JP2001141594A - Dynamic balancing machine and its unbalance caluculation method - Google Patents

Dynamic balancing machine and its unbalance caluculation method

Info

Publication number
JP2001141594A
JP2001141594A JP31943099A JP31943099A JP2001141594A JP 2001141594 A JP2001141594 A JP 2001141594A JP 31943099 A JP31943099 A JP 31943099A JP 31943099 A JP31943099 A JP 31943099A JP 2001141594 A JP2001141594 A JP 2001141594A
Authority
JP
Japan
Prior art keywords
unbalance
specimen
calculating
magnitude
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31943099A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuji
博志 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31943099A priority Critical patent/JP2001141594A/en
Publication of JP2001141594A publication Critical patent/JP2001141594A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure precisely the magnitude and the direction of unbalance of a rotor. SOLUTION: A vibration signal obtained from a vibration sensor of a dynamic unbalance testing machine is subjected to A/D conversion and taken in as a digital value, while an X-direction standard function and a Y-direction standard function are generated based on a rotary standard pulse. After multiplying the vibration signal and each standard function together, averaging processing by a digital filter is executed, to thereby operate correlation coefficients. The magnitude and the direction of unbalance is operated based on an X-direction correlation coefficient and a Y-direction correlation coefficient obtained in this way.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試験体を回転した
ときのバランス状態を測定する動釣合試験装置およびそ
の装置で行われる不釣合算出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic balance test apparatus for measuring a balance state when a test body is rotated, and a method of calculating an unbalance performed by the apparatus.

【0002】[0002]

【従来の技術】動釣合試験装置においては、一般に、供
試体を回転させることによって発生する不釣合信号を検
出器によって検出し、その振幅値から供試体の不釣合の
大きさを求める。また、供試体の表面に付したマークや
供試体の表面的特徴等の回転基準位置を、レーザセンサ
やフォトセンサ等の非接触センサにより構成される回転
位相検出器により検出することによって得られる回転基
準パルスと不釣り合い信号との位相関係から供試体に存
在する不釣合の方向(不釣合角度)を求める。
2. Description of the Related Art In a dynamic balance test apparatus, generally, an unbalance signal generated by rotating a specimen is detected by a detector, and the magnitude of the unbalance of the specimen is obtained from its amplitude value. In addition, rotation obtained by detecting a rotation reference position such as a mark on the surface of the specimen or a surface characteristic of the specimen by a rotational phase detector constituted by a non-contact sensor such as a laser sensor or a photo sensor. From the phase relationship between the reference pulse and the unbalanced signal, an unbalanced direction (unbalanced angle) existing in the specimen is obtained.

【0003】不釣合の大きさと不釣合角度を求めるため
には、回転基準センサが発生する基準パルスの位置を基
に2種類の基準波形を発生させ、振動検出器によって検
出された振動信号との相互相関をとることがアナログ回
路によって行われていた。すなわち、X方向の基準波形
として余弦波を発生させ、Y方向の基準波形として正弦
波を発生させ、それぞれの信号を振動センサからの出力
信号と掛け算し、さらに積分して平均化することによっ
てX方向成分とY方向成分の不釣合量を求め、この値を
A/D変換器を介してコンピュータに取り込み不釣合の
大きさと方向を算出し表示などをしていた。
In order to obtain the magnitude of the unbalance and the angle of the unbalance, two types of reference waveforms are generated based on the position of the reference pulse generated by the rotation reference sensor, and the cross-correlation between the reference waveform and the vibration signal detected by the vibration detector is performed. Was performed by analog circuits. That is, a cosine wave is generated as a reference waveform in the X direction, a sine wave is generated as a reference waveform in the Y direction, each signal is multiplied by an output signal from the vibration sensor, and further integrated and averaged to obtain X. The unbalance amount between the directional component and the Y-direction component is obtained, and this value is taken into a computer via an A / D converter to calculate and display the magnitude and direction of the unbalance.

【0004】従来の方式はアナログ回路による方式のた
め、途中に介在するアンプのオフセット誤差や測定レン
ジを変更したときのフルスケールの誤差が大きかった。
また、基準波形を振動センサからの出力信号と掛け算し
て積分により平均化するときに、平均化処理の出力が安
定するまでに時間がかかり迅速な測定ができなかった。
さらに、アナログ回路には非線型の誤差も含まれていた
り、振動信号を処理するために各種のフィルタ処理が必
要とされるが、このフィルタ処理を自由に設定すること
が難しかった。
[0004] Since the conventional method is a method using an analog circuit, an offset error of an intervening amplifier and a full-scale error when a measurement range is changed are large.
In addition, when the reference waveform is multiplied by the output signal from the vibration sensor and averaged by integration, it takes time until the output of the averaging process is stabilized, and rapid measurement cannot be performed.
Further, the analog circuit includes a non-linear error, and various filtering processes are required to process the vibration signal. However, it has been difficult to freely set the filtering process.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みてなされたものであり、測定回路の誤差や不
安定性の影響が少なく、レンジを切り換えたときの測定
値が安定し、もって精度が高くしかも測定値を得る時間
が短い動釣合試験装置およびその不釣合測定方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has little effect on errors and instability of a measurement circuit, and has a stable measurement value when a range is switched. Accordingly, it is an object of the present invention to provide a dynamic balance test apparatus having high accuracy and a short time for obtaining a measured value, and a method for measuring the unbalance thereof.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、供試体を回転したときに検出される振動
信号と回転の基準位置信号とから不釣合の大きさと方向
を算出する動釣合試験装置において、供試体の振動を検
出する振動センサと、この振動センサの出力をディジタ
ル信号に変換するA/D変換器と、供試体の回転基準位
置を検出する回転基準センサと、この回転基準センサの
基準信号を基にしてX方向とY方向の基準関数を算出す
る第1の算出手段と、前記A/D変換器の出力と前記第
1の算出手段によって算出されたX方向とY方向の基準
関数に基づいてX方向とY方向の相関係数を算出する第
2の算出手段と、このX方向とY方向の相関係数から供
試体の不釣合の大きさと方向を算出する第3の算出手段
を備えたことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a method for calculating the magnitude and direction of an unbalance from a vibration signal detected when a specimen is rotated and a rotation reference position signal. In a balance test apparatus, a vibration sensor for detecting vibration of a specimen, an A / D converter for converting an output of the vibration sensor into a digital signal, a rotation reference sensor for detecting a rotation reference position of the specimen, First calculating means for calculating a reference function in the X and Y directions based on the reference signal of the rotation reference sensor; and an output of the A / D converter and the X direction calculated by the first calculating means. A second calculating means for calculating a correlation coefficient between the X direction and the Y direction based on a reference function in the Y direction; and a second calculating means for calculating the magnitude and direction of the unbalance of the specimen from the correlation coefficient between the X direction and the Y direction. Note that the calculation means of (3) is provided. To.

【0007】さらに、供試体を回転したときに検出され
る振動信号と回転の基準位置信号とから不釣合の大きさ
と方向を算出する動釣合試験装置の不釣合算出方法にお
いて、振動センサからの出力をA/D変換してディジタ
ル信号として取り込み、回転基準センサからの基準信号
を基にX方向とY方向の基準関数を算出し、前記振動セ
ンサからのディジタル信号と前記基準関数との間でX方
向とY方向の相関係数を求め、このX方向とY方向の相
関係数に基づいて供試体の不釣合の大きさと方向を算出
することを特徴とする。
Further, in an unbalance calculation method of a dynamic balance test apparatus for calculating the magnitude and direction of an unbalance from a vibration signal detected when the specimen is rotated and a reference position signal of the rotation, an output from the vibration sensor is calculated. A / D converted and fetched as a digital signal, a reference function in the X and Y directions is calculated based on a reference signal from the rotation reference sensor, and a X-direction between the digital signal from the vibration sensor and the reference function is calculated. And a Y-direction correlation coefficient, and the magnitude and direction of the unbalance of the specimen are calculated based on the X-direction and Y-direction correlation coefficients.

【0008】本発明の動釣合試験装置においては、振動
センサの出力をすぐにA/D変換してディジタル信号と
する。一方で回転基準センサからの基準位置信号を基に
ディジタル的にX方向とY方向の基準関数を算出する。
これらの振動センサのディジタルデータと基準関数のデ
ィジタルデータとを演算することによりX方向とY方向
の相関係数を求め、この相関係数に基づいて供試体の不
釣合の大きさと方向を算出するので、最終的な結果に誤
差の入る余地が少なく精度の高い不釣合量を求めること
ができる。また相関係数を求めるにあたっては様々なデ
ィジタルフィルターを採用できるので、結果の精度が高
いだけでなく測定の時間も短くできる。
[0008] In the dynamic balance test apparatus of the present invention, the output of the vibration sensor is immediately A / D converted into a digital signal. On the other hand, a reference function in the X and Y directions is digitally calculated based on a reference position signal from the rotation reference sensor.
By calculating the digital data of these vibration sensors and the digital data of the reference function, the correlation coefficient in the X direction and the Y direction is obtained, and the magnitude and direction of the unbalance of the specimen are calculated based on the correlation coefficient. In addition, there is little room for error in the final result, and a highly accurate unbalance amount can be obtained. In addition, since various digital filters can be employed in obtaining the correlation coefficient, not only the accuracy of the result is high but also the measurement time can be shortened.

【0009】[0009]

【発明の実施の形態】本発明の一実施の形態を図面を参
照しながら説明する。図1は本発明の動釣合試験装置の
構成を示すブロック図である。供試体Wは、その両端部
が軸受1a,1bにより支持された状態でその周囲にベ
ルト2が掛け回され、モータ3を駆動することによって
ベルト2を介して回転が与えられる。各軸受1a,1b
はバネ4a,4bを介して試験機フレームに対して変位
自在に支持されており、供試体Wが回転すると供試体W
に存在する不釣合によって各軸受1a,1bが変位す
る。これらの各軸受1a,1bの変位(速度)は、ムー
ビングコイル式の振動センサ5a,5bによって、供試
体Wの左面および右面における不釣合振動信号として検
出される。この各不釣合信号は正弦波状の信号であっ
て、それぞれアンプ11a,11bによって増幅された
後、A/D変換器12a,12bでディジタル化されて
刻々の値が演算部13に取り込まれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the dynamic balance test device of the present invention. A belt 2 is wound around the specimen W in a state where both ends are supported by bearings 1 a and 1 b, and rotation is given through the belt 2 by driving a motor 3. Each bearing 1a, 1b
Is displaceably supported on the tester frame via springs 4a and 4b, and when the specimen W rotates, the specimen W
The bearings 1a and 1b are displaced due to the unbalance existing in the bearing. The displacements (speeds) of these bearings 1a, 1b are detected as unbalanced vibration signals on the left and right surfaces of the specimen W by the moving coil type vibration sensors 5a, 5b. Each of these unbalanced signals is a sine-wave signal. After being amplified by the amplifiers 11a and 11b, the signals are digitized by the A / D converters 12a and 12b, and the instantaneous value is taken into the arithmetic unit 13.

【0010】軸受1a,1bに支持された供試体Wの表
面に近接してレーザセンサ6が配設されており、このレ
ーザセンサ6によって、供試体Wの表面に付されたマー
クMが検出され、その検出信号はアンプ14によって増
幅された後、パルス成形回路15によって所定の形状の
パルス信号に成形されたうえで、供試体Wの回転基準パ
ルスとして演算部13に取り込まれる。
A laser sensor 6 is disposed near the surface of the specimen W supported by the bearings 1a and 1b, and the laser sensor 6 detects a mark M provided on the surface of the specimen W. After the detection signal is amplified by the amplifier 14, it is shaped into a pulse signal of a predetermined shape by the pulse shaping circuit 15, and is taken into the arithmetic unit 13 as a rotation reference pulse of the specimen W.

【0011】演算部13はDSP(ディジタル・シグナ
ル・プロセッサ)を主体とするディジタル演算装置であ
って、上記した各A/D変換器12a,12bおよびパ
ルス成形回路15のほかに、演算結果等を表示する表示
器16が接続されている。そして、演算部13では、こ
のあと詳述するように、左右の検出器5a,5bからの
不釣合信号の振幅値から供試体Wに存在する左右各面に
おける不釣合の大きさを算出し、また、各不釣合信号と
回転基準パルスとの位相関係から、左右各面の不釣合の
方向(角度位置)を算出する。そして、これらの演算結
果は表示器16に表示される。
The arithmetic unit 13 is a digital arithmetic unit mainly composed of a DSP (Digital Signal Processor). In addition to the above-mentioned A / D converters 12a and 12b and the pulse shaping circuit 15, the arithmetic unit 13 also calculates an arithmetic result. A display 16 for displaying is connected. Then, the arithmetic unit 13 calculates the magnitude of the unbalance in each of the left and right surfaces existing in the specimen W from the amplitude values of the unbalance signals from the left and right detectors 5a and 5b, as will be described in detail later. From the phase relationship between each unbalanced signal and the rotation reference pulse, the unbalanced direction (angular position) of each of the left and right surfaces is calculated. Then, the calculation results are displayed on the display 16.

【0012】次に、上述した動釣合試験機が行う不釣合
の大きさおよび方向を計測する手順を図2を参照しなが
ら詳しく説明する。振動センサ5の出力がA/D変換さ
れたのち演算部13に取り込まれ、一方で回転基準セン
サであるレーザセンサ6からの基準位置信号(基準パル
ス)も演算部13に取り込まれるのは上述のとおりであ
る。まず、基準パルスを基にしてX方向とY方向の基準
となる基準関数が作られる(図2の中央)。X方向の基
準関数は、基準パルスの立ち上がりを原点とし基準パル
スの周期をその周期とする余弦関数とする。また、Y方
向の基準関数は、基準パルスを原点とし基準パルスの周
期をその周期とする正弦関数とする。これらの波形がデ
ィジタル的に演算部13の内部で算出され記憶される。
なお、基準パルスの周期は供試体の回転に連動して多少
の変動があるので、基準関数を生成する際の周期として
その直前に観測された基準パルスの周期(間隔)を用い
る。
Next, a procedure for measuring the magnitude and direction of the imbalance performed by the above-described dynamic balance tester will be described in detail with reference to FIG. The reason why the output of the vibration sensor 5 is A / D-converted and then taken into the calculation unit 13, while the reference position signal (reference pulse) from the laser sensor 6 which is a rotation reference sensor is also taken into the calculation unit 13 as described above. It is as follows. First, a reference function serving as a reference in the X direction and the Y direction is created based on the reference pulse (center in FIG. 2). The reference function in the X direction is a cosine function whose origin is the rising of the reference pulse and whose period is the period of the reference pulse. The reference function in the Y direction is a sine function with the reference pulse as the origin and the cycle of the reference pulse as the cycle. These waveforms are digitally calculated and stored in the arithmetic unit 13.
Since the cycle of the reference pulse fluctuates somewhat in accordance with the rotation of the specimen, the cycle (interval) of the reference pulse observed immediately before is used as the cycle for generating the reference function.

【0013】次に、演算部13に取り込まれた振動セン
サ出力のディジタル値(図2の左側)は上述のX方向お
よびY方向の基準関数と掛け算され、続いて平均化(デ
ィジタルフィルター処理)が行われ、XY方向別々に相
関係数が算出される。相関係数とは測定された信号と基
準信号との位相がどの程度一致しているかを表す値であ
って、その値が大きいほど一致度が大きいことを表して
いる。
Next, the digital value of the output of the vibration sensor (left side in FIG. 2) taken into the arithmetic unit 13 is multiplied by the above-mentioned reference functions in the X and Y directions, and then averaging (digital filter processing) is performed. Then, the correlation coefficients are calculated separately in the X and Y directions. The correlation coefficient is a value indicating the degree of coincidence between the phase of the measured signal and the phase of the reference signal, and the greater the value, the greater the degree of coincidence.

【0014】X方向の相関係数とY方向の相関係数が求
まったら、この二つの値を基に不釣り合いの大きさと方
向を求めることができる。XYの直交座標上にX方向の
相関係数とY方向の相関係数の大きさをプロットする
と、その合成ベクトルが不釣合のベクトルを表すことに
なる(図2の右側)。その合成ベクトルの大きさが不釣
合の大きさを表し、合成ベクトルがX軸となす角が不釣
合の方向(角度)を表している。
When the correlation coefficient in the X direction and the correlation coefficient in the Y direction are obtained, the magnitude and direction of the imbalance can be obtained based on these two values. When the magnitude of the correlation coefficient in the X direction and the magnitude of the correlation coefficient in the Y direction are plotted on the XY rectangular coordinates, the resultant vector represents an unbalanced vector (right side in FIG. 2). The magnitude of the combined vector represents the magnitude of the imbalance, and the angle formed by the combined vector and the X axis represents the direction (angle) of the imbalance.

【0015】上述の実施の形態の装置において、計測回
路の時間的変動をキャンセルするために図3に示すよう
な較正手段を設けることがより好ましい。図3はひとつ
の振動センサ5から演算部13に至る回路部分を抜き出
して説明する図である。アンプ11の入力部分に切換ス
イッチ18が設けられ、基準電源17が発生する基準電
圧をアンプ11以降の回路に入力できるようになってい
る。アンプ11は周囲温度などの様々な要因によってド
リフトする可能性がある。また、不釣合量の測定レンジ
(アンプ11の増幅度など)を切り換えると、レンジ合
わせ調整が不十分であればそれぞれのレンジで測定値が
異なってしまう可能性がある。図3に示す較正手段は基
準となる電圧を実際に測定することでこれらの変動要因
をキャンセルするよう較正を行うものである。
In the apparatus according to the above-described embodiment, it is more preferable to provide a calibration means as shown in FIG. 3 in order to cancel a temporal variation of the measurement circuit. FIG. 3 is a diagram for extracting and explaining a circuit portion from one vibration sensor 5 to the calculation unit 13. A changeover switch 18 is provided at an input portion of the amplifier 11 so that a reference voltage generated by the reference power supply 17 can be input to circuits subsequent to the amplifier 11. The amplifier 11 may drift due to various factors such as an ambient temperature. Further, when the measurement range of the unbalance amount (such as the amplification degree of the amplifier 11) is switched, if the range adjustment is insufficient, the measured value may be different in each range. The calibration means shown in FIG. 3 performs calibration so as to cancel these fluctuation factors by actually measuring a reference voltage.

【0016】較正は次のような手順で行う。切換スイッ
チ18を基準電源17側にたおし、基準電源17が所定
の電圧(かりにEとする)を発生するように設定する。
そのうえでアンプ11およびA/D変換器12を介して
基準電圧値を測定する。そのときの測定値がVであった
とすると、本来この値はEと一致すべきであるので、こ
の誤差はアンプ11などの特定できない誤差に起因する
と考え、補正係数K=E/Vを導入する。
The calibration is performed in the following procedure. The changeover switch 18 is set to the reference power supply 17 side, and the reference power supply 17 is set so as to generate a predetermined voltage (referred to as E).
Then, the reference voltage value is measured via the amplifier 11 and the A / D converter 12. If the measured value at that time is V, this value should originally match E, so this error is considered to be caused by an unspecified error of the amplifier 11 or the like, and a correction coefficient K = E / V is introduced. .

【0017】実際の不釣合測定の場合には切換スイッチ
18は振動センサ側にたおして測定されるが、振動セン
サ出力の測定値(A/D変換された後の値)に上述の補
正係数Kをかけることによってアンプの誤差などをキャ
ンセルした測定値を得ることができる。その後は上述し
た手順と同じように不釣合量を算出する。
In the case of an actual unbalance measurement, the changeover switch 18 is measured across the vibration sensor, and the above-described correction coefficient K is added to the measured value of the vibration sensor output (the value after A / D conversion). By multiplying, a measured value in which an error of the amplifier is canceled can be obtained. After that, the unbalance amount is calculated in the same manner as described above.

【0018】基準電圧による較正は測定レンジ毎に行
い、その補正係数をそれぞれ記憶しておくことが好まし
い。そうすると測定レンジを変更したことによる誤差が
キャンセルされる。また、較正作業は装置の電源投入時
のみならず、必要に応じて随時行えるようにしておけば
常により正確な測定値を得ることができる。
It is preferable that the calibration using the reference voltage is performed for each measurement range, and the correction coefficients are stored. Then, the error caused by changing the measurement range is canceled. In addition, if the calibration operation is performed not only when the power of the apparatus is turned on, but also as needed, it is possible to always obtain more accurate measured values.

【0019】なお、特許請求の範囲の記載における第1
から第3の算出手段は、上述の実施の形態においては演
算部13の内部で実現されている手段である。また、上
述の説明では演算部13はDSPを主体とするディジタ
ル演算装置としたが、パーソナルコンピュータなどによ
って実現してもよいことはもちろんである。
It should be noted that the first in the claims.
The third calculation means is a means realized inside the calculation unit 13 in the above-described embodiment. Further, in the above description, the arithmetic unit 13 is a digital arithmetic device mainly composed of a DSP, but it is needless to say that the arithmetic unit 13 may be realized by a personal computer or the like.

【0020】[0020]

【発明の効果】本発明の動釣合試験装置においては、振
動センサの出力をすぐにA/D変換してディジタル信号
とし、回転基準センサからの基準位置信号を基にディジ
タル的に算出されたX方向とY方向の基準関数との間で
ディジタル演算することによりX方向とY方向の相関係
数を求め、この相関係数に基づいて供試体の不釣合の大
きさと方向を算出するので、最終的な結果にアナログ回
路のようなドリフトや温度依存性に基づく誤差の入る余
地が少なく、精度の高い不釣合量を求めることができ
る。また相関係数を求めるにあたっては様々なディジタ
ルフィルターを採用できるので、結果の精度が高いだけ
でなく、最適な処理方法を選択することにより測定の時
間も短くできる。
In the dynamic balance test apparatus of the present invention, the output of the vibration sensor is immediately converted into a digital signal by digital-to-analog conversion, and is digitally calculated based on the reference position signal from the rotation reference sensor. A digital operation is performed between the reference function in the X direction and the reference function in the Y direction to obtain a correlation coefficient in the X direction and the Y direction, and the magnitude and direction of the unbalance of the specimen are calculated based on the correlation coefficient. As a result, there is little room for an error based on drift or temperature dependence as in an analog circuit, and a highly accurate unbalance amount can be obtained. In addition, since various digital filters can be employed in obtaining the correlation coefficient, not only the accuracy of the result is high, but also the measurement time can be shortened by selecting an optimal processing method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の一実施の形態を示すブロック図で
ある。
FIG. 1 is a block diagram showing an embodiment of the device of the present invention.

【図2】本発明の不釣合算出方法を概念的に示す図であ
る。
FIG. 2 is a diagram conceptually illustrating an unbalance calculation method according to the present invention.

【図3】較正処理に関する好ましい形態を示す図であ
る。
FIG. 3 is a diagram showing a preferred embodiment of a calibration process.

【符号の説明】[Explanation of symbols]

1a,1b…伸び測定装置 2…ベルト 3…モータ 4a,4b…バネ 5a,5b…振動センサ 6…レーザセンサ 11a,11b…アンプ 12a,12b…A/D変換器 13…演算部 14…アンプ 15…パルス成形回路 16…表示器 17…基準電源 18…切換スイッチ W…供試体 M…マーク 1a, 1b: Elongation measuring device 2: Belt 3: Motor 4a, 4b: Spring 5a, 5b: Vibration sensor 6: Laser sensor 11a, 11b: Amplifier 12a, 12b: A / D converter 13: Operation unit 14: Amplifier 15 ... Pulse forming circuit 16 ... Display 17 ... Reference power supply 18 ... Changeover switch W ... Sample M ... Mark

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 供試体を回転したときに検出される振動
信号と回転の基準位置信号とから不釣合の大きさと方向
を算出する動釣合試験装置において、供試体の振動を検
出する振動センサと、この振動センサの出力をディジタ
ル信号に変換するA/D変換器と、供試体の回転基準位
置を検出する回転基準センサと、この回転基準センサの
基準信号を基にしてX方向とY方向の基準関数を算出す
る第1の算出手段と、前記A/D変換器の出力と前記第
1の算出手段によって算出されたX方向とY方向の基準
関数に基づいてX方向とY方向の相関係数を算出する第
2の算出手段と、このX方向とY方向の相関係数から供
試体の不釣合の大きさと方向を算出する第3の算出手段
を備えたことを特徴とする動釣合試験装置。
1. A dynamic balance test apparatus for calculating a magnitude and a direction of an unbalance from a vibration signal detected when a specimen is rotated and a reference position signal of rotation, a vibration sensor for detecting vibration of the specimen. An A / D converter for converting the output of the vibration sensor into a digital signal, a rotation reference sensor for detecting a rotation reference position of the specimen, and an X and Y direction based on the reference signal of the rotation reference sensor. First calculating means for calculating a reference function, and a phase relationship between the X direction and the Y direction based on the output of the A / D converter and the reference function in the X and Y directions calculated by the first calculating means. A dynamic balance test comprising: a second calculating means for calculating the number; and a third calculating means for calculating the magnitude and direction of the unbalance of the specimen from the correlation coefficient in the X and Y directions. apparatus.
【請求項2】 供試体を回転したときに検出される振動
信号と回転の基準位置信号とから不釣合の大きさと方向
を算出する動釣合試験装置の不釣合算出方法において、
振動センサからの出力をA/D変換してディジタル信号
として取り込み、回転基準センサからの基準信号を基に
X方向とY方向の基準関数を算出し、前記振動センサか
らのディジタル信号と前記基準関数との間でX方向とY
方向の相関係数を求め、このX方向とY方向の相関係数
に基づいて供試体の不釣合の大きさと方向を算出するこ
とを特徴とする動釣合試験装置の不釣合算出方法。
2. A method for calculating an unbalance of a dynamic balance test apparatus for calculating a magnitude and a direction of an unbalance from a vibration signal detected when a specimen is rotated and a reference position signal of rotation,
The output from the vibration sensor is A / D converted and fetched as a digital signal, a reference function in the X and Y directions is calculated based on the reference signal from the rotation reference sensor, and the digital signal from the vibration sensor and the reference function are calculated. Between X direction and Y
An unbalance calculation method for a dynamic balance test apparatus, comprising: calculating a correlation coefficient in a direction; and calculating a magnitude and a direction of the unbalance of the specimen based on the correlation coefficient in the X direction and the Y direction.
JP31943099A 1999-11-10 1999-11-10 Dynamic balancing machine and its unbalance caluculation method Pending JP2001141594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31943099A JP2001141594A (en) 1999-11-10 1999-11-10 Dynamic balancing machine and its unbalance caluculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31943099A JP2001141594A (en) 1999-11-10 1999-11-10 Dynamic balancing machine and its unbalance caluculation method

Publications (1)

Publication Number Publication Date
JP2001141594A true JP2001141594A (en) 2001-05-25

Family

ID=18110120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31943099A Pending JP2001141594A (en) 1999-11-10 1999-11-10 Dynamic balancing machine and its unbalance caluculation method

Country Status (1)

Country Link
JP (1) JP2001141594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051209A1 (en) * 2002-11-29 2004-06-17 Katsumi Tsuji Dynamic unbalance calculating method and dynamic unbalance testing device
CN104931197A (en) * 2015-06-29 2015-09-23 吉林大学 EEMD-based automatic balancing machine vibration signal processing method
CN114563131A (en) * 2022-03-21 2022-05-31 江苏大学 Single-measuring-point multi-roller simultaneous dynamic balancing method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051209A1 (en) * 2002-11-29 2004-06-17 Katsumi Tsuji Dynamic unbalance calculating method and dynamic unbalance testing device
CN104931197A (en) * 2015-06-29 2015-09-23 吉林大学 EEMD-based automatic balancing machine vibration signal processing method
CN114563131A (en) * 2022-03-21 2022-05-31 江苏大学 Single-measuring-point multi-roller simultaneous dynamic balancing method and system

Similar Documents

Publication Publication Date Title
CA2713772C (en) A method and apparatus for phase sensitive detection of eddy current measurements
JP2007086034A (en) Method for measuring rotational accuracy
JP2010096552A (en) Method and device of calibrating vibration velocity sensor
JP2000088891A (en) Bridge circuit and detector using the same
CN112964242A (en) System and method for testing mechanical coupling error of quartz tuning fork gyroscope gauge head
JP2001141594A (en) Dynamic balancing machine and its unbalance caluculation method
JP3379170B2 (en) Non-repetitive rotation accuracy measuring device
JPH0210368B2 (en)
JPH08327400A (en) Measuring instrument for amount of rotation
Ueda et al. Uncertainty evaluation of a primary shock calibration method for accelerometers
GB2289947A (en) Position and force measuring apparatus
JPH0617843B2 (en) Eccentricity compensation method for dynamic balance tester
Yang et al. A Superefficient Monocular Vision Dynamic Calibration Method Used for Determining the Sensitivities of Low-Frequency Linear and Vibration Angular Sensors
JP2822662B2 (en) Measurement method of semiconductor acceleration detector
US3950697A (en) Apparatus for measuring phase, amplitude and frequency characteristics of an object
JPS63217245A (en) Dynamic balance testing machine
JP2001083033A (en) Dynamic balance tester
JP3482975B2 (en) Amplifier for strain measurement
JP2817596B2 (en) Ultrasound Doppler blood flow meter
JPH0743207A (en) Vibration meter
JPS6227864Y2 (en)
CN117213619A (en) Heterodyne laser interferometry method for broadband vibration calibration and measuring device thereof
JP3208932B2 (en) Position measuring device
SU871079A1 (en) Device for calibrating angular speed and acceleration meters
JPH08261710A (en) Electrical micrometer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040521

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513