en) Vacuum valve
JPH09231884A (en) Vacuum valve
JPS59149615A (en) Vacuum valve
JPH0531245B2 (en)
JPS59230227A (en) Method of producing vacuum bulb
JP2002279867A (en) Vacuum valve, its manufacturing method and vacuum circuit breaker

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees