JP2013167607A - Acoustic field diffusible indicator calculation device, method therefor, and program - Google Patents

Acoustic field diffusible indicator calculation device, method therefor, and program Download PDF

Info

Publication number
JP2013167607A
JP2013167607A JP2012032488A JP2012032488A JP2013167607A JP 2013167607 A JP2013167607 A JP 2013167607A JP 2012032488 A JP2012032488 A JP 2012032488A JP 2012032488 A JP2012032488 A JP 2012032488A JP 2013167607 A JP2013167607 A JP 2013167607A
Authority
JP
Japan
Prior art keywords
nδt
sound field
axis
sound
azimuth angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012032488A
Other languages
Japanese (ja)
Other versions
JP5717101B2 (en
Inventor
Kenichi Furuya
賢一 古家
Kenji Kiyohara
健司 清原
Akira Omoto
章 尾本
Kazuhiko Kawahara
一彦 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Telegraph and Telephone Corp filed Critical Kyushu University NUC
Priority to JP2012032488A priority Critical patent/JP5717101B2/en
Publication of JP2013167607A publication Critical patent/JP2013167607A/en
Application granted granted Critical
Publication of JP5717101B2 publication Critical patent/JP5717101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acoustic field diffusible indicator calculation device capable of calculating an acoustic field diffusible indicator value, with information of energy components of reflection sound and time changes thereof taken into consideration therein.SOLUTION: An arrival direction of a vector quantity I(nΔt) of an acoustic intensity is converted into an azimuth angle φ and an elevation angle θ with acoustic intensities I(nΔt), I(nΔt), and I(nΔt) used as inputs, the acoustic intensities being set for every sample n in each axial direction of the X axis, the Y axis and the Z axis that orthogonally cross using an original point that is defined as any position in the acoustic field as a reference. The interior of the acoustic field is divided into virtual cells obtained by dividing the elevation angle direction and the azimuth angle direction by a predetermined angular resolution, under conditions that the elevation angle direction is defined using the Z axis as a reference and an X axis-Y axis plane direction is defined as the azimuth angle direction, vector quantities I(nΔt) are accumulated in the time direction for every cell, and an acoustic field diffusible indicator representing a dispersion degree of a cumulative value of the acoustic intensity of each cell is calculated.

Description

この発明は、音響計測の分野において、音場における音の拡散の度合いを表す指標を算出する音場拡散性指標算出装置とその方法とプログラムに関する。   The present invention relates to a sound field diffusibility index calculating apparatus, method and program for calculating an index representing the degree of sound diffusion in a sound field in the field of acoustic measurement.

従来、音場における音の拡散の度合いを測定するためには、2点間の空間相関が用いられることが多かった。これは理論的にはSinc関数に帰着することが明確であり、この理論値との比較によって、ある程度定量的に音の拡散の度合いを評価できる利点がある。また、古くはパラボラマイクロホンなどの指向性マイクを用いて、更に近年では音響インテンシティ計測を用いて反射音の到来方向を時々刻々把握し、これを定量的に整理する方法も知られている。特に音響インテンシティを用いた方法は、インパルス応答をベースに計算を行うことが可能であり、音場に固有の特徴を抽出できる可能性がある。   Conventionally, in order to measure the degree of sound diffusion in a sound field, a spatial correlation between two points has often been used. It is clear that this theoretically results in a Sinc function, and there is an advantage that the degree of sound diffusion can be evaluated quantitatively to some extent by comparison with this theoretical value. In addition, in the past, there has also been known a method of using a directional microphone such as a parabola microphone and, more recently, using a sound intensity measurement to grasp the direction of arrival of reflected sound from time to time and quantitatively organizing this. In particular, the method using the sound intensity can be calculated based on the impulse response, and there is a possibility that a characteristic unique to the sound field can be extracted.

その音響インテンシティを用いた反射音の到来方向を表す指標として、音場拡散性指標(Uniformity of Arrival Directions、以降ではUAD値とも称する)が知られている(非特許文献1)。UAD値は、反射音の到来方向の均一性を表す指標であり式(1)で定義される。   A sound field diffusivity index (Uniformity of Arrival Directions, hereinafter also referred to as UAD value) is known as an index representing the arrival direction of reflected sound using the sound intensity (Non-Patent Document 1). The UAD value is an index representing the uniformity of the arrival direction of the reflected sound, and is defined by Expression (1).

Figure 2013167607
Figure 2013167607

ここでHは、N分割した方向毎に到来した音響インテンシティ応答で表される反射音の度数である。図9に、音響インテンシティ応答の例を示す。I(nΔt),I(nΔt),I(nΔt)は、x,y,z軸の各方向の音響インテンシティ応答である。Δtは離散時間でありt=nΔtである。音響インテンシティ応答とは、微小距離離れた2点間のインパルス応答の差分に特定の場所の音の大きさを乗じたもので、インパルス応答では表現できない音の伝搬する方向も扱えるものである。音響インテンシティについて、詳しくは後述する。 Here, H n is the frequency of the reflected sound represented by the sound intensity response that arrives in each of the directions divided into N. FIG. 9 shows an example of the sound intensity response. I x (nΔt), I y (nΔt), and I z (nΔt) are acoustic intensity responses in the respective directions of the x, y, and z axes. Δt is discrete time, and t = nΔt. The sound intensity response is obtained by multiplying the difference in impulse response between two points separated by a minute distance by the magnitude of the sound at a specific location, and can handle the direction of sound propagation that cannot be expressed by the impulse response. The sound intensity will be described later in detail.

は、図9における音響インテンシティ包落を形成するサンプルn毎にI(nΔt)とI(nΔt)とI(nΔt)をベクトル合成し、そのベクトルの方向を音波の到来方向として、方位角φ方向と仰角θ方向で領域指定した領域毎に、その度数をカウントした値である。 H n is a vector composition of I x (nΔt), I y (nΔt), and I z (nΔt) for each sample n forming the acoustic intensity envelope in FIG. 9, and the direction of the vector is the direction of arrival of sound waves. Is a value obtained by counting the frequency for each region designated in the azimuth angle φ direction and the elevation angle θ direction.

尾本、松本、「壁面の拡散性が小規模空間に及ぼす影響に関する基礎的検討」日本音響学会2009年春季研究発表会講演論文集、1-3-15,pp.1083-1086,2009年3月Omoto, Matsumoto, “Fundamental study on the effect of wall diffusivity on small space” Proceedings of the Acoustical Society of Japan 2009 Spring Meeting, 1-3-15, pp.1083-1086, 2009 3 Moon

従来のUAD値は、どの方向からどの程度の頻度で反射音が到来しているかを単純にカウントし、その回数データのみに基づいてその分散の度合いを計算したものである。その値は、単一ナンバーで比較が行える利点はあるものの、ある時刻の音の拡散状況を表すものでしか無かった。つまり、従来のUAD値は、累積した反射音の回数のみから求められる値であり、ある時間が経過した後の音が拡散した結果しか表さないものである。よって、音の拡散の状況を詳細に表す指標として更なる検討が必要であった。   The conventional UAD value is obtained by simply counting the frequency of reflected sound coming from which direction and calculating the degree of dispersion based only on the frequency data. Although the value has the advantage that a single number can be compared, it only represents the state of sound diffusion at a certain time. In other words, the conventional UAD value is a value obtained only from the number of accumulated reflected sounds, and represents only the result of the diffusion of a sound after a certain period of time has elapsed. Therefore, further examination was necessary as an index that represents the state of sound diffusion in detail.

この発明は、このような課題に鑑みてなされたものであり、反射音のエネルギー成分とその時間変化の情報も加味した新しいUAD値を算出することの出来る音場拡散性指標算出装置と、その方法とプログラムを提供することを目的とする。   The present invention has been made in view of such a problem, and a sound field diffusibility index calculating device capable of calculating a new UAD value that also includes information on the energy component of reflected sound and its temporal change, and It aims to provide a method and program.

この発明の音場拡散性指標算出装置は、極座標変換部と、音響インテンシティ累積部と、音場拡散性指標算出部と、を具備する。極座標変換部は、音場内の任意の位置に定義した原点を基準に直交するx軸とy軸とz軸の各軸方向のサンプルn毎の音響インテンシティI(nΔt),I(nΔt),I(nΔt)を入力として、音響インテンシティのベクトル量I(nΔt)の到来方向を方位角φと仰角θに変換する。音響インテンシティ累積部は、音場内を、z軸を基準とした仰角方向とx軸−y軸平面方向を方位角方向として、当該仰角方向と方位角方向を所定の角度分解能で分割した仮想のセルに分割し、当該セル毎に上記ベクトル量I(nΔt)を時間方向に累積する。音場拡散性指標算出部は、各セルの音響インテンシティの累積値のばらつきの度合いを表す音場拡散性指標を算出する。 The sound field diffusibility index calculating apparatus of the present invention includes a polar coordinate conversion unit, an acoustic intensity accumulation unit, and a sound field diffusibility index calculation unit. The polar coordinate conversion unit converts the sound intensity I x (nΔt), I y (nΔt) for each sample n in the x-axis, y-axis, and z-axis directions orthogonal to the origin defined at an arbitrary position in the sound field. ), I z (nΔt) as inputs, and the direction of arrival of the acoustic intensity vector quantity I (nΔt) is converted into an azimuth angle φ and an elevation angle θ. The sound intensity accumulating unit is an imaginary virtual field obtained by dividing the elevation angle direction and the azimuth angle direction with a predetermined angular resolution, with the elevation angle direction based on the z axis and the x axis-y axis plane direction as the azimuth angle direction. Dividing into cells, the vector quantity I (nΔt) is accumulated in the time direction for each cell. The sound field diffusibility index calculating unit calculates a sound field diffusibility index that represents the degree of variation in the accumulated value of the sound intensity of each cell.

この発明の音場拡散性指標算出装置によれば、音場拡散性指標を時間の関数とすることで、音場拡散性指標を音響信号の拡散の時間変化を表す新たな指標とすることができる。その結果、音響信号の拡散の時間変化の様子やその収束状況や、収束値等の音場の反射音情報に係る音響環境の解析を容易にすることができる。   According to the sound field diffusibility index calculating apparatus of the present invention, the sound field diffusivity index is made a function of time, so that the sound field diffusivity index can be a new index that represents the time change of the diffusion of the acoustic signal. it can. As a result, it is possible to facilitate the analysis of the acoustic environment related to the reflected sound information of the sound field such as the state of the time change of the diffusion of the acoustic signal, the convergence state thereof, and the convergence value.

音響インテンシティ応答を求めるためにインパルス応答を測定する際のマイクロホン配置の例を示す図。The figure which shows the example of microphone arrangement | positioning at the time of measuring an impulse response in order to obtain | require an acoustic intensity response. この発明の音場拡散性指標算出装置100の機能構成例を示す図。The figure which shows the function structural example of the sound field diffusivity parameter | index calculation apparatus 100 of this invention. 音場拡散性指標算出装置100の動作フローを示す図。The figure which shows the operation | movement flow of the sound field diffusibility parameter | index calculation apparatus 100. FIG. 音場とその音場内に定義した極座標系の一例を示す図。The figure which shows an example of the polar coordinate system defined in the sound field and the sound field. 音場内に定義した原点を基準として、音場を方位角方向と仰角方向に任意の角度毎に分割した仮想のセルの一例を示す図。The figure which shows an example of the virtual cell which divided | segmented the sound field into the azimuth angle direction and the elevation angle direction for every arbitrary angles on the basis of the origin defined in the sound field. 音場拡散性指標の値が経過時間に従って収束する様子を模式的に示す図。The figure which shows a mode that the value of a sound field diffusibility parameter | index converges according to elapsed time. この発明の音場拡散性指標算出装置200の機能構成例を示す図。The figure which shows the function structural example of the sound field diffusibility parameter | index calculation apparatus 200 of this invention. 音場拡散性指標算出装置200の動作フローを示す図。The figure which shows the operation | movement flow of the sound field diffusibility parameter | index calculation apparatus 200. FIG. 音響インテンシティ応答の例を示す図。The figure which shows the example of an acoustic intensity response.

以下、この発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。実施例の説明の前に音響インテンシティについて説明する。   Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same components in a plurality of drawings, and the description will not be repeated. The sound intensity will be described before the description of the embodiments.

〔音響インテンシティ〕
音響インテンシティとは、音の進行する方向性を考慮に入れた音の大きさを表す指標であり、インパルス応答から算出される。図1に、音場のある位置において音響インテンシティを求める目的でインパルス応答を測定する際のマイクロホンの配置の例を示す。
[Sound intensity]
The sound intensity is an index that represents the loudness of the sound taking into account the direction of travel of the sound, and is calculated from the impulse response. FIG. 1 shows an example of arrangement of microphones when measuring an impulse response for the purpose of obtaining sound intensity at a position with a sound field.

音場のある位置(原点)にマイクロホンM、その位置で直交するx軸、y軸、z軸の各軸上の微小距離(Δx,Δy,Δz)離れた位置にマイクロホンM,M,Mが配置されている。微小距離(Δx,Δy,Δz)は例えば数cmの距離である。 The microphone M 0 is located at a position (origin) where the sound field is present, and the microphones M x , M y are separated by a minute distance (Δx, Δy, Δz) on the x-axis, y-axis, and z-axis orthogonal to each other at that position. , M z are arranged. The minute distance (Δx, Δy, Δz) is, for example, a distance of several centimeters.

そして、あるサンプリング周波数fでサンプリングされたサンプルn毎(Δt=1/f毎)に、ある位置(原点)のインパルス応答p(nΔt)と、各軸方向のインパルス応答p(nΔt),p(nΔt),p(nΔt)が測定される。 Then, for each sample n (Δt = 1 / f) sampled at a certain sampling frequency f, an impulse response p 0 (nΔt) at a certain position (origin) and an impulse response p x (nΔt) in each axial direction, p y (nΔt) and p z (nΔt) are measured.

これらのインパルス応答p(nΔt),p(nΔt),p(nΔt),p(nΔt)から求めた各軸方向の音響インテンシティI(nΔt),I(nΔt),I(nΔt)は、連続時間tで表記すると式(1)〜(3)で表すことができる。式(1)〜(3)を離散時間Δtで表すと式(4)〜(6)で表すことができる。 Acoustic intensity I x (nΔt), I y (nΔt), I y in each axial direction obtained from these impulse responses p 0 (nΔt), p x (nΔt), p y (nΔt), p z (nΔt) z (nΔt) can be expressed by equations (1) to (3) when expressed in continuous time t. When Expressions (1) to (3) are expressed by discrete time Δt, they can be expressed by Expressions (4) to (6).

Figure 2013167607
Figure 2013167607

Figure 2013167607
Figure 2013167607

ここでρは媒質の質量密度、各式の右辺第1項はある位置(原点)付近での音圧、第2項は各軸方向の微小距離間の差分であり各軸方向の粒子速度を表す。つまり、音響インテンシティとは、ある位置の音圧に粒子速度を乗じたものである。サンプルn毎の音響インテンシティの大きさI(nΔt)は、次式で計算することができる。 Here, ρ 0 is the mass density of the medium, the first term on the right side of each equation is the sound pressure near a certain position (origin), and the second term is the difference between minute distances in each axial direction, and the particle velocity in each axial direction Represents. That is, the sound intensity is the sound pressure at a certain position multiplied by the particle velocity. The magnitude I (nΔt) of the sound intensity for each sample n can be calculated by the following equation.

Figure 2013167607
Figure 2013167607

この発明は、反射音到来方向情報に加えて、エネルギー量の情報も加味して、より詳細に音場内の音響情報の把握を行うものである。必要な測定はインパルス応答による瞬時音響インテンシティのみであり、この瞬時音響インテンシティを逐次分析することで、音の方向情報の時間発展過程における特徴を抽出することを可能にする。   In the present invention, in addition to the reflected sound arrival direction information, information on the amount of energy is also taken into account, and the acoustic information in the sound field is grasped in more detail. The only necessary measurement is the instantaneous sound intensity due to the impulse response, and by analyzing this instantaneous sound intensity sequentially, it is possible to extract features in the time evolution process of the sound direction information.

図2に、この発明の音場拡散性指標算出装置100の機能構成例を示す。その動作フローを図3に示す。音場拡散性指標算出装置100は、極座標変換部10と、音響インテンシティ累積部20と、音場拡散性指標算出部30と、を具備する。音場拡散性指標算出装置100は、例えばROM、RAM、CPU等で構成されるコンピュータに所定のプログラムが読み込まれて、CPUがそのプログラムを実行することで実現されるものである。   FIG. 2 shows a functional configuration example of the sound field diffusibility index calculating apparatus 100 of the present invention. The operation flow is shown in FIG. The sound field diffusibility index calculating apparatus 100 includes a polar coordinate conversion unit 10, an acoustic intensity accumulation unit 20, and a sound field diffusibility index calculation unit 30. The sound field diffusibility index calculating apparatus 100 is realized by a predetermined program being read into a computer including, for example, a ROM, a RAM, a CPU, and the like, and the CPU executing the program.

極座標変換部10は、音場内の任意の位置である原点を基準に直交するx軸とy軸とz軸の各軸方向のサンプルn毎の音響インテンシティI(nΔt),I(nΔt),I(nΔt)を入力として、上記音響インテンシティのベクトル量I(nΔt)の到来方向を方位角φ(nΔt)と仰角θ(nΔt)に変換する(ステップS10)。音響インテンシティは上記したものであり、サンプルn毎とは、サンプリング周波数fで離散値化されたサンプル毎を意味し、サンプリング周波数を例えば8kHzとした時にΔt=125μsecの時間間隔で発生するものである。また、音響インテンシティのベクトル量I(nΔt)は、式(7)で計算されるものであり、極座標変換部10で計算して求めても良いし、音響インテンシティI(nΔt),I(nΔt),I(nΔt)から予め計算したものを外部から入力しても良い。なお、音響インテンシティのベクトルの到来方向を、方位角φと仰角θに変換することは、一般的な座標変換処理で行うことができる。 The polar coordinate conversion unit 10 has acoustic intensities I x (nΔt) and I y (nΔt) for each sample n in the x-axis, y-axis, and z-axis directions orthogonal to the origin, which is an arbitrary position in the sound field. ), I z (nΔt) as inputs, the direction of arrival of the acoustic intensity vector quantity I (nΔt) is converted into an azimuth angle φ (nΔt) and an elevation angle θ (nΔt) (step S10). The sound intensity is as described above, and every sample n means every sample digitized at the sampling frequency f, and occurs at a time interval of Δt = 125 μsec when the sampling frequency is 8 kHz, for example. is there. The acoustic intensity vector quantity I (nΔt) is calculated by the equation (7), and may be calculated by the polar coordinate conversion unit 10 or may be obtained by the acoustic intensity I x (nΔt), I What is calculated in advance from y (nΔt) and I z (nΔt) may be input from the outside. Note that the direction of arrival of the sound intensity vector can be converted into the azimuth angle φ and the elevation angle θ by a general coordinate conversion process.

また、ここで原点とは、音場内の任意の位置に定義した座標のことであり、音場内の何れの場所であっても良い。また、音場は室内でも良いし、例えば校庭や野外のコンサート会場のように屋外の空間であっても良い。   Here, the origin is a coordinate defined at an arbitrary position in the sound field, and may be any place in the sound field. The sound field may be indoors or may be an outdoor space such as a schoolyard or an outdoor concert venue.

音響インテンシティ累積部20は、上記音場内を、z軸を基準とした仰角方向とx軸−y軸平面方向を方位角方向として、当該仰角方向と方位角方向を所定の角度分解能で分割した仮想のセルに分割し、当該セル毎の仰角と方位角に対応する上記ベクトル量I(nΔt)を時間方向に累積する(ステップS20)。   The sound intensity accumulating unit 20 divides the sound field with the predetermined angular resolution, with the elevation angle direction based on the z axis and the x axis-y axis plane direction as the azimuth angle direction. Dividing into virtual cells, the vector amount I (nΔt) corresponding to the elevation angle and azimuth angle for each cell is accumulated in the time direction (step S20).

図4に、音場とその音場内に定義した極座標系を例示する。図4に示す音場90は、平面形状が四角形の室内であり、極座標系の原点は、例えばその四角形の中央部付近に設定される。   FIG. 4 illustrates a sound field and a polar coordinate system defined in the sound field. The sound field 90 shown in FIG. 4 is a room whose planar shape is a rectangle, and the origin of the polar coordinate system is set, for example, near the center of the rectangle.

図4に示す音場90内を原点を中心として仰角方向と方位角方向に、例えば10度ごとに分割した仮想のセルEi,jを図5に示す。i,jはそれぞれ方位角φ、仰角θに関する分割数を表す。 FIG. 5 shows virtual cells E i, j obtained by dividing the inside of the sound field 90 shown in FIG. 4 in the elevation direction and the azimuth direction around the origin, for example, every 10 degrees. i and j represent the number of divisions related to the azimuth angle φ and the elevation angle θ, respectively.

図4のx軸(正)方向は方位角方向φ=0(degs)と仰角方向θ=90(degs)との交点、x軸(負)方向はφ=180(degs)とθ=90(degs)との交点、y軸(正)方向はφ=90(degs)とθ=90(degs)との交点、y軸(負)方向はφ=−90(degs)とθ=−90(degs)との交点、z軸(正)方向はθ=0(degs)にそれぞれ対応する。x軸とy軸の方向を、図5に引き出し線で示す。   4, the x-axis (positive) direction is the intersection of the azimuth direction φ = 0 (degs) and the elevation direction θ = 90 (degs), and the x-axis (negative) direction is φ = 180 (degs) and θ = 90 ( degs), the y-axis (positive) direction is φ = 90 (degs) and θ = 90 (degs), and the y-axis (negative) direction is φ = −90 (degs) and θ = −90 ( degs) and the z-axis (positive) direction correspond to θ = 0 (degs), respectively. The directions of the x-axis and y-axis are indicated by lead lines in FIG.

図4に示すベクトル(r,θ,φ)は、図5中にrで示すセル、例えばθ=45度,φ=125度に対応するセル(図5内のrのセル)にそのベクトルの大きさrが加算される。rは、上記したベクトル量I(nΔt)=rである。サンプルi毎のベクトル量I(nΔt)が、Δtごとにその到来方向の仰角と方位角に対応するセルに累積される。   The vector (r, θ, φ) shown in FIG. 4 is stored in a cell indicated by r in FIG. 5, for example, a cell corresponding to θ = 45 degrees and φ = 125 degrees (cell r in FIG. 5). The magnitude r is added. r is the above-described vector quantity I (nΔt) = r. The vector quantity I (nΔt) for each sample i is accumulated in cells corresponding to the elevation angle and azimuth angle of the arrival direction for each Δt.

つまり、音響インテンシティ累積部20によって、ある時刻tまでに、どの方向からどの程度のエネルギーが到来しているかが仮想のマトリックス上に格納されることになる。なお、極座標系の原点は、音場の何れかの位置に定義すれば良く、例えば音場の隅に設定するようにしても良いし、床や天井の近くに定義しても良い。また、音場拡散性指標の精度は、セルの分割数を細かくするほど向上させることができる。また、仰角方向と方位角方向を同じ角度で分割した例で説明したが、分割する角度は不等間隔であっても良い。   That is, the sound intensity accumulating unit 20 stores on the virtual matrix how much energy has arrived from which direction by a certain time t. The origin of the polar coordinate system may be defined at any position in the sound field, for example, may be set at a corner of the sound field, or may be defined near the floor or ceiling. Further, the accuracy of the sound field diffusibility index can be improved as the number of divided cells is reduced. In addition, although the example in which the elevation angle direction and the azimuth angle direction are divided by the same angle has been described, the angles to be divided may be unequal intervals.

音場拡散性指標算出部30は、各セルの音響インテンシティの累積値のばらつきの度合いを表す音場拡散性指標を算出する(ステップS30)。音場拡散性指標(UAD値)は、式(8)で算出される。   The sound field diffusivity index calculation unit 30 calculates a sound field diffusibility index that represents the degree of variation in the accumulated value of the sound intensity of each cell (step S30). The sound field diffusibility index (UAD value) is calculated by Expression (8).

Figure 2013167607
Figure 2013167607

i,j(nΔt)は、それぞれのセルに時刻tまでに累積されたエネルギーである。つまり、音場拡散性指標(UAD値)は、各セルの音響インテンシティの累積値の総和の自乗から各セルの音響インテンシティの累積値の自乗の総和を減じた値を、音響インテンシティの累積値の総和の自乗にその自由度を乗じた値で除した値である。音場拡散性指標(UAD値)は、式(8)から明らかなように、各セルに累積されたエネルギーのばらつきが大きいと0に近い値となり、ばらつきが小さくなると所定の大きさに収束する。 E i, j (nΔt) is the energy accumulated in each cell until time t. That is, the sound field diffusivity index (UAD value) is obtained by subtracting the sum of the squares of the cumulative values of the acoustic intensity of each cell from the square of the sum of the cumulative values of the acoustic intensity of each cell. It is a value obtained by dividing the square of the sum of accumulated values by the value obtained by multiplying the degree of freedom. As is clear from Equation (8), the sound field diffusibility index (UAD value) is close to 0 when the variation in energy accumulated in each cell is large, and converges to a predetermined size when the variation is small. .

なお、音響インテンシティの累積値を、セル毎に求める際に2次元の平滑化フィルタを用いて累積されたエネルギーを平均化するようにしても良い。2次元の平滑化とは、隣接するセル同士を複数個(例えば2個、4個以上)平均化することである。平滑化することで音響インテンシティの値を安定化することができる。   Note that when the accumulated value of the sound intensity is obtained for each cell, the accumulated energy may be averaged using a two-dimensional smoothing filter. Two-dimensional smoothing means averaging a plurality of adjacent cells (for example, two, four or more). By smoothing, the value of the sound intensity can be stabilized.

この計算を、Δtごとに逐次行うことで、音場拡散性指標の時間発展が計算できることになる。その値は、音響信号の拡散の時間変化の様子やその収束状況や収束値等の音場の音響環境を表す指標として有用なものとなる。   By performing this calculation sequentially for each Δt, the time evolution of the sound field diffusivity index can be calculated. The value is useful as an index representing the acoustic environment of the sound field, such as the state of the acoustic signal diffusion over time, the convergence status, and the convergence value.

図6に、この発明による音場拡散性指標の変化の様子を模式的に例示する。横軸は経過時間、縦軸は音場拡散性指標(UAD値)である。図中の実線と破線と一点鎖線は、音場の違いを表している。   FIG. 6 schematically illustrates how the sound field diffusibility index changes according to the present invention. The horizontal axis is the elapsed time, and the vertical axis is the sound field diffusivity index (UAD value). The solid line, broken line, and alternate long and short dash line in the figure represent the difference in sound field.

インパルス応答の初期段階では、音響インテンシティの値は小さく、時間経過に伴って徐々に大きくなり所定の値に収束する変化を示す。このように、音場拡散性指標算出装置100によって求めた音場拡散性指標によれば、反射音の時間発展の勾配や、収束するまでの時間や、その収束値を定量的に知ることができるようになる。   At the initial stage of the impulse response, the value of the sound intensity is small, and gradually increases with time, indicating a change that converges to a predetermined value. As described above, according to the sound field diffusibility index obtained by the sound field diffusibility index calculation apparatus 100, it is possible to quantitatively know the gradient of time evolution of the reflected sound, the time until convergence, and the convergence value. become able to.

図7に、この発明の音場拡散性指標算出装置200の機能構成例を示す。その動作フローを図8に示す。音場拡散性指標算出装置200は、上記した音場拡散性指標算出装置100に対して、インテンシティ計算部40を備える点で異なる。インテンシティ計算部40は、インパルス応答p(nΔt),p(nΔt),p(nΔt),p(nΔt)を入力として、各軸方向の音響インテンシティI(nΔt),I(nΔt),I(nΔt)を、上記した式(4)〜(6)で計算するものである。音響インテンシティを計算した後の動作は、音場拡散性指標算出装置100と同じである。 FIG. 7 shows a functional configuration example of the sound field diffusibility index calculating apparatus 200 of the present invention. The operation flow is shown in FIG. The sound field diffusibility index calculating apparatus 200 is different from the above-described sound field diffusivity index calculating apparatus 100 in that an intensity calculating unit 40 is provided. The intensity calculation unit 40 receives the impulse responses p 0 (nΔt), p x (nΔt), p y (nΔt), and p z (nΔt) as inputs, and the sound intensity I x (nΔt), I in each axial direction. y (nΔt) and I z (nΔt) are calculated by the above-described equations (4) to (6). The operation after calculating the sound intensity is the same as that of the sound field diffusivity index calculating apparatus 100.

このように音響インテンシティを、インパルス応答から計算して求めてから音場拡散性指標を算出するようにしても良いし、測定した観測値の音響インテンシティを入力として音場拡散性指標を求めるようにしても良い。そのどちらでも音場内の反射音の時間発展が計算できるこの発明の音場拡散性指標(UAD値)を得ることが可能である。   Thus, the sound intensity diffusivity index may be calculated after obtaining the sound intensity from the impulse response, or the sound field diffusivity index may be obtained using the sound intensity of the measured observation as an input. You may do it. In either case, it is possible to obtain the sound field diffusivity index (UAD value) of the present invention, which can calculate the time evolution of the reflected sound in the sound field.

この発明による音場拡散性指標(UAD値)によれば、比較的容易な測定によって音場の反射音環境を特徴付けることが可能になる。さらに、同一音場内における複数点の測定により、音場拡散性指標がどのように変化するかを比較することで、反射音到来の様子が大幅に変わる距離を規定することができる。また、その距離の情報は、例えば音場の情報を収集する際に、マイクロホンをどの程度分離すれば良いか、といった本質的に重要な情報を与えることを可能にする。   According to the sound field diffusibility index (UAD value) according to the present invention, the reflected sound environment of the sound field can be characterized by relatively easy measurement. Further, by comparing how the sound field diffusibility index changes by measuring a plurality of points in the same sound field, it is possible to define the distance at which the reflected sound arrival state changes significantly. In addition, the distance information makes it possible to give essential information such as how much the microphones should be separated when collecting information on the sound field, for example.

上記各装置及び方法において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。   The processes described in the above apparatuses and methods are not only executed in time series according to the order of description, but may also be executed in parallel or individually as required by the processing capability of the apparatus that executes the processes. .

また、上記装置における処理手段をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、各装置における処理手段がコンピュータ上で実現される。   Further, when the processing means in the above apparatus is realized by a computer, the processing contents of functions that each apparatus should have are described by a program. Then, by executing this program on the computer, the processing means in each apparatus is realized on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。   The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used. Specifically, for example, as a magnetic recording device, a hard disk device, a flexible disk, a magnetic tape or the like, and as an optical disk, a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only). Memory), CD-R (Recordable) / RW (ReWritable), etc., magneto-optical recording medium, MO (Magneto Optical disc), etc., semiconductor memory, EEP-ROM (Electronically Erasable and Programmable-Read Only Memory), etc. Can be used.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記録装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Further, the program may be distributed by storing the program in a recording device of a server computer and transferring the program from the server computer to another computer via a network.

また、各手段は、コンピュータ上で所定のプログラムを実行させることにより構成することにしてもよいし、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。   Each means may be configured by executing a predetermined program on a computer, or at least a part of these processing contents may be realized by hardware.

Claims (3)

音場内の任意の位置に定義した原点を基準に直交するx軸とy軸とz軸の各軸方向のサンプルn毎の音響インテンシティI(nΔt),I(nΔt),I(nΔt)を入力として、上記音響インテンシティのベクトル量I(nΔt)の到来方向を方位角φと仰角θに変換する極座標変換部と、
上記音場内を、上記z軸を基準とした仰角方向と上記x軸−y軸平面方向を方位角方向として、当該仰角方向と方位角方向を所定の角度分解能で分割した仮想のセルに分割し、当該セル毎の仰角と方位角に対応する上記ベクトル量I(nΔt)を時間方向に累積する音響インテンシティ累積部と、
上記各セルの上記ベクトル量I(nΔt)の累積値のばらつきの度合いを表す音場拡散性指標を算出する音場拡散性指標算出部と、
を具備する音場拡散性指標算出装置。
Acoustic intensity I x (nΔt), I y (nΔt), I z (for each sample n in the direction of each axis of the x, y, and z axes orthogonal to the origin defined at an arbitrary position in the sound field. nΔt) as an input, a polar coordinate conversion unit for converting the direction of arrival of the acoustic intensity vector quantity I (nΔt) into an azimuth angle φ and an elevation angle θ;
The inside of the sound field is divided into virtual cells obtained by dividing the elevation angle direction and the azimuth angle direction with a predetermined angular resolution, with the elevation angle direction based on the z axis and the x-axis / y-axis plane direction as the azimuth angle direction. An acoustic intensity accumulation unit that accumulates the vector amount I (nΔt) corresponding to the elevation angle and azimuth angle for each cell in the time direction;
A sound field diffusibility index calculating unit that calculates a sound field diffusibility index representing the degree of variation in the accumulated value of the vector amount I (nΔt) of each cell;
A sound field diffusibility index calculating apparatus comprising:
音場内の任意の位置に定義した原点を基準に直交するx軸とy軸とz軸の各軸方向のサンプルn毎の音響インテンシティI(nΔt),I(nΔt),I(nΔt)を入力として、上記音響インテンシティのベクトル量I(nΔt)の到来方向を方位角φと仰角θに変換する極座標変換過程と、
上記音場内を、上記z軸を基準とした仰角方向と上記x軸−y軸平面方向を方位角方向として、当該仰角方向と方位角方向を所定の角度分解能で分割した仮想のセルに分割し、当該セル毎の仰角と方位角に対応する上記ベクトル量I(nΔt)を時間方向に累積する音響インテンシティ累積過程と、
上記各セルの上記ベクトル量I(nΔt)の累積値のばらつきの度合いを表す音場拡散性指標を算出する音場拡散性指標算出過程と、
を備える音場拡散性指標算出方法。
Acoustic intensity I x (nΔt), I y (nΔt), I z (for each sample n in the direction of each axis of the x, y, and z axes orthogonal to the origin defined at an arbitrary position in the sound field. n [Delta] t) as an input, a polar coordinate conversion process for converting the direction of arrival of the acoustic intensity vector quantity I (n [Delta] t) into an azimuth angle [phi] and an elevation angle [theta],
The inside of the sound field is divided into virtual cells obtained by dividing the elevation angle direction and the azimuth angle direction with a predetermined angular resolution, with the elevation angle direction based on the z axis and the x-axis / y-axis plane direction as the azimuth angle direction. Acoustic intensity accumulation process of accumulating the vector quantity I (nΔt) corresponding to the elevation angle and azimuth angle for each cell in the time direction;
A sound field diffusibility index calculating process for calculating a sound field diffusivity index representing the degree of variation in the accumulated value of the vector quantity I (nΔt) of each cell;
A sound field diffusivity index calculation method comprising:
請求項1に記載した音場拡散性指標算出装置としてコンピュータを機能させるためのプログラム。   The program for functioning a computer as a sound field diffusibility parameter | index calculation apparatus described in Claim 1.
JP2012032488A 2012-02-17 2012-02-17 Sound field diffusivity index calculating apparatus, method and program thereof Expired - Fee Related JP5717101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032488A JP5717101B2 (en) 2012-02-17 2012-02-17 Sound field diffusivity index calculating apparatus, method and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032488A JP5717101B2 (en) 2012-02-17 2012-02-17 Sound field diffusivity index calculating apparatus, method and program thereof

Publications (2)

Publication Number Publication Date
JP2013167607A true JP2013167607A (en) 2013-08-29
JP5717101B2 JP5717101B2 (en) 2015-05-13

Family

ID=49178104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032488A Expired - Fee Related JP5717101B2 (en) 2012-02-17 2012-02-17 Sound field diffusivity index calculating apparatus, method and program thereof

Country Status (1)

Country Link
JP (1) JP5717101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136170A (en) * 2017-02-21 2018-08-30 オンフューチャー株式会社 Detection method of sound source and detection device thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257331A (en) * 1990-03-08 1991-11-15 Hitachi Zosen Corp Apparatus for detecting acoustic signal
JPH07334177A (en) * 1994-06-08 1995-12-22 Matsushita Electric Ind Co Ltd Sound field analyzing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257331A (en) * 1990-03-08 1991-11-15 Hitachi Zosen Corp Apparatus for detecting acoustic signal
JPH07334177A (en) * 1994-06-08 1995-12-22 Matsushita Electric Ind Co Ltd Sound field analyzing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136170A (en) * 2017-02-21 2018-08-30 オンフューチャー株式会社 Detection method of sound source and detection device thereof

Also Published As

Publication number Publication date
JP5717101B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
Fahy Sound intensity
Nolan et al. Experimental characterization of the sound field in a reverberation room
Baxter et al. Delta T source location for acoustic emission
CN106680376A (en) Sound insulation measurement system and measurement method based on three-dimensional sound intensity array
JP6788272B2 (en) Sound source detection method and its detection device
Jacobsen Sound intensity
Dragonetti et al. Considerations on the sound absorption of non locally reacting porous layers
JP2004085201A (en) Vibration source probing system
Richard et al. Comparison of two microphone array geometries for surface impedance estimation
JP4652191B2 (en) Multiple sound source separation method
JP5717101B2 (en) Sound field diffusivity index calculating apparatus, method and program thereof
Brandão et al. Analysis of the sound field above finite absorbers in the wave-number domain
CN206563731U (en) A kind of sound insulation measurement system arranged based on three dimensional sound powerful formation
Luo et al. Estimating the acoustical properties of locally reactive finite materials using the boundary element method
JP2019032242A (en) Attenuation time analytic method, device, and program
Kuipers et al. A numerical study of a method for measuring the effective in situ sound absorption coefficient
Nolan et al. Volumetric reconstruction of acoustic energy flows in a reverberation room
CN107907591B (en) Ultrasonic detection system and method for component concentration of multi-component solid-liquid two-phase mixture
CN108304653B (en) Quantitative and rapid evaluation technology for environmental vibration influence of crystal cultivation process
JP2015161659A (en) Sound source direction estimation device and display device of image for sound source estimation
Guidorzi et al. A newly developed low-cost 3D acoustic positioning system: Description and application in a reverberation room
Gala et al. Moving sound source localization and tracking for an autonomous robot equipped with a self-rotating bi-microphone array
Mickiewicz et al. Mechatronic sound intensity 2D probe
JP5172909B2 (en) Reflected sound information estimation apparatus, reflected sound information estimation method, program
JP2016127430A (en) Sound source direction estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150310

R150 Certificate of patent or registration of utility model

Ref document number: 5717101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees