JPH0617843B2 - Eccentricity compensation method for dynamic balance tester - Google Patents

Eccentricity compensation method for dynamic balance tester

Info

Publication number
JPH0617843B2
JPH0617843B2 JP6457686A JP6457686A JPH0617843B2 JP H0617843 B2 JPH0617843 B2 JP H0617843B2 JP 6457686 A JP6457686 A JP 6457686A JP 6457686 A JP6457686 A JP 6457686A JP H0617843 B2 JPH0617843 B2 JP H0617843B2
Authority
JP
Japan
Prior art keywords
eccentricity
mounting
vector
compensation
dynamic balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6457686A
Other languages
Japanese (ja)
Other versions
JPS62220825A (en
Inventor
康二 荒堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6457686A priority Critical patent/JPH0617843B2/en
Publication of JPS62220825A publication Critical patent/JPS62220825A/en
Publication of JPH0617843B2 publication Critical patent/JPH0617843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、被試験体を取り付ける動釣合試験機の取付治
具の偏心の補償を行う偏心補償方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eccentricity compensating method for compensating for eccentricity of a mounting jig of a dynamic balance testing machine for mounting a device under test.

従来の技術 被試験体を取り付ける取付治具は理想的ではなく偏心が
あるので、その補償を行う必要がある。そのため従来で
は、不釣合を有する被試験体を、取付治具に対してまず
0度で取り付けて偏心ベクトルを測定し、次に180 度の
取付角度で取り付けて再び偏心ベクトルを測定する。あ
るいは互いに180 度なる角度でのそれぞれの偏心ベクト
ルを測定する。そしてこの測定によって得られた2つの
偏心ベクトルを合成し、被試験体の有する不釣合量が取
り除かれた取付治具のみの偏心ベクトルを取り出す。偏
心補償ベクトルは、この偏心ベクトルと向きが180度異
なる同じ長さのベクトルとなるので、この偏心補償ベク
トルに対応する補償電圧を補償電圧発生回路によって発
生させていた。
2. Description of the Related Art Since the mounting jig for mounting the DUT is not ideal and has eccentricity, it is necessary to compensate for it. Therefore, conventionally, an unbalanced DUT is first mounted on a mounting jig at 0 degree to measure the eccentricity vector, and then at a mounting angle of 180 degrees to measure the eccentricity vector again. Or measure each eccentricity vector at an angle of 180 degrees to each other. Then, the two eccentricity vectors obtained by this measurement are combined, and the eccentricity vector of only the attachment jig from which the unbalance amount of the test object is removed is taken out. Since the eccentricity compensation vector has the same length as that of the eccentricity vector and is 180 degrees different in direction, a compensation voltage corresponding to the eccentricity compensation vector is generated by the compensation voltage generating circuit.

発明が解決しようとする問題点 上記の方法で補償電圧を発生させると、例えば被試験体
がタイヤ等の弾性体である場合には、取付治具に被試験
体を取り付けた時生じる脱着エラー等の取付誤差が大き
く、その取付誤差によって偏心補償の精度が劣化するこ
とを防ぐには困難があった。
Problems to be Solved by the Invention When a compensation voltage is generated by the above method, for example, when the DUT is an elastic body such as a tire, a detachment error or the like that occurs when the DUT is attached to a mounting jig, etc. It was difficult to prevent the accuracy of eccentricity compensation from deteriorating due to the mounting error.

本発明は上記の問題点を解決するために発明されたもの
で、被試験体が弾性体の場合にも精度の高い偏心補償の
できる動釣合試験機の偏心補償方法を提供することを目
的としている。
The present invention has been invented to solve the above problems, and an object of the present invention is to provide an eccentricity compensation method for a dynamic balance tester capable of performing highly accurate eccentricity compensation even when the DUT is an elastic body. I am trying.

問題点を解決するための手段 上記目的を達成するために、本発明の動釣合試験機の偏
心補償方法は、被試験体を取付治具に対して全周にわた
り順次取付角度を変えて行う複数回の測定の工程と、前
記測定によって得られた複数の偏心ベクトルをグラフ上
にプロットして合成する工程と、前記合成によって得ら
れた偏心補償ベクトルに対応した偏心補償電圧を補償電
圧発生回路によって発生させる工程とにより構成する。
Means for Solving the Problems In order to achieve the above object, an eccentricity compensating method for a dynamic balance testing machine of the present invention is performed by sequentially changing a mounting angle of a DUT with respect to a mounting jig over the entire circumference. A step of measuring a plurality of times, a step of plotting a plurality of eccentricity vectors obtained by the measurement on a graph and combining them, and a compensating voltage generating circuit for compensating an eccentricity compensation voltage corresponding to the eccentricity compensation vector obtained by the combining And the step of generating by.

作用 脱着エラーは全周にわたる測定時にはランダムな方向に
発生する。この時得られた偏心ベクトルを合成する工程
でランダムな方向の脱着エラーは互いに相殺しあうこと
になり、その結果得られた偏心補償ベクトルでは、脱着
エラーによる影響は少なくなっている。そしてこの脱着
エラーによる影響が減少した偏心補償ベクトルに基づい
て取付治具の偏心の補償を行う。
Action Desorption errors occur in random directions when measuring over the entire circumference. In the step of synthesizing the eccentricity vector obtained at this time, the desorption errors in random directions cancel each other out, and the decentering compensation vector obtained as a result has less influence by the desorption error. Then, the eccentricity of the mounting jig is compensated on the basis of the eccentricity compensation vector in which the influence of the detachment error is reduced.

実施例 第1図は本発明の一実施例に使用する動釣合試験機のブ
ロック線図である。図において、主軸11は、被試験体で
あるタイヤ13が取り付けられた取付治具12を回転させ、
その時生じる機械的振動はピックアップ21に導かれて電
気信号に変換された後、増幅回路22に導かれる。この増
幅回路22には、その出力を0Vに設定するピックアップ
信号遮断スイッチ32が設けられている。増幅回路22の出
力は校正回路23を経て加算回路24の一方の入力に接続さ
れ、他方の入力には、取付治具12のX方向およびY方向
の偏心補償電圧を発生する補償電圧発生回路27の出力
が、チョッパー回路28を介して接続されている。加算回
路24の出力は、X、Yの各方向の成分を分離する同期整
流回路25に導かれ、それぞれの方向の量を示す直流電圧
となって出力される。その2つの出力は表示回路26へ導
かれて不釣合の量を示す信号と不釣合の角度を示す信号
とに変換され、不釣合の量を示す不釣合量メータ30と、
不釣合角度メータ31とを振らせる。回転検出器14は、取
付治具12が一回転するごとに1つの回転パルスを発生
し、この回転パルスは矩形波発生回路29に送られる。そ
してこの出力には、位相が互いに90度異なり回転パルス
に同期した2つのパルスが現れる。この2つのパルス
は、同期整流回路25およびチョッパー回路28のそれぞれ
に送られている。主軸11の左側の機械的振動を検出する
構成を示したが、右側の機械的振動についても、上記と
同様の構成により不釣合の表示を行うようになってい
る。
Embodiment FIG. 1 is a block diagram of a dynamic balance testing machine used in one embodiment of the present invention. In the figure, the spindle 11 rotates a mounting jig 12 to which a tire 13 as a test object is mounted,
The mechanical vibration generated at that time is guided to the pickup 21, converted into an electric signal, and then guided to the amplifier circuit 22. The amplifier circuit 22 is provided with a pickup signal cutoff switch 32 for setting its output to 0V. The output of the amplifier circuit 22 is connected to one input of an adder circuit 24 via a calibration circuit 23, and the compensating voltage generating circuit 27 for generating the eccentricity compensating voltage of the mounting jig 12 in the X and Y directions is connected to the other input. The output of is connected through a chopper circuit 28. The output of the adder circuit 24 is guided to the synchronous rectification circuit 25 that separates the components in each of the X and Y directions, and is output as a DC voltage indicating the amount in each direction. The two outputs are guided to the display circuit 26 and converted into a signal indicating the amount of unbalance and a signal indicating the angle of unbalance, and an unbalance amount meter 30 indicating the amount of unbalance.
Swing the unbalanced angle meter 31. The rotation detector 14 generates one rotation pulse each time the mounting jig 12 makes one rotation, and this rotation pulse is sent to the rectangular wave generation circuit 29. Then, in this output, two pulses appearing which are 90 degrees out of phase with each other and which are synchronized with the rotation pulse. The two pulses are sent to the synchronous rectification circuit 25 and the chopper circuit 28, respectively. The configuration for detecting the mechanical vibration on the left side of the main shaft 11 is shown, but the mechanical vibration on the right side is also displayed by the configuration similar to the above.

以下に動作について説明する。The operation will be described below.

増幅回路22の出力がピックアップ21からの信号となるよ
うにピックアップ信号遮断スイッチ32を切り換え、ため
し重りをつけたタイヤ13を取付治具12に取り付ける。そ
して図示されていない駆動部によって主軸11を回転させ
ると、取付治具12の偏心およびタイヤ13の不釣合によっ
て主軸11が振動し、その振動に比例した電圧がピックア
ップ21に発生する。校正回路23により修正面分離および
不釣合量メータ30の校正を行う。
The pickup signal cutoff switch 32 is switched so that the output of the amplifier circuit 22 becomes the signal from the pickup 21, and the tire 13 with a weight is attached to the attachment jig 12. When the main shaft 11 is rotated by a drive unit (not shown), the main shaft 11 vibrates due to the eccentricity of the mounting jig 12 and the imbalance of the tire 13, and a voltage proportional to the vibration is generated in the pickup 21. The calibration circuit 23 calibrates the corrected surface separation and the unbalance amount meter 30.

タイヤ13からためし重りをはがして回転させ、不釣合量
メータ30と不釣合角度メータ31の指示を読み取る。そし
て次に取付治具12に対してタイヤ13を45度回転させて上
記と同様に指示を読み取る。以下順次45度づつタイヤ13
を取付治具12に対して回転させながら指示を読み取って
いくと、8つの偏心ベクトルを得る。
The trial weight is removed from the tire 13 and rotated, and the instructions of the unbalance amount meter 30 and the unbalance angle meter 31 are read. Then, the tire 13 is rotated 45 degrees with respect to the mounting jig 12, and the instruction is read in the same manner as above. Tires 13 in 45 degree sequence
When the instruction is read while rotating with respect to the mounting jig 12, eight eccentricity vectors are obtained.

第2図は8つの偏心ベクトルおよび偏心補償ベクトルを
示したグラフである。8回の測定により得られた偏心ベ
クトルを、0を原点としてその先端部(a〜h)をそれ
ぞれプロットし、その先端部(a〜h)を結ぶ円周kを
描く。各偏心ベクトルを合成した時のベクトルは、グラ
フの原点0から円周Kの中心Pに向うベクトルmで示さ
れ、このベクトルmの向きを180 度回転させたベクトル
nが偏心補償ベクトルとなる。
FIG. 2 is a graph showing eight eccentricity vectors and eccentricity compensation vectors. With respect to the eccentricity vector obtained by eight times of measurement, the tip portions (a to h) are plotted with 0 as the origin, and the circumference k connecting the tip portions (a to h) is drawn. The vector obtained by combining the eccentricity vectors is indicated by a vector m directed from the origin 0 of the graph to the center P of the circumference K, and the vector n obtained by rotating the direction of this vector m by 180 degrees becomes the eccentricity compensation vector.

第1図に戻る。ピックアップ信号遮断スイッチ32により
ピックアップ信号を遮断すると、不釣合量メータ30およ
び不釣合角度メータ31の指示が0となる。次に補償電圧
発生回路27により、その指示が偏心補償ベクトルnに対
応した値となるように補償電圧発生回路27から偏心補償
電圧を発生させる。
Return to FIG. When the pickup signal is cut off by the pickup signal cut-off switch 32, the instructions of the unbalance amount meter 30 and the unbalance angle meter 31 become zero. Next, the compensation voltage generation circuit 27 causes the compensation voltage generation circuit 27 to generate an eccentricity compensation voltage so that the instruction becomes a value corresponding to the eccentricity compensation vector n.

主軸11の右側の振動を表示するブロックについても上記
と同様の操作を行う。
The same operation as above is performed for the block that displays the vibration on the right side of the main shaft 11.

なお本発明は上記実施例に限定されず、被試験体13につ
いては、タイヤ以外に、弾性体からなる回転体について
適用することが可能であり、また取付治具12に対して順
次角度を変えて被試験体17を取り付ける時の回転角度に
ついては、45度に限定されず、例えば30度あるいは60度
等の任意の角度とすることが可能であり、その角度を小
さくする程偏心の補償の精度を高めることが可能とな
る。
Note that the present invention is not limited to the above-mentioned examples, and the DUT 13 can be applied to a rotating body made of an elastic body in addition to the tire, and the angle is sequentially changed with respect to the mounting jig 12. The rotation angle when attaching the DUT 17 is not limited to 45 degrees, and can be any angle such as 30 degrees or 60 degrees. The smaller the angle, the more the eccentricity is compensated. It is possible to improve accuracy.

発明の効果 被試験体を取付治具に対して全周にわたり順次取付角度
を変えて測定を行い取付治具の偏心を補償するようにし
たので、被試験体が弾性体の場合にも精度の高い偏心補
償のできる動釣合試験機の偏心補償方法を提供すること
が可能になる。
Effect of the Invention Since the DUT is measured by sequentially changing the mounting angle with respect to the mounting jig over the entire circumference to compensate the eccentricity of the mounting jig, the accuracy can be improved even when the DUT is an elastic body. It is possible to provide an eccentricity compensating method for a dynamic balance tester capable of performing high eccentricity compensation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に使用する動釣合試験機のブ
ロック線図、第2図は8つの偏心ベクトルおよび偏心補
償ベクトルを示したグラフである。 12……取付治具、13……被試験体、27……補償電圧発生
回路、n……偏心補償ベクトル。
FIG. 1 is a block diagram of a dynamic balance tester used in an embodiment of the present invention, and FIG. 2 is a graph showing eight eccentricity vectors and eccentricity compensation vectors. 12 ... Mounting jig, 13 ... DUT, 27 ... Compensation voltage generation circuit, n ... Eccentricity compensation vector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】動釣合試験機の取付治具に被試験体を取り
付けて回転させ偏心ベクトルを測定することにより取付
治具の偏心を補償する偏心補償において、前記被試験体
を前記取付治具に対して全周にわたり順次取付角度を変
えて取り付け偏心ベクトルを測定する複数回の測定の工
程と、前記測定によって得られた複数の偏心ベクトルを
グラフ上にプロットして合成する工程と、前記合成によ
って得られた偏心補償ベクトルに対応する偏心補償電圧
を補償電圧発生回路によって発生させる工程とにより構
成されたことを特徴とする動釣合試験機の偏心補償方
法。
1. In an eccentricity compensation for compensating the eccentricity of a mounting jig by mounting an object to be tested on a mounting jig of a dynamic balance testing machine and measuring an eccentricity vector, the mounting object is fixed to the mounting jig. A step of measuring a plurality of times of measuring the mounting eccentricity vector by sequentially changing the mounting angle with respect to the tool, a step of plotting a plurality of eccentricity vectors obtained by the measurement and synthesizing them, and And a step of generating an eccentricity compensation voltage corresponding to the eccentricity compensation vector obtained by combining by a compensation voltage generating circuit.
JP6457686A 1986-03-22 1986-03-22 Eccentricity compensation method for dynamic balance tester Expired - Lifetime JPH0617843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6457686A JPH0617843B2 (en) 1986-03-22 1986-03-22 Eccentricity compensation method for dynamic balance tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6457686A JPH0617843B2 (en) 1986-03-22 1986-03-22 Eccentricity compensation method for dynamic balance tester

Publications (2)

Publication Number Publication Date
JPS62220825A JPS62220825A (en) 1987-09-29
JPH0617843B2 true JPH0617843B2 (en) 1994-03-09

Family

ID=13262194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6457686A Expired - Lifetime JPH0617843B2 (en) 1986-03-22 1986-03-22 Eccentricity compensation method for dynamic balance tester

Country Status (1)

Country Link
JP (1) JPH0617843B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071217B2 (en) * 1989-01-12 1995-01-11 株式会社工技研究所 Wheel balancer calibration device and calibration method
CN103776587B (en) * 2014-01-28 2016-03-16 郭卫建 Determine the method for the amount of unbalance of rotor
CN108254661B (en) * 2018-02-01 2021-04-16 南方电网科学研究院有限责任公司 Hardware discharge voltage test system and method

Also Published As

Publication number Publication date
JPS62220825A (en) 1987-09-29

Similar Documents

Publication Publication Date Title
US2451863A (en) Apparatus for balancing rotors
Thearle Dynamic balancing of rotating machinery in the field
JPS60214228A (en) Vibration analyzing method
US6631640B2 (en) Method and apparatus for measuring dynamic balance
JPH06281527A (en) Method and equipment for balancing rotating body
JPH0617843B2 (en) Eccentricity compensation method for dynamic balance tester
US3805623A (en) Balancing apparatus for measurement of want of balance
JPH03123834A (en) Unbalance correcting method and device
JPH0222327B2 (en)
JPH0124249B2 (en)
JP2003302305A (en) Method and apparatus for correcting unbalance
JPH0210368B2 (en)
JPH07103815A (en) Nonrepetitive rotational accuracy measuring apparatus
US2799168A (en) Balance measuring apparatus for elastic rotors
JP6370239B2 (en) Method and apparatus for measuring dynamic imbalance of rotating body
JP3302166B2 (en) Rotary equipment test equipment
GB760678A (en) Improvements relating to the balancing of rotating bodies
US3232118A (en) Method and means for the compensation of journalling faults in workpiece-balancing operations
JPS62228127A (en) Balancing machine and fine correction of eccentricity thereof
JP2001141594A (en) Dynamic balancing machine and its unbalance caluculation method
RU2010205C1 (en) Process of estimation of rotor unbalance
JP2001305149A (en) Testing device for vibrating motor
RU2783189C1 (en) Method for controlling the physical parameters of the resonator of a solid-state wave gyroscope
US3188858A (en) Method and apparatus for determining static moments of workfieces
US3950697A (en) Apparatus for measuring phase, amplitude and frequency characteristics of an object