JPH0243152B2 - - Google Patents
Info
- Publication number
- JPH0243152B2 JPH0243152B2 JP54077269A JP7726979A JPH0243152B2 JP H0243152 B2 JPH0243152 B2 JP H0243152B2 JP 54077269 A JP54077269 A JP 54077269A JP 7726979 A JP7726979 A JP 7726979A JP H0243152 B2 JPH0243152 B2 JP H0243152B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetometer
- magnetometers
- magnetic field
- axis
- axes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- 230000005668 Josephson effect Effects 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
Description
【発明の詳細な説明】
本発明は磁束計を用いて構成した磁力計に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetometer constructed using a magnetometer.
磁界の測定には磁力計を用いる方法と磁束計を
用いる方法とがある。磁力計は直接にその場所の
磁界の強度を与えるが磁束計はそれ自身方向性を
有し、磁界におけるその方向の成分の強さが判る
だけなので、磁束計によつて磁界強度を測定しよ
うとすると磁束計を色々な向きに動かして出力最
大の方向を求め、そのときの出力を測るようにし
なければならない。従つて磁界強度を測るには一
般に磁力計の方が便利である。 There are two methods for measuring magnetic fields: a method using a magnetometer and a method using a magnetometer. A magnetometer directly gives the strength of the magnetic field at that location, but a flux meter itself has directionality and can only determine the strength of the component of the magnetic field in that direction. Then, you must move the magnetometer in various directions to find the direction of maximum output, and then measure the output at that time. Therefore, magnetometers are generally more convenient for measuring magnetic field strength.
磁力計としては現在の所、光磁気共鳴磁力計が
きわめて高感度であり、一般に磁束計として用い
られているフラツクスゲートよりも高感度なの
で、磁束計を用いて磁力計を構成すると云うこと
は余り意味がない。所で最近超伝導のジヨゼフソ
ン効果を利用したスキツド(SQUID)磁束計が
実用化されるに至り、これは感度としては光磁気
共鳴磁力計の100倍にも達する高感度のものなの
で、このような磁束計であれば、これを用いて磁
力計を構成すると云うことは超高感度の磁力計を
得ると云う意味できわめて有意義なことである。 Currently, optical magnetic resonance magnetometers are extremely sensitive as magnetometers, and are more sensitive than fluxgates, which are generally used as magnetometers. It doesn't make much sense. Recently, SQUID magnetometers that utilize the superconducting Josephson effect have been put into practical use, and they have a sensitivity that is 100 times that of optical magnetic resonance magnetometers. If it is a flux meter, constructing a magnetometer using this is extremely meaningful in the sense of obtaining an ultra-high sensitivity magnetometer.
本発明は磁束計を組合せて磁力計を構成するこ
とにより、装置の工作精度によつて制限される以
上の高精度の測定を可能とし、以つてきわめて高
感度高精度の磁力計を得ようとするものである。 The present invention aims to construct a magnetometer by combining magnetometers, thereby making it possible to perform measurements with high precision beyond the limitations of the machine precision of the device, thereby obtaining a magnetometer with extremely high sensitivity and precision. It is something to do.
本発明は上述したような立場で磁束計を用いて
磁力計を構成する一つの方法を提案するものであ
つて、単にスキツド磁束計を利用した場合のみを
対象としたものではなく、今後出現が予想される
高感度の磁束計を用いて磁力計を構成する場合に
も当然適用できる一般性を持つたものである。 The present invention proposes a method of configuring a magnetometer using a magnetometer from the above-mentioned perspective, and is not intended only for the case where a skid magnetometer is used, but is intended for use in the future. This generality can naturally be applied to the case where a magnetometer is constructed using a highly sensitive magnetometer.
本発明は3個以上の磁束計を用い、各磁束計を
その軸が同一平面に2軸しか含まれないように交
叉させて固定し、これらの磁束計の軸の交点を原
点とした直交座標軸を考えて、その座標軸に対す
る各磁束計の軸の方向を予め測定しておき、各磁
束計の出力からベクトル演算で上記直交座標の各
座標軸方向の磁界成分を算出して磁界の方向と強
さとを求めるようにした磁力計を提供する。こゝ
において磁束計を始めから互に直交させて配置す
れば特別な演算をしなくても直ちに磁界の直交座
標系の三成分が測定できるわけであるが、実際問
題として磁束計(一般的に複数個の物体)の軸を
正確に直交させて固定すると云う工作は甚だ困難
であり、どうしても多少の誤差を伴う。仮面既に
配置固定されている複数物体の軸相互間の角度は
比較的容易にきわめて高精度に測定できるから、
それらの軸の直交座標軸とのなす角も高精度で求
められることになり、従つて予め複数の磁束計を
きわめて正確に直交させて固定するよりも、むし
ろ直交座標軸に対する各磁束計の方向を測定し、
その結果を用いて演算により磁界を求めるように
した方が高精度の結果が得られるのであり、本発
明はその点に着目したものである。以下実施例に
よつて本発明を説明する。 The present invention uses three or more magnetometers, fixes each magnetometer so that its axes intersect so that only two axes are included in the same plane, and creates orthogonal coordinate axes with the origin at the intersection of the axes of these magnetometers. The direction of the axis of each magnetometer with respect to the coordinate axis is measured in advance, and the magnetic field component in the direction of each coordinate axis of the above orthogonal coordinates is calculated from the output of each magnetometer by vector calculation, and the direction and strength of the magnetic field are calculated. Provided is a magnetometer capable of determining the . In this case, if the magnetometers are placed perpendicular to each other from the beginning, the three components of the orthogonal coordinate system of the magnetic field can be measured immediately without any special calculations, but in practice, the magnetometers (generally It is extremely difficult to fix the axes of multiple objects (objects) so that they are perpendicular to each other, and it inevitably involves some errors. The angle between the axes of multiple objects that have already been placed and fixed can be measured relatively easily and with extremely high precision.
The angles that these axes make with the orthogonal coordinate axes must also be determined with high precision, and therefore, rather than fixing multiple magnetometers in advance with extremely accurate orthogonal alignment, the direction of each magnetometer with respect to the orthogonal coordinate axes is measured. death,
A more accurate result can be obtained by calculating the magnetic field using the result, and the present invention focuses on this point. The present invention will be explained below with reference to Examples.
第1図は磁束計の機能を説明するもので、Fが
磁束計であり、Aはその検知軸である。Hは印加
磁界をベクトルで表わしたもので、磁束計はHの
軸A方向の成分Haを検知するものである。 FIG. 1 explains the function of the magnetometer, where F is the magnetometer and A is its detection axis. H represents the applied magnetic field as a vector, and the magnetometer detects the component Ha of H in the axis A direction.
第2図は本発明における磁束計の配置を示し、
3個の磁束計を用いた例であつて、Fx,Fy,Fz
が磁束計であり、x′,y′,z′はこれらの磁束計の
検知軸であり、0点において互に略直角に交るよ
うに固定されている。x′,y′,z′軸はわざと直角
と異なる角にする必要はないが、特に高精度に直
交される必要もない。今第3図に示すように3軸
x′,y′,z′に対し、直交座標軸x,y,zを考え
原点及びx′軸とx軸とを一致させ、xy平面を
x′y′平面と一致させる。このようにするとx′,y′,
z′軸系の直交座標x,y,z軸系からの外れはy
軸とy′軸とのなす角φとz軸とz′軸となす角θ及
びz,z′両軸を含む平面とx軸とのなす角λによ
つて決定される。従つてこれらの角を予め精密に
測定しておく。 FIG. 2 shows the arrangement of the magnetometer in the present invention,
This is an example using three magnetometers, Fx, Fy, Fz
are magnetometers, and x', y', and z' are detection axes of these magnetometers, which are fixed so as to intersect each other at approximately right angles at the zero point. The x', y', and z' axes do not need to be intentionally set at different angles from right angles, but they also do not need to be orthogonal with a particularly high degree of precision. Now there are three axes as shown in Figure 3.
For x', y', and z', consider orthogonal coordinate axes x, y, and z, and align the origin, x' axis, and x axis, and create the xy plane.
Align it with the x′y′ plane. In this way, x′, y′,
The deviation from the orthogonal coordinate x, y, z axis system of the z′ axis system is y
It is determined by the angle φ between the axis and the y' axis, the angle θ between the z axis and the z' axis, and the angle λ between the x axis and a plane containing both the z and z' axes. Therefore, these angles should be precisely measured in advance.
今第3図において測定しようとする磁界を2重
矢印Heで示す。こゝでx′,y′,z′3軸方向の単位
ベクトルをi′,j′,k′とすると、これらはx,y,
z直交軸系の単位ベクトル(100)、(010)(001)
を用いて表わすと、前記φ、θ、λを用いて、
i′=1
0
0、j′=sinφ
cosφ
0、k′=sinφ cosλ
sinφ sinλ
cosθ
のように書くことができる。測定しようとする磁
界Heのx,y,z直交軸系に対する方向余弦を
h1、h2、h3とすると、Heの大きさをh0として、
He=h0h1
h2
h3
他方磁束計のFx等はTeのx′,y′,z′各軸方向
の成分の大きさを出力として示すので、夫々の出
力をHx′,Hy′,Hz′とすると、
Hx′=He・i′、Hy′=He・j′、Hz′=He・k′で
あるからi′=(1、0、0)等と転置して、
Hx′
Hy′
Hz′=h01、
sinφ、
sinθcosλ、0、
cosφ、
sinθsinλ、0
0
cosθh1
h2
h3 ……(1)
他方Heのx,y,z直交系の各軸成分Hx,
Hy,Hzは、
Hx
Hy
Hz=h0h1
h2
h3 ……(2)
であるから、(1)式に(2)式を代入して、
Hx′
Hy′
Hz′=1、
sinφ、
sinθcosλ、0、
cosφ、
sinθsinλ、0
0
cosθHx
Hy
Hz ……(3)
(3)式からHx,Hy,Hzは、
Hx
Hy
Hz=h01、
sinφ、
sinθcosλ、0、
cosφ、
sinθsinλ、0
0
cosθ〓-1
|
|
〓Hx′
Hy′
Hz′ ……(4)
こゝでsinφ=y1、cosφ=y2、sinφcosλ=Z1、
sinθsinλ=Z2、cosθ=Z3と書いて(4)式を整理する
と、
によつてHx,Hy,Hzが磁束計Fx,Fy,Fzの
出力Hx′,Hy′,Hz′から求まり磁界の強さh0は、
h0=√2+2+2
第4図は上記(5)式の演算を行つてh0を算出す
る回路構成を示す。 In Fig. 3, the magnetic field to be measured is indicated by a double arrow He. Here, if the unit vectors in the x', y', and z'3 axis directions are i', j', k', these are x, y,
Unit vector of z orthogonal axis system (100), (010) (001)
When expressed using φ, θ, and λ, it can be written as i'=1 0 0, j'=sinφ cosφ 0, k'=sinφ cosλ sinφ sinλ cosθ. The direction cosine of the magnetic field He to be measured with respect to the x, y, z orthogonal axis system is
Assuming h1, h2, h3, the magnitude of He is h0, He=h0h1 h2 h3 On the other hand, the Fx etc. of the magnetometer shows the magnitude of the components of Te in the x′, y′, and z′ axis directions as output. Therefore, if the respective outputs are Hx′, Hy′, Hz′, Hx′=He・i′, Hy′=He・j′, Hz′=He・k′, so i′=(1, 0 . Axial component Hx,
Hy, Hz is Hx Hy Hz=h0h1 h2 h3 ……(2), so substituting equation (2) into equation (1), Hx′ Hy′ Hz′=1, sinφ, sinθcosλ, 0, cosφ, sinθsinλ, 0 0 cosθHx Hy Hz ……(3) From equation (3), Hx, Hy, Hz are: Hx Hy Hz=h01, sinφ, sinθcosλ, 0, cosφ, sinθsinλ, 0 0 cosθ〓 -1 | | 〓Hx′ Hy′ Hz′ ……(4) Here, sinφ=y1, cosφ=y2, sinφcosλ=Z1,
If we write sinθsinλ=Z2 and cosθ=Z3 and rearrange equation (4), we get Hx, Hy, Hz can be found from the outputs Hx', Hy', Hz' of the magnetometers Fx, Fy, Fz, and the magnetic field strength h0 is h0 = √ 2 + 2 + 2 Figure 4 shows the above (5 ) shows a circuit configuration that calculates h0 by calculating the equation.
Hx=Hx′
Hy=Hy′−Hx′sinφ/cosφ
Hz={Hx′(sinφsinθsinλ−sinφcosλcosφ)
−Hy′sinθsinλ+Hz′cosφ}/cosφcosθ
で三角関数部分は定数なので、
Hx=Hx′
Hy=aHx′+bHy′
Hz=cHx′+dHy′+fHz′
でa〜fは予めφ、θ、λを精密に測つておくこ
とにより計算で求めておくことができる。第4図
でFx,Fy,Fzは第2図に示した磁束計で、2
x,2y,2zは夫々Fx等の出力を増幅するア
ンプ、Xa,Xb、等と記入したものは入力をa
倍、b倍、等する係数掛算回路で、3y,3zは
加算回路であり、4x,4y,4zは自乗回路、
5は加算回路、6は開平回路で、この開平回路の
出力が求める磁界強度h0を与える。Hx=Hx′ Hy=Hy′−Hx′sinφ/cosφ Hz={Hx′(sinφsinθsinλ−sinφcosλcosφ) −Hy′sinθsinλ+Hz′cosφ}/cosφcosθ Since the trigonometric function part is a constant, Hx=Hx′ Hy=aHx′+bHy 'Hz=cHx'+dHy'+fHz' where a to f can be obtained by calculation by precisely measuring φ, θ, and λ in advance. In Figure 4, Fx, Fy, Fz are the magnetometers shown in Figure 2, and 2
x, 2y, 2z are amplifiers that amplify the output of Fx, etc., and those written as Xa, Xb, etc. are amplifiers that amplify the output of Fx, etc.
Coefficient multiplication circuits that multiply, b times, and equal, 3y, 3z are addition circuits, 4x, 4y, 4z are square circuits,
5 is an adder circuit, 6 is a square root circuit, and the output of this square root circuit gives the required magnetic field strength h0.
測定すべき磁界の方向の変動量が小さく、およ
その方向が既知の場合は、上述した各磁束計は直
交させるよりもむしろ測定すべき磁界の方向の変
動範囲を取り囲むように相互にせまい角度で交叉
させる方が取付け角度の測定誤差の影響が小さく
なる。即ち角度が90゜に近いときは90゜との角度差
(前述φ、θ、λ等)に対する測定誤差の比率が
大となり、特にsinで効く項において誤差の影響
が強いので、磁束計の相互取付け角は測定目的が
許す範囲で直角から離れている方が却つて測定精
度を上げることができる。 If the amount of variation in the direction of the magnetic field to be measured is small and the approximate direction is known, the magnetometers described above should be placed at narrow angles to each other so as to surround the range of variation in the direction of the magnetic field to be measured, rather than being orthogonal. Crossing them reduces the influence of measurement errors in the mounting angle. In other words, when the angle is close to 90°, the ratio of measurement error to the angular difference from 90° (φ, θ, λ, etc.) becomes large, and the influence of the error is particularly strong in terms that are effective due to sine, so the mutual Measurement accuracy can be improved by setting the mounting angle as far away from the right angle as the measurement purpose allows.
また測定すべき磁界の絶対値を問題とせずにそ
の変化量だけを測定する偏差磁力計の場合には、
磁束計相互の角の直角からの外れの角度の測定誤
差の影響が小さくなるので特に有効である。 In addition, in the case of a deviation magnetometer that measures only the amount of change in the magnetic field without considering the absolute value of the magnetic field,
This is particularly effective because the influence of measurement errors due to deviations from the right angle between the angles of the magnetometers is reduced.
なお上述実施例では磁束計は3個使用されてい
るが、4個以上の磁束計を用い、これらから3個
ずつの磁束計の組を幾通りか作り、各組毎に上述
した演算構成を用いて求められた磁界強度から平
均法等で磁界を計算すれば一層測定精度が向上す
る。 In the above embodiment, three magnetometers are used, but four or more magnetometers are used, several sets of three magnetometers are created from these, and the above calculation configuration is applied to each set. If the magnetic field is calculated using the average method or the like from the magnetic field strength determined using the method, the measurement accuracy will be further improved.
従来から3個の磁束計を直交させて磁界の各磁
束計の軸方向成分を検出して磁界強度を測定する
ものはあつたが磁束計の感度が磁束計の取付け角
度の直角からの外れを問題とせねばならぬ程高く
なかつた。本発明は磁界強度を磁束計方向の成分
から計算するとき磁束計相互間の角度の認識誤差
が無視できないような高感度の磁束計を用いる場
合に有意義なものであつて、磁束計を特定角度に
きわめて精密に固定するより、特定角度からの誤
差を測定する方が容易に精度が上げられる点に着
目し、磁束計の取付け角度を高精度にする努力を
する代りに角度誤差から計算で磁界を求めるよう
にしたものであるから、比較的楽な工作で高感度
高精度の磁力計が得られるのである。 Conventionally, there have been methods that measure magnetic field strength by arranging three magnetometers perpendicular to each other and detecting the axial component of the magnetic field, but the sensitivity of the magnetometers is limited by the fact that the mounting angle of the magnetometers deviates from the right angle. It wasn't so high that it had to be a problem. The present invention is significant when using highly sensitive magnetometers in which the recognition error of the angle between the magnetometers cannot be ignored when calculating the magnetic field strength from the component in the direction of the magnetometer. Focusing on the fact that it is easier to improve accuracy by measuring the error from a specific angle than by fixing the magnetometer extremely precisely, we calculated the magnetic field from the angular error instead of making an effort to make the mounting angle of the magnetometer highly accurate. Since it is designed to find the following, a highly sensitive and highly accurate magnetometer can be obtained with relatively easy work.
第1図は磁束計の機能を説明する図、第2図は
本発明における磁束計の配置を示す斜視図、第3
図は磁束計の軸と直交座標軸とのなす角度を示す
斜視図、第4図は本発明の一実施例装置の演算回
路を示すブロツク図である。
Fx,Fy,Fz……磁束計、Xa,Xb,〜XF……
係数掛算器。
Fig. 1 is a diagram explaining the function of the magnetometer, Fig. 2 is a perspective view showing the arrangement of the magnetometer in the present invention, and Fig. 3 is a diagram explaining the function of the magnetometer.
The figure is a perspective view showing the angle formed between the axis of the magnetometer and the orthogonal coordinate axes, and FIG. 4 is a block diagram showing the arithmetic circuit of an apparatus according to an embodiment of the present invention. Fx, Fy, Fz……magnetometer, Xa, Xb, ~XF……
Coefficient multiplier.
Claims (1)
角度で各磁束計が立体配置になるように固定し、
これらの磁束計を、これらの磁束計の検知軸と適
宜に想定した直交座標軸とのなす角度を測定した
データを用い、各磁束計の検知軸方向の磁界成分
から上記直交座標軸に対する磁界成分を算出する
回路に接続した磁力計。1. Fix three or more magnetometers so that their detection axes are at arbitrary angles to each other so that each magnetometer is arranged three-dimensionally,
Using data obtained by measuring the angle formed between the detection axis of these magnetometers and an appropriately assumed orthogonal coordinate axis, calculate the magnetic field component with respect to the above orthogonal coordinate axis from the magnetic field component in the direction of the detection axis of each magnetometer. magnetometer connected to a circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7726979A JPS561370A (en) | 1979-06-18 | 1979-06-18 | Magnetometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7726979A JPS561370A (en) | 1979-06-18 | 1979-06-18 | Magnetometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS561370A JPS561370A (en) | 1981-01-09 |
JPH0243152B2 true JPH0243152B2 (en) | 1990-09-27 |
Family
ID=13629121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7726979A Granted JPS561370A (en) | 1979-06-18 | 1979-06-18 | Magnetometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS561370A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57200875A (en) * | 1981-06-05 | 1982-12-09 | Tohoku Metal Ind Ltd | Magnetic field vector detector |
JPS6296874A (en) * | 1985-10-24 | 1987-05-06 | Natl Space Dev Agency Japan<Nasda> | Optical fiber magnetometer |
JPS6296875A (en) * | 1985-10-24 | 1987-05-06 | Natl Space Dev Agency Japan<Nasda> | Optical magnetometer |
JPS62100671A (en) * | 1985-10-28 | 1987-05-11 | Denki Onkyo Co Ltd | Magnetic field measuring system |
JPS6448685U (en) * | 1987-09-21 | 1989-03-27 | ||
JPH0227281A (en) * | 1988-07-16 | 1990-01-30 | Mitsubishi Electric Corp | Superconductor magnetometer |
JPH0259684A (en) * | 1988-08-25 | 1990-02-28 | Mitsubishi Electric Corp | Superconducting magnetometer |
JP6148440B2 (en) * | 2012-06-21 | 2017-06-14 | 旭化成エレクトロニクス株式会社 | Sensor signal processing apparatus and sensor signal processing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4968767A (en) * | 1972-10-31 | 1974-07-03 | ||
JPS5421375A (en) * | 1977-07-18 | 1979-02-17 | Shimadzu Corp | Magnetism searchers |
-
1979
- 1979-06-18 JP JP7726979A patent/JPS561370A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4968767A (en) * | 1972-10-31 | 1974-07-03 | ||
JPS5421375A (en) * | 1977-07-18 | 1979-02-17 | Shimadzu Corp | Magnetism searchers |
Also Published As
Publication number | Publication date |
---|---|
JPS561370A (en) | 1981-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6534982B1 (en) | Magnetic resonance scanner with electromagnetic position and orientation tracking device | |
US10635172B1 (en) | Bend angle sensing mechanism for wearable device | |
CN103874904B (en) | Offset estimation device, deviation estimating method, bias estimation program and signal conditioning package | |
CN109725361B (en) | Magnetic target positioning method based on invariant of magnetic gradient tensor | |
TW201300811A (en) | Distribution analysis device | |
CN110333536A (en) | A kind of linear location algorithm of ranging | |
JPH0243152B2 (en) | ||
CN112684511A (en) | Linear positioning method based on two-point magnetic gradient full tensor | |
JP4291454B2 (en) | Posture position measuring apparatus and measuring method | |
Mou et al. | Theory and error compensation method based on the tilt sensor adopted in dynamic angle measurement of the fiber optic gyroscope | |
US6714008B1 (en) | Gradiometric measurement methodology for determining magnetic fields of large objects | |
GB2171510A (en) | Magnetic field detection | |
CN107966670B (en) | Superconducting full-tensor detection device and superconducting full-tensor detection method | |
US11573072B2 (en) | Magnetic position determination systems and methods | |
Mottez et al. | Surface crossing by a group of satellites: A theoretical study | |
CN115728829A (en) | Magnetic target positioning method based on magnetic gradient full tensor | |
Holmes | Theoretical development of laboratory techniques for magnetic measurement of large objects | |
Lipton | Alignment of inertial systems on a moving base | |
CN111624531B (en) | Component calculation method for TMR three-axis integrated magnetic sensor | |
Mukai et al. | Motion and structure from prospectively projected optical flow by solving linear simultaneous equation | |
US12072185B2 (en) | Magnetic tracking systems and methods of determining position and orientation | |
Zeng et al. | An analytic algorithm based position and orientation detection using a tri-axial magnetoresistive sensor | |
CN108169698A (en) | It is a kind of to utilize the magnetic axis intercept method for synthesizing Scalar Magnetic Field measurement field coil | |
Wang et al. | Alignment error correction of five-sensor planar cross magnetic gradient tensor system | |
JPH09126780A (en) | Magnetic direction sensor |