JPH03257331A - Apparatus for detecting acoustic signal - Google Patents

Apparatus for detecting acoustic signal

Info

Publication number
JPH03257331A
JPH03257331A JP5754190A JP5754190A JPH03257331A JP H03257331 A JPH03257331 A JP H03257331A JP 5754190 A JP5754190 A JP 5754190A JP 5754190 A JP5754190 A JP 5754190A JP H03257331 A JPH03257331 A JP H03257331A
Authority
JP
Japan
Prior art keywords
axis
acoustic
origin
acoustic signal
detection sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5754190A
Other languages
Japanese (ja)
Inventor
Masao Kinoshita
正生 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP5754190A priority Critical patent/JPH03257331A/en
Publication of JPH03257331A publication Critical patent/JPH03257331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately obtain the azimuth of a sound source by arranging acoustic signal detection sensors on the origin, an X-axis, a Y-axis and a Z-axis and using an acoustic intensity measuring method. CONSTITUTION:The signals from the acoustic signal detection sensor 1 arranged to the origin and the acoustic signal detection sensors 2, 3, 4 arranged on an X-axis, a Y-axis and a Z-axis are inputted to signal processors 5, 6, 7 by pairs and the acoustic intensity vector components of the respective axes are calculated and synthesized by a vector synthesizer 8 and the azimuth of a sound source and the energy intensity thereof are obtained. That is, since the azimuth of the sound source is detected by an acoustic intensity measuring method, even when the distances between the acoustic signal detection sensors are made short, the azimuth of the sound source can be accurately obtained and, at the same time, energy intensity can be also detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は音響信号検出装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an acoustic signal detection device.

従来の技術 従来、音響信号の発生源の方位を検出する装置としては
、第5図に示すようなものがある。この検出装置は、同
一平面内に3個の音響検出センサー11を同一平面内に
配置したものであり、例えば音源から2個の音響検出セ
ンサー11に到来する音響信号aの両音響検出センサー
11間の距離りに基づく時間差または位相差により、音
源の方位を検出していた。
2. Description of the Related Art Conventionally, there is a device shown in FIG. 5 for detecting the direction of a source of an acoustic signal. This detection device has three acoustic detection sensors 11 arranged in the same plane, and for example, an acoustic signal a arriving from a sound source to two acoustic detection sensors 11 is detected between the two acoustic detection sensors 11. The direction of the sound source was detected based on the time difference or phase difference based on the distance.

発明が解決しようとする課題 上記従来の検出装置によると、その検出精度を向上させ
たい場合、音響検出センサー同土間の距離を広げる(例
えば1m以上)必要が生じ、装置自体が大きくなってし
まうとともに、検出し得る音響信号の周波数が限定され
てしまうという問題があった。また、従来の検出装置で
は、音源のエネルギー強度まで計測できなかった。
Problems to be Solved by the Invention According to the conventional detection device described above, if it is desired to improve the detection accuracy, it becomes necessary to increase the distance between the acoustic detection sensor and the ground (for example, 1 m or more), which increases the size of the device itself and However, there is a problem in that the frequency of the acoustic signal that can be detected is limited. Furthermore, conventional detection devices cannot measure the energy intensity of the sound source.

そこで、本発明は上記課題を解消し得る音響信号検出装
置を提供することを目的とする。
Therefore, an object of the present invention is to provide an acoustic signal detection device that can solve the above problems.

課題を解決するための手段 上記課題を解決するため、本発明の音響信号検出装置は
、原点およびX軸、y軸、Z軸上の所定位置に音響信号
検出センサーを配置し、これら各検出センサーによって
得られた信号を、原点とX軸」二、原点とy軸上、原点
とX軸上の各村でもって入力して各軸における音響イン
テンシテイベクトル成分を計算する信号処理器を設け、
この信号処理器によって得られた各音響インテンシテイ
ベクトル成分を合成するベクトル合成器を設けたもので
ある。
Means for Solving the Problems In order to solve the above problems, the acoustic signal detection device of the present invention arranges acoustic signal detection sensors at the origin and at predetermined positions on the X-axis, y-axis, and Z-axis. A signal processor is provided which calculates the sound intensity vector components on each axis by inputting the signals obtained from the origin and the x-axis at each village on the origin and the y-axis, and on the origin and the x-axis,
A vector synthesizer is provided for synthesizing each acoustic intensity vector component obtained by this signal processor.

作用 上記の構成によると、原点に配置された音響センサーと
X軸、y軸、X軸の各軸に配置された音響検出センサー
とからの信号が対づつ信号処理器に入力されて、各軸の
音響インテンシテイベクトル成分が計算される。そして
、これら音響インテンシテイベクトル成分がベクトル合
成器で合成されて、音源の方位およびそのエネルギー強
度が得られる。
Effects According to the above configuration, signals from the acoustic sensor placed at the origin and the acoustic detection sensors placed on each of the X-axis, y-axis, and X-axis are input to the signal processor in pairs, and The sound intensity vector components of are calculated. These acoustic intensity vector components are then synthesized by a vector synthesizer to obtain the direction of the sound source and its energy intensity.

実施例 以下、本発明の一実施例を第1図〜第4図に基づき説明
する。
EXAMPLE Hereinafter, an example of the present invention will be explained based on FIGS. 1 to 4.

第1図は音響信号検出センサーの配置状態を示し、第2
図は音響信号検出装置の概略構成を示すブロック図であ
る。
Figure 1 shows the arrangement of the acoustic signal detection sensor;
The figure is a block diagram showing a schematic configuration of an acoustic signal detection device.

すなわち、本実施例に係る音響信号検出装置は、原点お
よびX軸、y軸、X軸上の所定位置(原点から等距離が
望ましいが、異なる距離でもよい)に配置された4個の
音響信号検出センサー(以下、単に検出センサーといい
、例えばハイドロフオンが使用される)1〜4と、これ
ら各検出センサー1〜4からの各信号P1〜P4を対づ
つ、すなわち原点とX軸上の検出センサー1,2から得
られた各信号P□、P2、原点とy軸上の検出センサー
l。
That is, the acoustic signal detection device according to this embodiment detects four acoustic signals arranged at predetermined positions on the origin, the X axis, the y axis, and the X axis (preferably equidistant from the origin, but different distances may be used). Detection sensors (hereinafter simply referred to as detection sensors; for example, a hydrophon is used) 1 to 4 and signals P1 to P4 from each of these detection sensors 1 to 4 are detected in pairs, that is, on the origin and the X axis. Each signal P□, P2 obtained from sensors 1 and 2, the detection sensor l on the origin and the y-axis.

3から得られた各信号p、、 p3、原点とX軸上の検
出センサー1,4から得られた各信号P1.P4を、そ
れぞれ入力して各軸における音響インテンシテイベクト
ル成分を計算する信号処理器5,6゜7と、これら各信
号処理器5,6.7によって得られた音響インテンシテ
イベクトル成分を立体的に合成するベクトル合成器8と
から構成されている。
3, each signal p, , p3 obtained from the origin and the detection sensors 1, 4 on the X axis, each signal P1 . Signal processors 5, 6.7 input P4 and calculate the acoustic intensity vector components in each axis, and the acoustic intensity vector components obtained by these signal processors 5, 6.7 are three-dimensionally processed. and a vector synthesizer 8 for synthesizing the vectors.

」二記構成において、音源からの音響信号は、各検出セ
ンサー1〜4によってその音圧が検出され。
In the above structure, the sound pressure of the acoustic signal from the sound source is detected by each of the detection sensors 1 to 4.

これらの音圧が信号P1〜P4としてしかも上述したよ
うに対でもって各信号処理器5〜7に入力されて、各軸
の音響インテンシテイベクトル成分が計算される。
These sound pressures are input as signals P1 to P4 in pairs to each of the signal processors 5 to 7 as described above, and the sound intensity vector components of each axis are calculated.

ここで、音響インテンシテイベタ1−ルの求め方につい
て説明する。
Here, a method for determining the acoustic intensity beta will be explained.

音響インテンシティベクトルエは、瞬時音圧Pと、瞬時
粒子速度、Uとの積を時間Tで平均したものである。
The sound intensity vector E is the product of the instantaneous sound pressure P and the instantaneous particle velocity U, averaged over time T.

4 Ur:r方向の粒子速度 (3)式より る2個の検出センサーA、Bの音圧を有限差分近似する
4 Ur: Particle velocity in the r direction The sound pressure of the two detection sensors A and B is approximated by a finite difference using equation (3).

旦1ジェΔPPローPA a r’  Δ r    Δr ・・・(5) (4)、 (5)式より、 ところで、粒子速度の直接計測は困難であるため、2個
の検出センサーから近似的に求める。すなわち、 なる関係かある。
By the way, direct measurement of particle velocity is difficult, so it can be approximated from two detection sensors. demand. In other words, there is a relationship.

r方向に対しては また、音圧は、 であるので したがって、信号処理器5〜7は、上記(8)式を実行
するような回路とされ、第3図に示すような処理回路と
なる。
In the r direction, the sound pressure is: Therefore, the signal processors 5 to 7 are circuits that execute the above equation (8), resulting in a processing circuit as shown in FIG. .

そして、次に上記信号処理器5〜7で得られた各軸の音
響インテンシテイベクトル成分がベクトル合成器8に入
力されて、合成される。
Then, the acoustic intensity vector components of each axis obtained by the signal processors 5 to 7 are input to the vector synthesizer 8 and synthesized.

このベクトル合成を例示すると、第4図のようになる。An example of this vector composition is shown in FIG.

すなわち、合成されたベクトル■の偏角(0゜φ)が音
源の方位を示しており、またベタ1−ル■の絶対値II
+が音源のエネルギー強度を示している。
That is, the polarization angle (0°φ) of the synthesized vector ■ indicates the direction of the sound source, and the absolute value II of the vector ■
+ indicates the energy intensity of the sound source.

このように、検出センサーを3次元に配置して音響イン
テンシテイ計測法を用いたので、従来に比べて狭いセン
サー間隔で音源の方位を計測でき、しかもエネルギー強
度も計測できる。
In this way, since the detection sensors are arranged three-dimensionally and the acoustic intensity measurement method is used, the direction of the sound source can be measured with a narrower sensor interval than in the past, and the energy intensity can also be measured.

また、従来の位相差を利用する場合、センサー間隔と検
出周波数成分とは相関性があるため、周波数帯域ごとに
センサー間隔を変更する必要があったが、本装置では、
その必要がない。すなわち、信号処理器での処理を広帯
域で行うことにより、相異なる周波数成分の方位とエネ
ルギー強度とを同時に検出することができる。
In addition, when using conventional phase difference, there is a correlation between the sensor interval and the detected frequency component, so it was necessary to change the sensor interval for each frequency band, but with this device,
There's no need for that. That is, by performing the processing in the signal processor over a wide band, it is possible to simultaneously detect the orientation and energy intensity of different frequency components.

なお、上記の音響検出装置は、空中または水中でも使用
することができる。
Note that the above acoustic detection device can be used in the air or underwater.

発明の効果 以上のように本発明の構成によれば、音響検出センサー
を原点およびX軸、y軸、Z軸上に配置して、音響イン
テンシテイ計測法により、音源の方位を検出するため、
音響検出センサー同土間の距離を狭くしても音源の方位
を精度よく得ることができ、しかも同時にエネルギー強
度も検出することができる。
Effects of the Invention As described above, according to the configuration of the present invention, the acoustic detection sensors are arranged at the origin and on the X, Y, and Z axes to detect the direction of the sound source by the acoustic intensity measurement method.
Even if the distance between the acoustic detection sensor and the ground is narrowed, the direction of the sound source can be obtained with high accuracy, and the energy intensity can also be detected at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の一実施例を示すもので、第上
図は音響検出センサーの配置状態を示す斜視図、第2図
は音響検出装置の概略構成を示すブロック図、第3図は
音響インテンシテイ法における処理回路を示すブロック
図、第4図は同インテンシテイ法におけるベクトル合成
図、第5図は従来例における音響検出センサーの配置状
態を示す斜視図である。 7− 1〜4・・・音響信号検出センサー、5〜7・・・信号
処理器、8・・ベクトル合成器。
1 to 4 show an embodiment of the present invention, in which the upper figure is a perspective view showing the arrangement of the acoustic detection sensor, FIG. 2 is a block diagram showing the schematic configuration of the acoustic detection device, and FIG. FIG. 3 is a block diagram showing a processing circuit in the sound intensity method, FIG. 4 is a vector composition diagram in the same intensity method, and FIG. 5 is a perspective view showing the arrangement of sound detection sensors in a conventional example. 7- 1-4...Acoustic signal detection sensor, 5-7...Signal processor, 8...Vector synthesizer.

Claims (1)

【特許請求の範囲】[Claims] 1、原点およびx軸、y軸、z軸上の所定位置に音響信
号検出センサーを配置し、これら各検出センサーによっ
て得られた信号を、原点とx軸上、原点とy軸上、原点
とz軸上の各対でもって入力して各軸における音響イン
テンシティベクトル成分を計算する信号処理器を設け、
この信号処理器によって得られた各音響インテンシティ
ベクトル成分を合成するベクトル合成器を設けたことを
特徴とする音響信号検出装置。
1. Place acoustic signal detection sensors at predetermined positions on the origin and the x-axis, y-axis, and z-axis, and detect the signals obtained by these detection sensors on the origin and the x-axis, between the origin and the y-axis, and between the origin and the A signal processor is provided for inputting each pair on the z-axis to calculate a sound intensity vector component in each axis,
An acoustic signal detection device comprising a vector synthesizer for synthesizing each acoustic intensity vector component obtained by the signal processor.
JP5754190A 1990-03-08 1990-03-08 Apparatus for detecting acoustic signal Pending JPH03257331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5754190A JPH03257331A (en) 1990-03-08 1990-03-08 Apparatus for detecting acoustic signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5754190A JPH03257331A (en) 1990-03-08 1990-03-08 Apparatus for detecting acoustic signal

Publications (1)

Publication Number Publication Date
JPH03257331A true JPH03257331A (en) 1991-11-15

Family

ID=13058626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5754190A Pending JPH03257331A (en) 1990-03-08 1990-03-08 Apparatus for detecting acoustic signal

Country Status (1)

Country Link
JP (1) JPH03257331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294822A (en) * 2002-01-31 2003-10-15 Shibaura Institute Of Technology Three-dimensional intensity probe, three-dimensional sound-source direction detector using the same, three- dimensional sound-source direction facing controller as well as method and apparatus for three-dimensional intensity measurement
JP2013009112A (en) * 2011-06-23 2013-01-10 National Institute Of Advanced Industrial & Technology Sound acquisition and reproduction device, program and sound acquisition and reproduction method
JP2013167607A (en) * 2012-02-17 2013-08-29 Nippon Telegr & Teleph Corp <Ntt> Acoustic field diffusible indicator calculation device, method therefor, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206620A (en) * 1987-02-24 1988-08-25 J R C Totsuki Kk Triaxial sensor for measuring hydro-acoustic intensity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206620A (en) * 1987-02-24 1988-08-25 J R C Totsuki Kk Triaxial sensor for measuring hydro-acoustic intensity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294822A (en) * 2002-01-31 2003-10-15 Shibaura Institute Of Technology Three-dimensional intensity probe, three-dimensional sound-source direction detector using the same, three- dimensional sound-source direction facing controller as well as method and apparatus for three-dimensional intensity measurement
JP2013009112A (en) * 2011-06-23 2013-01-10 National Institute Of Advanced Industrial & Technology Sound acquisition and reproduction device, program and sound acquisition and reproduction method
JP2013167607A (en) * 2012-02-17 2013-08-29 Nippon Telegr & Teleph Corp <Ntt> Acoustic field diffusible indicator calculation device, method therefor, and program

Similar Documents

Publication Publication Date Title
JP3780086B2 (en) Attitude angle detector
JPH08512125A (en) Method and apparatus for measuring the position and orientation of an object in the presence of interfering metals
JPH03257331A (en) Apparatus for detecting acoustic signal
CN106813767B (en) A kind of sensitivity measuring method of usp probe
JP2001249173A (en) Radio wave azimuth/position detection device
JPH0243152B2 (en)
JPH07198470A (en) Acoustic intesity measuring apparatus
JP3308043B2 (en) Multi-axis acceleration detector
JPH0346572A (en) Capacitance measuring circuit
JPH0511893B2 (en)
JPH09126780A (en) Magnetic direction sensor
RU1279376C (en) Device for determination of coordinates and magnetic moment of dipole source of magnetic
JPS61129565A (en) Ae wave detecting device
JP2001141594A (en) Dynamic balancing machine and its unbalance caluculation method
JP2822662B2 (en) Measurement method of semiconductor acceleration detector
JPS6363940A (en) Acoustic intensity wattmeter
SU1711101A1 (en) Dipole magnetic moment measuring device
JPH03107783A (en) Passive sonar device
JPH04344482A (en) Magnetism measuring apparatus
JPS59111072A (en) Apparatus for detecting position of sound source
JP2000039355A (en) Weighing device
SU436254A1 (en) DEVICE FOR MEASURING PROJECTIONS OF NON-UNIQUENESS VECTOR
JPH04204075A (en) Sonar angle measuring apparatus
JPH01148922A (en) Three-dimensional vibrometer
JPS6365388A (en) Magnetic measuring instrument