JPH071217B2 - Wheel balancer calibration device and calibration method - Google Patents

Wheel balancer calibration device and calibration method

Info

Publication number
JPH071217B2
JPH071217B2 JP1005355A JP535589A JPH071217B2 JP H071217 B2 JPH071217 B2 JP H071217B2 JP 1005355 A JP1005355 A JP 1005355A JP 535589 A JP535589 A JP 535589A JP H071217 B2 JPH071217 B2 JP H071217B2
Authority
JP
Japan
Prior art keywords
rotary shaft
phase
unbalanced
vector
magnitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1005355A
Other languages
Japanese (ja)
Other versions
JPH02186231A (en
Inventor
潤 新井田
Original Assignee
株式会社工技研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社工技研究所 filed Critical 株式会社工技研究所
Priority to JP1005355A priority Critical patent/JPH071217B2/en
Publication of JPH02186231A publication Critical patent/JPH02186231A/en
Publication of JPH071217B2 publication Critical patent/JPH071217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は自動車その他のホイールのホイールバランサー
において高精度の較正量を算出可能にしたホイールバラ
ンサーの較正装置及び較正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application The present invention relates to a calibration device and a calibration method for a wheel balancer capable of calculating a highly accurate calibration amount in a wheel balancer for automobiles and other wheels.

(2)従来の技術 従来この種のホイールバランサーの較正方法として、ホ
イールバランサーの支持回転軸に負荷をかけない無負荷
状態にして該支持回転軸を回転して該支持回転軸自体の
アンバランス量を得てから、次に該支持回転軸に被測定
対象である未知のアンバランス体を取付けて該支持回転
軸を回転して未知のアンバランス体のアンバランス量を
得、両アンバランス量を演算処理して補正した測定アン
バランス量を得るようにした方法が知られている。
(2) Conventional Technology As a conventional method for calibrating a wheel balancer of this type, an unbalanced amount of the support rotary shaft itself is rotated by rotating the support rotary shaft in an unloaded state in which no load is applied to the support rotary shaft of the wheel balancer. Then, an unknown unbalanced body to be measured is attached to the supporting rotary shaft, and the supporting rotary shaft is rotated to obtain the unbalanced amount of the unknown unbalanced body. A method is known in which arithmetic processing is performed to obtain a corrected measurement unbalance amount.

(3)発明が解決しようとする問題点 この従来の方法によれば無負荷状態で支持回転軸自体の
アンバランス量を補正のために用いる方式であるので、
機械的における支持回転軸の軸受部のベアリングノイズ
等のノイズや測定系における低レベルの測定となるため
の電気ノイズの影響を大きく受け、かくて支持回転軸自
体のアンバランスの応力の大きさと位相の精確な測定値
を得ることが困難となり、正確な較正を期し難い問題点
がある。
(3) Problems to be Solved by the Invention According to this conventional method, the unbalance amount of the supporting rotary shaft itself is used for correction in a no-load state.
Mechanically, it is greatly affected by noise such as bearing noise of the bearing part of the supporting rotary shaft and electrical noise that results in low level measurement in the measurement system, and thus the magnitude and phase of the unbalanced stress of the supporting rotary shaft itself. It becomes difficult to obtain an accurate measurement value of, and it is difficult to achieve accurate calibration.

本発明はこのような問題点を解消し高精度な較正を可能
にしたホイールバランサーの較正装置及び較正方法を提
供することを目的とする。
It is an object of the present invention to provide a wheel balancer calibration device and a calibration method that solves such problems and enables highly accurate calibration.

(4)問題点を解決するための手段 この目的を達成すべく第1発明は較正装置に関し、支持
回転軸にホイールを装着して該支持回転軸を回転し、該
ホイールのアンバランスの応力の大きさと位相とを測定
する式のホイールバランサーにおいて、前記支持回転軸
上の既知の軸方向の位置における既知の半径方向の位置
の第1取付位置又は同一の既知軸方向の位置における同
一の既知の半径方向の位置で前記第1取付位置から180
度の位置のずれた第2取付位置に取付ける基準のウエイ
トWの質量手段と、前記第1取付位置に該質量手段を取
付けてセンサー手段により測定したときのアンバランス
の応力の大きさと位相のベクトル▲▼及び前記第2
取付位置に該質量を取付けてセンサー手段により測定し
たときのアンバランスの応力の大きさと位相のベクトル
▲▼を記憶する記憶手段と、該記憶手段のこれらア
ンバランスのデータから前記支持回転軸のアンバランス
のベクトルとゲイン補正値 を算出する演算手段を具備したことを特徴とし、第2発
明は較正方法に関し、支持回転軸にホイールを装着して
該支持回転軸を回転し、該ホイールのアンバランスの応
力の大きさと位相とを測定するホイールバランサーにお
いて、前記支持回転軸上の既知の軸方向の位置における
既知の半径方向の位置の第1取付位置に基準のウエイト
Wの質量手段を取付け、前記支持回転軸を回転しセンサ
ー手段によりアンバランスの応力の大きさと位相のベク
トル▲▼を測定して該アンバランスのデータを記憶
手段に記憶し、次に同一の既知の軸方向における同一の
既知の半径方向の位置で前記第1取付位置から180度の
位相のずれた第2取付位置に前記基準の質量手段を取付
け、前記支持回転軸を回転し前記センサー手段によりア
ンバランスの応力の大きさと位相のベクトル▲▼を
測定して該アンバランスのデータを前記記憶手段に記憶
し、演算手段により該記憶手段に記憶されている前記2
つのアンバランスのデータから前記支持回転軸のアンバ
ランスのベクトルとゲイン補正値 を算出することを特徴とする。
(4) Means for Solving the Problems In order to achieve this object, the first invention relates to a calibration device, in which a wheel is mounted on a supporting rotary shaft to rotate the supporting rotary shaft, and an unbalance stress of the wheel is eliminated. In a wheel balancer of a magnitude and phase measuring type, a known radial position at a known axial position on the supporting rotary shaft or a same known axial position at the same known axial position. 180 from the first mounting position at the radial position
Vector of mass of the reference weight W to be mounted at the second mounting position deviated in degrees, and vector of magnitude and phase of unbalance stress when the mass means is mounted at the first mounting position and measured by the sensor means ▲ ▼ and the second
A storage means for storing the magnitude of the unbalanced stress and a vector ▲ ▼ of the phase when the mass is mounted at the mounting position and measured by the sensor means, and the unbalanced data of the supporting rotary shaft from the unbalanced data of the storage means. Balance vector and gain correction value A second aspect of the present invention relates to a calibration method, wherein a wheel is mounted on a supporting rotary shaft, the supporting rotary shaft is rotated, and the magnitude and phase of the unbalance stress of the wheel are measured. In the wheel balancer for measuring, the mass means of the reference weight W is attached to a first mounting position at a known radial position at a known axial position on the support rotary shaft, the support rotary shaft is rotated, and the sensor is rotated. Means for measuring the magnitude of the unbalanced stress and the vector ▲ ▼ of the phase and storing the unbalanced data in the storage means, and then storing the unbalanced data at the same known radial position in the same known axial direction. The reference mass means is attached to the second attachment position, which is 180 degrees out of phase with the first attachment position, the support rotary shaft is rotated, and the magnitude of the unbalanced stress is increased by the sensor means. Wherein the measuring the phase vectors ▲ ▼ storing data of the imbalance in the storage means, stored in said storage means by the operation means 2
Unbalance vector and gain correction value of the supporting rotation axis from the data of one unbalance Is calculated.

▲▼=▲▼− ▲▼=▲▼− Eは基準ウイエトWを取付けたときに理論上生ずる既知
のアンバランス量である。
▲ ▼ = ▲ ▼ − ▲ ▼ = ▲ ▼ − E is a known unbalance amount that theoretically occurs when the reference weight W is attached.

(5)作用 支持回転軸上の既知の軸方向の位置における既知の半径
方向の位置の第1取付位置に基準の質量手段を取付け、
前記支持回転軸を回転しセンサー手段によりアンバラン
スの応力の大きさと位相を測定して該アンバランスのデ
ータを記憶手段に記憶する。
(5) Action The reference mass means is attached to the first attachment position at the known radial position at the known axial position on the support rotary shaft,
The support rotating shaft is rotated, the magnitude and phase of the unbalanced stress are measured by the sensor means, and the unbalanced data is stored in the storage means.

次に前記基準の質量手段を前記第1取付位置から取外
し、該基準の質量手段を、同一の既知の軸方向位置にお
ける同一の既知の半径方向の位置で前記第1取付位置か
ら180度の位相のずれた第2取付位置に取付け、前記支
持回転軸を回転し前記センサー手段によりアンバランス
の応力の大きさと位相を測定して該アンバランスのデー
タを前記記憶手段に記憶する。そして演算手段により該
記憶手段に記憶されている前記2つのアンバランスのデ
ータから較正値である前記支持回転軸のアンバランスの
ベクトルと全測定系のゲイン補正値 を算出する。かくてこの算出された較正値は、質量手段
を取付けた有負荷の状態即ち機械的電気的にS/N比の良
好な状態のアンバランスの測定データに基いて算出され
ているので精確となる。
Next, the reference mass means is removed from the first mounting position and the reference mass means is phased 180 degrees from the first mounting position at the same known radial position at the same known axial position. The unbalanced data is stored in the storage means by mounting the unbalanced stress on the second mounting position, rotating the supporting rotary shaft, measuring the magnitude and phase of the unbalanced stress by the sensor means. Then, the unbalance vector of the supporting rotary shaft, which is a calibration value, and the gain correction value of the entire measurement system are calculated from the two unbalance data stored in the storage means by the computing means. To calculate. Therefore, the calculated calibration value is accurate because it is calculated based on the unbalanced measurement data in the loaded state with the mass means attached, that is, in the state where the S / N ratio is mechanically and electrically favorable. .

(6)実施例 本発明の1実施例を図面に従って説明する。(6) Embodiment One embodiment of the present invention will be described with reference to the drawings.

第1図はホイールバランサーの概略構成図を示し、該第
1図において、(1)は該ホイールバランサーのフレー
ム、(2)は該フレーム(1)の1対の突出部(1a)
(1b)の軸受に支持された支持回転軸を示し、これら突
出部(1a)(1b)の位置において該支持回転軸(2)に
機械的に連結した応力検出センサー(3a)(3b)が設け
られており、又該支持回転軸(2)の根部端に光電式或
いは電磁式等の回転角センサーからなる位相センサー
(4)を設けた。(5)はこれらセンサー(3a)(3b)
及び(4)からの検出信号をインターフェイス(6)を
介して入力し後述する所定の演算を実行する例えばマイ
クロコンピュータからなる演算手段即ち演算制御装置、
(7)は演算結果のデータを必要に応じて記憶する記憶
手段即ち記憶装置、(8)は演算結果を表示する表示装
置を示す。
FIG. 1 shows a schematic configuration diagram of a wheel balancer. In FIG. 1, (1) is a frame of the wheel balancer, and (2) is a pair of protrusions (1a) of the frame (1).
(1b) shows the supporting rotary shaft supported by the bearing, and the stress detecting sensors (3a) (3b) mechanically connected to the supporting rotary shaft (2) at the positions of these protrusions (1a) (1b) A phase sensor (4) composed of a rotation angle sensor such as a photoelectric type or an electromagnetic type is provided at the root end of the supporting rotary shaft (2). (5) is these sensors (3a) (3b)
And a calculation means, that is, a calculation control device including a microcomputer for inputting the detection signal from (4) through the interface (6) and executing a predetermined calculation described later,
(7) shows a storage means or a storage device for storing the data of the calculation result as necessary, and (8) shows a display device for displaying the calculation result.

又、(9)は前記支持回転軸(2)の先端部に固定した
ホイール当接円板を示し、該当接円板(9)の周側面の
180度ずれた位置に第1取付位置の第1螺孔(11a)と第
2取付位置の第2螺孔(11b)が形成され、螺杆を有す
る基準の質量手段即ちウェイト(10)の該螺杆を第1螺
孔(11a)或いは第2螺孔(11b)に螺合することにより
前記支持回転軸(2)の既知の軸方向位置で180度位相
のずれた位置にウェイト(10)が取付可能となる。
Further, (9) shows a wheel contact disk fixed to the tip end portion of the support rotary shaft (2).
A first screw hole (11a) at the first mounting position and a second screw hole (11b) at the second mounting position are formed at positions displaced by 180 degrees, and the screw rod of the reference mass means having the screw rod, that is, the weight (10). The weight (10) is attached at a position 180 degrees out of phase with the known axial position of the support rotary shaft (2) by screwing the screw into the first screw hole (11a) or the second screw hole (11b). It will be possible.

次に上記構成からなるホイールバランサーによる較正法
について説明する。
Next, a calibration method using the wheel balancer having the above configuration will be described.

先ずウェイト(10)をその螺杆において当接円板(9)
の第1螺孔(11a)に螺合して取付けてから支持回転軸
(2)を所定の回転速度にする。そしてこのときのアン
バランスの応力の大きさと位相を応力検出センサー(3
a)(3b)及び位相センサー(4)により測定しインタ
ーフェイス(6)及び演算制御装置(5)を介して例え
ば第2図のベクトル▲▼に相当するアンバランスの
応力の大きさと位相のデータを記憶装置(7)に記憶す
る。
First of all, the weight (10) is attached to the abutment disc (9) by its screw rod
After being screwed into and attached to the first screw hole (11a), the support rotary shaft (2) is brought to a predetermined rotation speed. Then, the magnitude and phase of the unbalanced stress at this time are measured by the stress detection sensor (3
a) (3b) and the phase sensor (4), and the data of the magnitude and phase of the unbalanced stress corresponding to the vector ▲ ▼ of FIG. 2 is measured through the interface (6) and the arithmetic and control unit (5). Stored in the storage device (7).

次に前記ウェイト(10)を当接円板(9)の第1螺孔
(11a)より外して180度位相のずれた第2螺孔(11b)
に取付けてから支持回転軸(2)を所定の回転速度にし
て前述と同様に例えば第2図のベクトル▲▼に相当
するアンバランスの応力の大きさと位相のデータを記憶
装置(7)に記憶する。そして演算制御装置(5)は該
記憶装置(7)からベクトル▲▼及び▲▼のア
ンバランスのデータを読み出して の演算を実行して支持回転軸(2)自体のアンバランス
のベクトルを求め、このベクトルに相当する応力の
大きさと位相のデータを記憶装置(7)に記憶する。
Next, the weight (10) is removed from the first screw hole (11a) of the contact disk (9) and the second screw hole (11b) is out of phase by 180 degrees.
Then, the supporting rotary shaft (2) is set to a predetermined rotational speed and the data of the magnitude and phase of the unbalanced stress corresponding to the vector ▲ ▼ in FIG. 2 are stored in the storage device (7) in the same manner as described above. To do. Then, the arithmetic and control unit (5) reads out the unbalanced data of the vectors ▲ ▼ and ▲ ▼ from the storage unit (7). Is calculated to obtain an unbalanced vector of the supporting rotary shaft (2) itself, and the magnitude and phase data of the stress corresponding to this vector are stored in the storage device (7).

ここで、前記ベクトル▲▼及びベクトル▲▼は
それぞれ基準ウェイト(10)によって生じたアンバラン
スに支持回転軸(2)に残存する機械固有のアンバラン
スが加算されたものであるため、ベクトル▲▼のア
ンバランスデータとベクトル▲▼のアンバランスデ
ータの和を求めると、基準ウェイト(10)によるアンバ
ランス量は位相が180度異なるために相互に打消し合っ
てゼロとなり、結果的に支持回転軸(2)に残存する機
械固有のアンバランス量を2倍にしたデータが得られ、
このデータを第2図の如く1/2にすることにしてよって
精確な支持回転軸(2)に残存する機械固有のアンバラ
ンス量を知ることができ、この値に相当する前記ベクト
ルがゼロ補正の較正データとなる。
Here, since the vector ▲ ▼ and the vector ▲ ▼ are respectively the unbalance generated by the reference weight (10) and the unbalance unique to the machine remaining on the support rotary shaft (2), the vector ▲ ▼ When the sum of the unbalanced data of the vector and the unbalanced data of the vector ▲ ▼ is calculated, the unbalance amount due to the reference weight (10) cancels each other out because the phase is different by 180 degrees, resulting in zero as a result. The data obtained by doubling the amount of unbalance unique to the machine remaining in (2) is obtained,
By halving this data as shown in Fig. 2, it is possible to know the exact amount of unbalance peculiar to the machine remaining on the supporting rotary shaft (2), and the vector corresponding to this value is zero-corrected. Calibration data.

次に支持回転軸(2)自体のアンバランスの影響を除い
た180度の位相のずれた基準ウェイト(10)の応力の各
ベクトル▲▼及び▲▼は第2図の如く ▲▼=▲▼− …(b) ▲▼=▲▼− …(c) となり、演算制御装置(5)は記憶装置(7)よりこれ
ら▲▼、▲▼及びのデータを読み出して
(b)及び(c)式の演算を実行して▲▼及び▲
▼を求める。そしてこれら▲▼又は▲▼を、
基準ウェイトである前記ウェイト(10)が取付けたとき
に理論上生ずる既知のアンバランス量Eで除して、機械
固有の下記式のゲイン補正値kを演算制御装置(5)に
より求める。
Next, each vector of stresses ▲ ▼ and ▲ ▼ of the reference weight (10) having a phase shift of 180 degrees excluding the influence of the imbalance of the supporting rotary shaft (2) itself is as shown in Fig. 2 ▲ ▼ = ▲ ▼ -... (b) ▲ ▼ = ▲ ▼ -... (c), the arithmetic and control unit (5) reads out the data of ▲ ▼, ▲ ▼ and these from the storage device (7) and formulas (b) and (c) are obtained. Perform the calculation of ▲ ▼ and ▲
Ask for ▼. And these ▲ ▼ or ▲ ▼
The gain correction value k of the following equation peculiar to the machine is obtained by the arithmetic and control unit (5) by dividing by the known unbalance amount E theoretically generated when the weight (10) as the reference weight is attached.

そしてこのゲイン補正値kを記憶装置(7)に記憶す
る。
Then, this gain correction value k is stored in the storage device (7).

次に前記ウェイト(10)を当接円板(9)より取り外し
てから第1図の点線図示の如く被測定対象であるホイー
ル(A)を該当接円板(9)に側面を当接させて締付具
(B)により支持回転軸(2)に取付け固定し、該支持
回転軸(2)を所定の高速回転して従来の如く応力セン
サー(3a)(3b)及び位相センサー(4)により、ホイ
ールの左右側面におけるアンバランスの応力の大きさと
位相を測定し、その左右の測定結果のアンバランスがベ
クトル▲▼、▲▼とすると、演算制御装置
(5)は記憶装置(7)より及びkのデータを読み出
してからこれら測定結果▲▼、▲▼のデータと
及びkのデータにより下記式の演算を実行する。
Next, after removing the weight (10) from the contact disk (9), the side surface of the wheel (A) to be measured is brought into contact with the contact disk (9) as shown by the dotted line in FIG. And fixing it to the supporting rotary shaft (2) with a tightening tool (B), and rotating the supporting rotary shaft (2) at a predetermined high speed so that the stress sensors (3a) (3b) and the phase sensor (4) are rotated as in the conventional case. By measuring the magnitude and phase of the unbalanced stress on the left and right side surfaces of the wheel, and assuming that the unbalanced left and right measurement results are vectors ▲ ▼ and ▲ ▼, the arithmetic and control unit (5) is After reading the data of k and k, the calculation of the following equation is executed by the data of these measurement results ▲ ▼, ▲ ▼ and the data of k.

▲▼=k(▲▼−) …)e) ▲▼=k(▲▼−) …(f) このようにして得られた▲▼及び▲▼は較正後
の精確なホイールの左右側面の位置のアンバランスのベ
クトルであり、これらベクトル▲▼及び▲▼を
用いた演算結果のスカラー量即ち応力の大きさと位相角
が表示装置(8)に表示され、作業員はこの表示に基い
て従来と同様にホイールの左右側面の所定個所にバラン
スウェイトを取付ける。
▲ ▼ = k (▲ ▼-) ...) e) ▲ ▼ = k (▲ ▼-) (f) The ▲ ▼ and ▲ ▼ thus obtained are the positions of the right and left side surfaces of the accurate wheel after calibration. Is a vector of unbalance, and the scalar quantity of the calculation result using these vectors ▲ ▼ and ▲ ▼, that is, the magnitude of the stress and the phase angle are displayed on the display device (8), and the worker can use the conventional display based on this display. Similarly, attach balance weights to the left and right sides of the wheel at the specified locations.

即ち、この較正法によれば、支持回転軸の測定状態が有
負荷の状態即ち機械的、電気的にS/N比の良好な状態で
あるとともに、被測定物の測定状態と同一の条件のアン
バランスデータより支持回転軸に残存する機械固有のア
ンバランス補正データと機械固有のゲイン補正値を精確
かつ簡単に求めることが可能となる。
That is, according to this calibration method, the measurement state of the supporting rotary shaft is a loaded state, that is, a mechanically and electrically good S / N ratio, and the measurement condition of the measured object is the same. From the unbalance data, it is possible to accurately and easily find the machine-specific unbalance correction data and the machine-specific gain correction value remaining on the supporting rotary shaft.

尚、前記(a)〜(f)式の演算制御装置(5)による
演算としては、各ベクトルをx軸及びy軸の直交軸に投
影換算させてから加減等を実行し、その結果のx軸及び
y軸上の値から演算結果のベクトルのスカラー量即ち応
力の大きさ及び該ベクトルの傾き位相角を算出するよう
にする等任意である。
As the calculation by the calculation control device (5) of the formulas (a) to (f), each vector is projected and converted into an orthogonal axis of the x-axis and the y-axis, and then the addition and subtraction are executed, and the result x The scalar amount of the vector of the calculation result, that is, the magnitude of the stress and the tilt phase angle of the vector are calculated from the values on the axes and the y-axis.

(7)発明の効果 このように第1発明によれば、支持回転軸上の既知の軸
方向の位置における既知の半径方向の位置で互いに180
度の位相のずれた第1取付位置及び第2取付位置の各取
付位置に基準の質量手段を取付ける構成であるので、そ
の構成が簡単であると共に、前記支持回転軸のアンバラ
ンスのベクトルとゲイン補正値を演算する演算手段を具
備しているので、精確な較正値を演算可能な較正装置が
得られ又第2発明によれば、基準の質量手段を前記第1
取付位置に取付けて前記支持回転軸を回転したときのア
ンバランスの応力の大きさと位相のデータと、前記基準
の質量手段を前記第2取付位置に取付けて前記支持回転
軸を回転したときのアンバランスの応力の大きさと位相
のデータに基いて、演算手段により支持回転軸のアンバ
ランスのベクトルと共にゲイン補正値の較正値を算出す
るようにしているので、例えばセンサー自体の個体差に
よるゲイン補正等を含む電気的及び機械的な全測定系の
ゲイン補正が可能となり、かくて従来の無負荷の…状態
と異り機械的、電気的にS/N比の良好な有負荷の状態で
の測定結果のデータにより較正値が算出でき、かくて得
られた較正値が精確であり、しかも該較正値が簡単に求
められる効果を有する。
(7) Effects of the Invention As described above, according to the first aspect of the invention, it is possible to rotate the supporting rotary shaft at a known radial position at a known axial position with respect to each other by 180 degrees.
Since the reference mass means is attached to each of the first mounting position and the second mounting position, which are out of phase with each other, the structure is simple, and the unbalance vector and gain of the supporting rotary shaft are large. Since the calibration device is provided with the calculation means for calculating the correction value, a calibration device capable of calculating an accurate calibration value is obtained.
Data of magnitude and phase of unbalanced stress when the supporting rotary shaft is rotated at the mounting position and the unbalance when the reference mass means is mounted at the second mounting position and the supporting rotary shaft is rotated. Based on the magnitude and phase data of the balance stress, the calculation means calculates the unbalance vector of the supporting rotary shaft together with the calibration value of the gain correction value. It is possible to correct the gain of all the electrical and mechanical measurement systems, including, and thus, the measurement in the loaded state with good S / N ratio mechanically and electrically unlike the conventional no-load state. A calibration value can be calculated from the resulting data, the calibration value thus obtained is accurate, and the calibration value can be easily obtained.

【図面の簡単な説明】 第1図は本発明のホイールバランサーの較正装置の1実
施例の概略説明図、第2図は測定結果のアンバランスか
ら較正値を求めることを示すベクトル図である。 (2)……支持回転軸 (3a),(3b),(4)……センサー手段 (5)……演算手段 (7)……記憶手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of one embodiment of a calibration device for a wheel balancer of the present invention, and FIG. 2 is a vector diagram showing that a calibration value is obtained from an imbalance of measurement results. (2) …… Supporting rotary shafts (3a), (3b), (4) …… Sensor means (5) …… Computing means (7) …… Storage means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】支持回転軸にホイールを装着して該支持回
転軸を回転し、該ホイールのアンバランスの応力の大き
さと位相とを測定する式のホイールバランサーにおい
て、前記支持回転軸上の既知の軸方向の位置における既
知の半径方向の位置の第1取付位置又は同一の既知軸方
向の位置における同一の既知の半径方向の位置で前記第
1取付位置から180度の位相のずれた第2取付位置に取
付ける基準のウエイトWの質量手段と、前記第1取付位
置に該質量手段を取付けてセンサー手段により測定した
ときのアンバランスの応力の大きさと位相のベクトル▲
▼及び前記第2取付位置に該質量を取付けてセンサ
ー手段により測定したときのアンバランスの応力の大き
さと位相のベクトル▲▼を記憶する記憶手段と、該
記憶手段のこれらアンバランスのデータから前記支持回
転軸のアンバランスのベクトルとゲイン補正値 を算出する演算手段を具備したことを特徴とするホイー
ルバランサーの較正装置。 ▲▼=▲▼− ▲▼=▲▼− Eは基準ウエイトWを取付けたときに理論上生ずる既知
のアンバランス量である。
1. A wheel balancer of a type in which a wheel is mounted on a supporting rotary shaft, the supporting rotary shaft is rotated, and the magnitude and phase of stress of unbalance of the wheel are measured. A first mounting position at a known radial position at an axial position of or a second known 180 ° phase shift from the first mounting position at a same known radial position at the same known axial position. A mass means for the reference weight W to be mounted at the mounting position and a vector of magnitude and phase of unbalanced stress when the mass means is mounted at the first mounting position and measured by the sensor means.
▼ and storage means for storing the magnitude of the unbalanced stress and the vector ▲ ▼ of the phase when the mass is mounted at the second mounting position and measured by the sensor means, and the unbalanced data of the storage means Unbalanced vector of support rotation axis and gain correction value A calibration device for a wheel balancer, comprising a calculation means for calculating ▲ ▼ = ▲ ▼-▲ ▼ = ▲ ▼-E is a known unbalance amount that theoretically occurs when the reference weight W is attached.
【請求項2】支持回転軸にホイールを装着して該支持回
転軸を回転し、該ホイールのアンバランスの応力の大き
さと位相とを測定するホイールバランサーにおいて、前
記支持回転軸上の既知の軸方向の位置における既知の半
径方向の位置の第1取付位置に基準のウエイトWの質量
手段を取付け、前記支持回転軸を回転しサンサー手段に
よりアンバランスの応力の大きさと位相のベクトル▲
▼を測定して該アンバランスのデータを記憶手段に記
憶し、次に同一の既知の軸方向における同一の既知の半
径方向の位置で前記第1取付位置から180度の位相のず
れた第2取付位置に前記基準の質量手段を取付け、前記
支持回転軸を回転し前記センサー手段によりアンバラン
スの応力の大きさと位相のベクトル▲▼を測定して
該アンバランスのデータを前記記憶手段に記憶し、演算
手段により該記憶手段に記憶されている前記2つのアン
バランスのデータから前記支持回転軸のアンバランスの
ベクトルとゲイン軸正値 を算出することを特徴とするホイールバランサーの較正
方法。 ▲▼=▲▼− ▲▼=▲▼− Eは基準ウエイトWを取付けたときに理論上生ずる既知
のアンバランス量である。
2. A wheel balancer for mounting a wheel on a supporting rotary shaft, rotating the supporting rotary shaft, and measuring the magnitude and phase of unbalance stress of the wheel, the known shaft on the supporting rotary shaft. Direction, the mass means of the reference weight W is attached to the first attachment position at the known radial position, the supporting rotary shaft is rotated, and the vector of the magnitude and phase of the unbalanced stress is generated by the sunr means.
▼ is measured and the unbalanced data is stored in the storage means, and then a second phase is shifted by 180 degrees from the first mounting position at the same known radial position in the same known axial direction. The reference mass means is attached to the mounting position, the supporting rotary shaft is rotated, the magnitude of the unbalanced stress and the vector ▲ ▼ of the phase are measured by the sensor means, and the unbalanced data is stored in the storage means. , An unbalance vector of the support rotary shaft and a gain axis positive value from the two unbalance data stored in the storage means by the computing means A method for calibrating a wheel balancer, which comprises: ▲ ▼ = ▲ ▼-▲ ▼ = ▲ ▼-E is a known unbalance amount that theoretically occurs when the reference weight W is attached.
JP1005355A 1989-01-12 1989-01-12 Wheel balancer calibration device and calibration method Expired - Fee Related JPH071217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1005355A JPH071217B2 (en) 1989-01-12 1989-01-12 Wheel balancer calibration device and calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1005355A JPH071217B2 (en) 1989-01-12 1989-01-12 Wheel balancer calibration device and calibration method

Publications (2)

Publication Number Publication Date
JPH02186231A JPH02186231A (en) 1990-07-20
JPH071217B2 true JPH071217B2 (en) 1995-01-11

Family

ID=11608877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005355A Expired - Fee Related JPH071217B2 (en) 1989-01-12 1989-01-12 Wheel balancer calibration device and calibration method

Country Status (1)

Country Link
JP (1) JPH071217B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9146171B1 (en) * 2012-02-22 2015-09-29 Hennessy Industries, Inc. Auto calibration method and apparatus for wheel balancer equipment
CN103776587B (en) 2014-01-28 2016-03-16 郭卫建 Determine the method for the amount of unbalance of rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617843B2 (en) * 1986-03-22 1994-03-09 株式会社島津製作所 Eccentricity compensation method for dynamic balance tester

Also Published As

Publication number Publication date
JPH02186231A (en) 1990-07-20

Similar Documents

Publication Publication Date Title
EP0133229B2 (en) Wheel balancer two plane calibration method
US4285240A (en) Wheel unbalance measurement system and method
US4457172A (en) Electronic wheel balancer with signal conditioning
JP3436376B2 (en) How to balance a rotating body
US4502328A (en) Free spinning electronic wheel balancer
US4338818A (en) Method for determining error sources in a wheel balancer
US4480472A (en) Electronic wheel balancer for vehicle wheels
JPH0943071A (en) Method and device for scaling torque measuring device
USRE31971E (en) Wheel unbalance measurement system and method
JPH0227717B2 (en)
KR100528644B1 (en) Method for measuring the absolute steering angle of the steering shaft for a vehicle
US20030230142A1 (en) Apparatus and method for testing rotational balance of crankshaft
KR100528645B1 (en) Method for measuring the absolute steering angle of steering shaft for vehicle
JPH071217B2 (en) Wheel balancer calibration device and calibration method
US7882739B1 (en) Wheel balancer incorporating novel calibration technique
JP6663610B2 (en) Method and apparatus for measuring moment of inertia
JP4098429B2 (en) Balance test machine and balance test method
KR100869193B1 (en) Method And Arrangement For Calibrating An Unbalance Measuring Apparatus
EP0759156A1 (en) Method and device for determining centre of gravity and inertial tensor of a body
US6408675B1 (en) Eccentric error corrector and method of eccentric error correction for acceleration sensor in acceleration generating apparatus
JPH04315936A (en) Unbalance amount measurement device for rotating body
JP6370239B2 (en) Method and apparatus for measuring dynamic imbalance of rotating body
CN114427820B (en) Deflection measuring method and device for rotating shaft mechanism
JP2822662B2 (en) Measurement method of semiconductor acceleration detector
JP3221202B2 (en) Dynamic balance testing machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees