JPH03253536A - Rapidly solidified aluminum powder alloy excellent in room temperature and high temperature strength - Google Patents

Rapidly solidified aluminum powder alloy excellent in room temperature and high temperature strength

Info

Publication number
JPH03253536A
JPH03253536A JP5237190A JP5237190A JPH03253536A JP H03253536 A JPH03253536 A JP H03253536A JP 5237190 A JP5237190 A JP 5237190A JP 5237190 A JP5237190 A JP 5237190A JP H03253536 A JPH03253536 A JP H03253536A
Authority
JP
Japan
Prior art keywords
strength
alloy
rapidly solidified
room temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5237190A
Other languages
Japanese (ja)
Inventor
Shuntaro Sudo
俊太郎 須藤
Mikio Kondo
幹夫 近藤
Kazuhiko Ito
一彦 伊東
Satoru Ishihara
知 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP5237190A priority Critical patent/JPH03253536A/en
Publication of JPH03253536A publication Critical patent/JPH03253536A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rapidly solidified Al powder alloy showing high tensile strength from a room temp. to a high temp. of about 300 deg.C by specifying the content of Si and Fe in an Al-Si-Fe-Cu-Mg alloy. CONSTITUTION:This rapidly solidified Al powder alloy contains, by weight, 5 to 15% Fe, 1 to 8% Si, 1 to 8% Cu, 0.1 to 5% Mg and the balance Al. In this alloy, Fe forms intermetallic compounds with Al, which are finely dispersed at the time of atomizing to increase its high temp. strength. In the case of <5% Fe content, the effect is made insufficient, and even in the case of >15%, the effect is saturated, and furthermore, the intermetallic compounds are largely formed to deteriorate its forgeability. Si enters into solid soln. in Al to strengthen the matrix of Al and to increase its strength, and furthermore, it increases its modulus of elasticity and deteriorates its thermal expansion coefficient. As for the amt. of Si to be added, in the case of <1%, the effect of improving its strength is made insufficient, and in the case of >8%, brittle Al-Si-Fe intermetallic compounds are coarsened to deteriorate its strength.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルミニウム急冷凝固粉末合金に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to rapidly solidified aluminum powder alloys.

[従来の技術] アルミニウム合金は、軽量で加工性に優れているので、
古くから航空機あるいは自動車の構造用材料として用い
られている。しかし、アルミニウム合金は、強度、剛性
、耐熱性等の機械的特性は鋼に比べると低い上に、熱膨
張係数が大きく、構造用材料として用いる場合に制約が
伴う。
[Conventional technology] Aluminum alloys are lightweight and have excellent workability, so
It has been used as a structural material for aircraft and automobiles since ancient times. However, aluminum alloys have lower mechanical properties such as strength, rigidity, and heat resistance than steel, and also have a large coefficient of thermal expansion, which imposes restrictions on their use as structural materials.

そのため、アルミニウム合金に対しては、強度、耐熱性
、耐摩耗性等の改善のため、組成、組織、熱処理等に関
する研究が長年に亙って続けられてきた。然るに、近年
はアルミニウム合金に関する急冷凝固の研究が盛んに行
なわれ、合金元素の固溶限の拡大、非平衡結晶相の発見
、結晶粒の微細化などに関する知見が得られると共に、
急冷凝固粉末を用いた粉末冶金の開発が盛んとなった。
Therefore, research on the composition, structure, heat treatment, etc. of aluminum alloys has been continued for many years in order to improve their strength, heat resistance, wear resistance, etc. However, in recent years, research on rapid solidification of aluminum alloys has been actively conducted, and knowledge has been obtained regarding the expansion of the solid solubility limit of alloying elements, the discovery of non-equilibrium crystal phases, and the refinement of crystal grains.
Development of powder metallurgy using rapidly solidified powder became active.

そして、高温強度、疲労強度、耐食性等を著しく改善し
た急冷凝固粉末合金が実用化されている。
Rapidly solidified powder alloys with significantly improved high temperature strength, fatigue strength, corrosion resistance, etc. have been put into practical use.

例えば、Feを多量に含むAl−Fe系の急冷凝固粉末
は、耐熱性が著しく優れており、Al−8%Fe合金お
よびこれに第3元素を添加したものが知られている。特
公昭63−9576号公報の発明はAl−Fe系急冷凝
固粉末合金の改良に関するもので、Al−8%Fe合金
に第3元素としてMOおよびZ「を含有せしめて、高価
なHeガスを使用することなく、高温強度に優れた急冷
凝固粉末合金を得ている。
For example, Al-Fe-based rapidly solidified powder containing a large amount of Fe has extremely excellent heat resistance, and Al-8% Fe alloys and those to which a third element is added are known. The invention disclosed in Japanese Patent Publication No. 63-9576 relates to the improvement of an Al-Fe-based rapidly solidified powder alloy, in which MO and Z are added as third elements to an Al-8% Fe alloy, and expensive He gas is used. A rapidly solidified powder alloy with excellent high-temperature strength was obtained without any

また、常温高強度合金としては、A I−Z n系のX
7090合金が代表的なものであり、その組成はAl−
8%Zn−2,5%Mg−1%C1M−1,5COであ
る。
In addition, as a high-strength alloy at room temperature, A I-Z n-based X
7090 alloy is a typical example, and its composition is Al-
8% Zn-2, 5% Mg-1% C1M-1,5CO.

アルミニウムの剛性は他の金属に比較すると低いので、
高剛性合金の開発が要望され、Al−3i−Fe系合金
では100Pa以上の値が得られている。Al−3i系
合金は耐摩耗性に優れ、従来からシルミンとして知られ
ているが、特開昭60−125345号公報には、過共
晶のSiおよびFeを添加すると共にさらにCuおよび
Mgを添加して、耐摩耗性と併せて画然性の向上と常温
強度を改善したAIAl−8i−Fe−Cu−合金が開
示されている。
Aluminum has low rigidity compared to other metals, so
There is a demand for the development of high-rigidity alloys, and values of 100 Pa or more have been obtained for Al-3i-Fe alloys. Al-3i alloy has excellent wear resistance and has been known as silumin, but in Japanese Patent Application Laid-Open No. 125345/1982, a method is proposed in which hypereutectic Si and Fe are added as well as Cu and Mg. Accordingly, an AIAl-8i-Fe-Cu-alloy is disclosed which has improved abrasion resistance, sharpness, and room-temperature strength.

[発明が解決しようとする課題] そこで、前記したAl−Fe系合金、A I−Z n系
合金およびAl−8i−Fe系合金を公報および文献に
記載されている方法に従い作製し、室温およU300℃
における引張強さを測定し、得られた結果を第1図およ
び第2図に比較例1〜3として示した。
[Problems to be Solved by the Invention] Therefore, the above-mentioned Al-Fe alloy, AI-Z n alloy, and Al-8i-Fe alloy were prepared according to the methods described in the publications and literature, and were heated at room temperature. YoU300℃
The tensile strength was measured, and the obtained results are shown in FIGS. 1 and 2 as Comparative Examples 1 to 3.

比較例1のAt  Fe系合金では、300℃での高温
で、その他の合金系より高強度であるが、室温での強度
はかなり低い、また、比較例2のAl−Zn系合金では
、室温での強度は高いが、高温での強度が非常に低い。
The At-Fe alloy of Comparative Example 1 has higher strength than other alloys at a high temperature of 300°C, but its strength at room temperature is quite low. The strength at high temperatures is high, but the strength at high temperatures is very low.

比較例3のAl5i−Fe系合金は室温での強度は比較
例2のAl−Zn系合金に匹敵するが、高温での強度は
比較例1のAl−Fe系合金と比較するとかなり低い。
The Al5i-Fe alloy of Comparative Example 3 has a strength comparable to that of the Al-Zn alloy of Comparative Example 2 at room temperature, but its strength at high temperatures is considerably lower than that of the Al-Fe alloy of Comparative Example 1.

然るに、近年自動車部品特にエンジン部品には、使用温
度範囲の広い材料、すなわち室温から高温まで高強度で
ある材料の開発が望まれている。本発明は急冷凝固アル
ミニウム粉末合金の前記のごとき問題点に鑑みてなされ
たものであって、室温から300℃程度の高温まで高い
引張強度を有する急冷凝固アルミニウム粉末合金を提供
することを目的とする。
However, in recent years, there has been a desire for the development of materials that can be used over a wide temperature range, that is, materials that have high strength from room temperature to high temperatures, for automobile parts, particularly engine parts. The present invention has been made in view of the above problems of rapidly solidified aluminum powder alloys, and an object of the present invention is to provide a rapidly solidified aluminum powder alloy that has high tensile strength from room temperature to high temperatures of about 300°C. .

[課題を解決するための手段] 本発明の室温および高温強度に優れた急冷凝固アルミニ
ウム粉末合金は、重量比で、Fe;5〜15%、 Si
;1〜8%、Cu:1〜8%、Mg;0.1〜5%を含
有し、残部がAlおよび不可避不純物からなることを要
旨とする。
[Means for Solving the Problems] The rapidly solidified aluminum powder alloy of the present invention, which has excellent strength at room temperature and high temperature, contains Fe; 5 to 15%, Si
; 1 to 8%, Cu: 1 to 8%, Mg: 0.1 to 5%, and the remainder consists of Al and inevitable impurities.

本発明のアルミニウム粉末合金は、急冷凝固により粉末
として製造される。急冷凝固アルミニウム粉末の製造方
法としては、容器底部の細孔から流出するアルミニウム
合金の溶湯に高圧のガス噴霧媒を衝突させて粉化するガ
スアトマイズ法、側面に多数の細孔を有する回転ポット
または回転する皿状のディスクを用いる遠心力による粉
化法、溶湯粒子を冷却ロールで急冷するロール法などが
用いられる。
The aluminum powder alloy of the present invention is produced as a powder by rapid solidification. Methods for producing rapidly solidified aluminum powder include the gas atomization method, in which the molten aluminum alloy flowing out from the pores at the bottom of the container is pulverized by colliding with a high-pressure gas spray medium, and the rotating pot or rotary pot with many pores on the side. The powdering method using centrifugal force using a plate-shaped disk, the roll method in which molten metal particles are rapidly cooled with a cooling roll, etc. are used.

これら急冷凝固粉末製造法で得られる溶湯の冷却速度は
、102〜10’に/sとなる。そのため、凝固組織の
微細化の程度を示すデンドライトアーム間隔は、溶解材
の1/100以下で、一般に10〜1μ園と極めて微細
である。また、合金元素の過飽和固溶度は著しく上昇す
る。 急冷凝固粉末の表面には02、N2、水蒸気など
が吸着しており、高温で粉末から離脱してガスを発生す
るので、粉末は使用前に脱ガスする必要がある。
The cooling rate of the molten metal obtained by these rapidly solidified powder manufacturing methods is 102 to 10'/s. Therefore, the dendrite arm spacing, which indicates the degree of refinement of the solidified structure, is 1/100 or less of that of the melted material, and is generally extremely fine, 10 to 1 μm. Moreover, the supersaturated solid solubility of alloying elements increases significantly. O2, N2, water vapor, etc. are adsorbed on the surface of the rapidly solidified powder, and they separate from the powder at high temperatures to generate gas, so the powder must be degassed before use.

さらに、急冷凝固粉末の表面は、化学的に安定で還元に
よって除去できない、厚さ100人程度のアルミニウム
の酸化物で覆われいるので、焼結が進行せず、そのため
固化時に粉末を塑性変形させて、酸化物皮膜を破り金属
面同志を接触させて拡散接合させる必要がある。物理的
に粉末表面の酸化皮膜を破壊して成形固化する方法とし
ては、熱間押出、摩擦押出成形、ホットプレス、熱間鍛
造、HIP等が用いられる。
Furthermore, the surface of the rapidly solidified powder is covered with an aluminum oxide approximately 100 mm thick, which is chemically stable and cannot be removed by reduction, so sintering does not proceed and the powder does not undergo plastic deformation during solidification. Then, it is necessary to break the oxide film and bring the metal surfaces into contact with each other for diffusion bonding. Hot extrusion, friction extrusion, hot pressing, hot forging, HIP, etc. are used as methods for physically destroying the oxide film on the powder surface and solidifying the powder.

次に、本発明のアルミニウム急冷凝固粉末合金において
、組成範囲を限定した理由を説明する。
Next, the reason for limiting the composition range in the rapidly solidified aluminum powder alloy of the present invention will be explained.

Fe・5〜15% FeはAIとの金属間化合物を形成し、この金属間化合
物がアトマイズ時に細かく分散し、その分散強化により
高温での強度を高める。Fe含有量の増加とともに強度
は向上するが、その含有量が5%未満であると、その効
果は不十分である。しかし、15%を越えて含有されて
も、その効果が飽和するばかりでなく、金属間化合物が
多量に形威されるため鍛造性が低下してしまい好ましく
ないので、上限を152ごとした。
Fe・5-15% Fe forms an intermetallic compound with AI, and this intermetallic compound is finely dispersed during atomization, and its dispersion strengthening increases the strength at high temperatures. Although the strength improves as the Fe content increases, the effect is insufficient if the Fe content is less than 5%. However, if the content exceeds 15%, not only the effect will be saturated, but also a large amount of intermetallic compounds will form, resulting in a decrease in forgeability, which is not preferable, so the upper limit was set at 152.

Si;1〜8% SiはAl中に固溶し、AIの基地を強化し、強度を高
めるばかりでなく、縦弾性係数を高め、熱膨張係数を低
下させる。Si含有量が1%未満では強度向上の効果が
不十分である。また、Si含有量が8%を越えるとAl
−3i−Fe系の脆い金属間化合物が粗大化するため、
強度が低下する。
Si; 1 to 8% Si is dissolved in Al, not only strengthens the base of AI and increases the strength, but also increases the modulus of longitudinal elasticity and lowers the coefficient of thermal expansion. If the Si content is less than 1%, the effect of improving strength is insufficient. Furthermore, if the Si content exceeds 8%, Al
-3i-Fe-based brittle intermetallic compounds become coarse;
Strength decreases.

このため、Si含有量は1〜8%に限定した。For this reason, the Si content was limited to 1 to 8%.

Curl〜8% Cuは時効硬化性を付与するために添加する。Curl~8% Cu is added to impart age hardenability.

時効により強度、特に室温での強度が向上する。Aging improves strength, especially at room temperature.

Cu含有量が1%未満ではその効果が充分でなく、8%
を越えると靭性が低下する。このため、Cu含有量を1
〜8%に限定した。
If the Cu content is less than 1%, the effect is not sufficient;
Exceeding this decreases toughness. For this reason, the Cu content was reduced to 1
It was limited to ~8%.

Mg;0.1〜5% M、は、Cuと共存して時効硬化性を付与するために添
加される元素である。Mgが含有されると時効により特
に室温での強度が向上する。その含有量が0 、1 %
未満ではその効果が不充分であり、5%を越えると、靭
性が低下する。そのため、Mg含有量は0.1〜5%に
限定した。
Mg; 0.1 to 5% M is an element added in order to coexist with Cu and impart age hardenability. When Mg is contained, the strength especially at room temperature is improved by aging. Its content is 0,1%
If it is less than 5%, the effect is insufficient, and if it exceeds 5%, the toughness decreases. Therefore, the Mg content was limited to 0.1 to 5%.

なお、本発明のアルミニウム急冷凝固粉末合金にB、V
、Zr、MO,Crのうち1種または2種以上を0.1
〜5%の組成範囲で含有させると、A I−F e系金
属間化合物の分散強化を助け、室温および高温強度を一
層向上させる。これら元素の含有量が0.1%未満では
、前記の効果が不充分であり、5%を越えて含有される
と、靭性が低下する。そのため、これら元素の1種また
は2種以上含有させる場合は、その合計量が0.1〜5
%にすることが好ましい。
In addition, B, V are added to the aluminum rapidly solidified powder alloy of the present invention.
, Zr, MO, Cr or more at 0.1
When it is contained in a composition range of ~5%, it helps in dispersion strengthening of the A I-Fe intermetallic compound and further improves the room temperature and high temperature strength. When the content of these elements is less than 0.1%, the above-mentioned effects are insufficient, and when the content exceeds 5%, the toughness decreases. Therefore, when containing one or more of these elements, the total amount is 0.1 to 5
% is preferable.

[実施例] 本発明の実施例を比較例とともに説明し、本発明の効果
を明らかにする。
[Example] Examples of the present invention will be explained together with comparative examples to clarify the effects of the present invention.

第1表に示す化学成分になるようにAlに合金元素を配
合した。第1表において、発明例1〜6はV、B、Zr
またはCrのうちの1種または2種以上を添加した発明
例である。また比較例1は前記のAl−9i系合金に相
当する従来合金、比較例2は前記Al−Zn系合金に相
当する従来合金、比較例3は前記A I−S i −F
 e系合金に相当する従来合金である。
Alloying elements were blended with Al so that the chemical composition was as shown in Table 1. In Table 1, invention examples 1 to 6 contain V, B, and Zr.
This is an invention example in which one or more of Cr is added. Further, Comparative Example 1 is a conventional alloy corresponding to the Al-9i alloy, Comparative Example 2 is a conventional alloy corresponding to the Al-Zn alloy, and Comparative Example 3 is a conventional alloy corresponding to the Al-Zn alloy.
This is a conventional alloy that corresponds to the e-based alloy.

比較例4〜5はVを含有しFe含有量が本発明の組成範
囲を外れる比較例、比較例6〜7はVを含有量しSi含
有量が本発明の組成範囲を外れる比較例である0発明例
7〜9はV、B等を含有しない発明例、比較例8〜9は
V、B等を含有せずSiが本発明の組成範囲を外れる比
較例である。
Comparative Examples 4 and 5 are comparative examples that contain V and the Fe content is outside the composition range of the present invention, and Comparative Examples 6 and 7 are comparative examples that contain V and the Si content is outside the composition range of the present invention. 0 Invention Examples 7 to 9 are invention examples that do not contain V, B, etc., and Comparative Examples 8 to 9 are comparative examples that do not contain V, B, etc. and have Si outside the composition range of the present invention.

(以下余白) これら組成物を高周波加熱炉内で加熱し、アルミニウム
合金溶湯を調製した。次に、このアルミニウム台金溶湯
を1150℃に加熱し、ノズル径5檜−のノズルから落
下させ、落下中のアルミニウム合金溶湯にガス圧カフk
gf/c1Gの空気を吹きかけて急冷凝固粉末合金を得
た。
(Left below) These compositions were heated in a high frequency heating furnace to prepare a molten aluminum alloy. Next, this molten aluminum base metal was heated to 1150°C and dropped from a nozzle with a nozzle diameter of 5 mm, and a gas pressure cuff was applied to the falling molten aluminum alloy.
A rapidly solidified powder alloy was obtained by blowing air at gf/c1G.

得られた急冷凝固アルミニウム粉末合金を100メツシ
ユ以下に篩わけし、この粉末を室温にて金型を使用し成
形圧力4トン/ c 1にて予備成形した。得られた予
備成形体を450℃にて1時間800 torrの窒素
中にて予熟し、その後415°Cに加熱した押出用金型
に挿入し、押出比12・lにて押出した。
The obtained rapidly solidified aluminum powder alloy was sieved to 100 meshes or less, and this powder was preformed at room temperature using a mold at a molding pressure of 4 tons/c1. The obtained preform was preripened in nitrogen at 800 torr for 1 hour at 450°C, then inserted into an extrusion mold heated to 415°C, and extruded at an extrusion ratio of 12·l.

得られた押出材のうち、CuとMgを添加している合金
については、押出後熱処理(T6〉を施した。
Among the obtained extruded materials, the alloy to which Cu and Mg were added was subjected to post-extrusion heat treatment (T6).

熱処理条件は、組成により異なるが溶体化温度は凝固曲
線から求められる適正な温度を選定し、時効条件は各合
金の硬さが最高となるように、時効曲線を求めて選定し
た。
Although the heat treatment conditions differ depending on the composition, the solution temperature was selected at an appropriate temperature determined from the solidification curve, and the aging conditions were selected by determining the aging curve so that the hardness of each alloy would be the highest.

以上のようにして作製した押出材から機械加工により平
行部の径Φ6.5mm、全長72mmの試験片を作製し
、引張試験に供した。引張試験方法について説明すると
、常温での引張試験は、引張速度1帥/分で行い、試験
個数は3本であった。300℃での引張試験は、試験片
を予め300℃にて100時間加熱し、このf& 30
0℃に加熱した炉内にて15分保持後、引張速度1 a
m/分にて試験した。試験個数は3本で行った。
A test piece having a parallel portion diameter of 6.5 mm and a total length of 72 mm was prepared by machining from the extruded material prepared as described above, and was subjected to a tensile test. To explain the tensile test method, the tensile test at room temperature was conducted at a tensile rate of 1 stroke/min, and the number of samples tested was three. In the tensile test at 300°C, the test piece was heated in advance at 300°C for 100 hours, and this f&30
After holding for 15 minutes in a furnace heated to 0°C, the tensile rate was 1 a.
Tested at m/min. The test was conducted using three pieces.

得られた結果は、第1図の室温での引張強さ、第2図の
300℃での引張強さ、第3図のFe含有量と300℃
での引張強さとの関係を示す線図、第4図のSi含有量
と常温での引張強さとの関係を示す線図として表した。
The obtained results are the tensile strength at room temperature shown in Figure 1, the tensile strength at 300°C shown in Figure 2, and the Fe content and 300°C shown in Figure 3.
Fig. 4 is a diagram showing the relationship between the Si content and the tensile strength at normal temperature.

第1図および第2図より明らかなように、本発明例1お
よび2は、室温での引張強さおよび300℃での引張強
さともに、比較例1〜3の従来合金よりも優れており、
本発明合金は常温から高温まで優れた引張強さを有する
ことが確認された。
As is clear from Figures 1 and 2, Invention Examples 1 and 2 are superior to the conventional alloys of Comparative Examples 1 to 3 in both the tensile strength at room temperature and the tensile strength at 300°C. ,
It was confirmed that the alloy of the present invention has excellent tensile strength from room temperature to high temperature.

第3図のFe含有量と300℃での引張強さとの関係を
示す線図から知られるように、比較例4はFeを1%し
か含有しなかったので、引張強さが極端に低かったが、
5%Feを含有する発明例3において、所期の引張強さ
が得られ、15%Feを含有する発明例4まで引張強さ
が直線的に向上する。しかし、18%Feを含有する比
較例5では引張強さの向上が飽和している。これにより
、本発明のFe組組成囲において、300℃における優
れた引張強さが得られることが明らかとなった。
As can be seen from the diagram in Figure 3 showing the relationship between Fe content and tensile strength at 300°C, Comparative Example 4 contained only 1% Fe, so its tensile strength was extremely low. but,
In Invention Example 3 containing 5% Fe, the desired tensile strength is obtained, and the tensile strength increases linearly up to Invention Example 4 containing 15% Fe. However, in Comparative Example 5 containing 18% Fe, the improvement in tensile strength is saturated. This revealed that excellent tensile strength at 300° C. can be obtained in the Fe composition range of the present invention.

第4図のSi含有量と常温での引張強さとの関係を示す
線図から知られるように、Siを含有しない比較例6お
よび8、Siを12%含有する比較例7および9は引張
強さが極めて低いが、Si含有量の増加とともに、引張
強さが急激に向上し、3〜4%Siあたりで最大値を示
した。これにより、本発明のSiの組成範囲において、
常温において優れた引張強さが得られることが確認され
た。
As can be seen from the diagram in Figure 4 showing the relationship between Si content and tensile strength at room temperature, Comparative Examples 6 and 8, which do not contain Si, and Comparative Examples 7 and 9, which contain 12% Si, have tensile strength. Although the tensile strength was extremely low, as the Si content increased, the tensile strength increased rapidly and reached a maximum value around 3 to 4% Si. As a result, in the Si composition range of the present invention,
It was confirmed that excellent tensile strength was obtained at room temperature.

なお、第4図から明らかなように、V、B等を含有させ
たシリーズ(図中・またはムで示した。)は、V、B等
を含有しないシリーズ(図中○または△で示した。)よ
りも優れた常温強度が得られることが判明した。
As is clear from Figure 4, the series that contains V, B, etc. (indicated by ○ or △ in the figure) is different from the series that does not contain V, B, etc. (indicated by ○ or △ in the figure). It was found that superior room-temperature strength can be obtained than that of .).

[発明の効果] 本発明のアルミニウム急冷凝固粉末合金は以上説明した
ように、Feを含有させることにより、Alとの金属間
化合物を細かく分散させて、分散強化により高温での強
度を高め、Siを固溶せしめて基地を強化し、熱膨張係
数を低下せしめるとともに室温強度を向上し、Cuおよ
びM、を添加することにより、時効硬化により室温での
強度を向上せしめたものであって、室温および高温強度
に優れた急冷凝固アルミニウム粉末合金が得られ、自動
車部品の軽量化に極めて有用である。
[Effects of the Invention] As explained above, the aluminum rapidly solidified powder alloy of the present invention contains Fe, thereby finely dispersing the intermetallic compound with Al, increasing the strength at high temperatures through dispersion strengthening, and increasing the strength of Si. This product strengthens the matrix by solid solution, lowers the coefficient of thermal expansion, and improves the strength at room temperature.By adding Cu and M, the strength at room temperature is improved by age hardening. A rapidly solidified aluminum powder alloy with excellent high-temperature strength is obtained, and is extremely useful for reducing the weight of automobile parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明例および比較例の室温での引張強さを示
す棒グラフ、第2図は本発明例および比較例の300℃
での引張強さを示す棒グラフ、第3図はFe含有量と3
00℃での引張強さとの関係を示す線図、第4図はSi
含有量と常温での引張強さとの関係を示す線図である。 第1図 第2図 比較例1 比較例2比戦例3 本発明1 本発明2 比較例1 比較例2比較例3 本発明1 本発明2第3
図 第4図
Fig. 1 is a bar graph showing the tensile strength at room temperature of the inventive example and comparative example, and Fig. 2 is a bar graph showing the tensile strength of the inventive example and comparative example at 300°C.
A bar graph showing the tensile strength at
A diagram showing the relationship with tensile strength at 00°C, Figure 4 shows the relationship between Si
It is a diagram showing the relationship between content and tensile strength at room temperature. Figure 1 Figure 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Invention 1 Invention 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Invention 1 Invention 2 Third
Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で、Fe;5〜15%、Si;1〜8%、
Cu;1〜8%、Mg;0.1〜5%を含有し、残部が
Alおよび不可避不純物からなることを特徴とする室温
および高温強度に優れた急冷凝固アルミニウム粉末合金
(1) In terms of weight ratio, Fe: 5 to 15%, Si: 1 to 8%,
A rapidly solidified aluminum powder alloy having excellent room temperature and high temperature strength, containing 1 to 8% Cu, 0.1 to 5% Mg, and the remainder consisting of Al and inevitable impurities.
JP5237190A 1990-03-02 1990-03-02 Rapidly solidified aluminum powder alloy excellent in room temperature and high temperature strength Pending JPH03253536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237190A JPH03253536A (en) 1990-03-02 1990-03-02 Rapidly solidified aluminum powder alloy excellent in room temperature and high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5237190A JPH03253536A (en) 1990-03-02 1990-03-02 Rapidly solidified aluminum powder alloy excellent in room temperature and high temperature strength

Publications (1)

Publication Number Publication Date
JPH03253536A true JPH03253536A (en) 1991-11-12

Family

ID=12912948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237190A Pending JPH03253536A (en) 1990-03-02 1990-03-02 Rapidly solidified aluminum powder alloy excellent in room temperature and high temperature strength

Country Status (1)

Country Link
JP (1) JPH03253536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354348A (en) * 2017-06-22 2017-11-17 何新桥 Modified composition metal truckload plate and its manufacture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354348A (en) * 2017-06-22 2017-11-17 何新桥 Modified composition metal truckload plate and its manufacture method

Similar Documents

Publication Publication Date Title
US5595616A (en) Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
US4818308A (en) Aluminum alloy and method for producing the same
EP1111078B1 (en) High strength aluminium alloy
JPS63157831A (en) Heat-resisting aluminum alloy
JP2008520826A (en) Alloy based on titanium aluminum
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
JPH11172465A (en) Wear resistant coating member
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPS63241148A (en) Production of semi-manufactured product from aluminum base alloy
JPH06235040A (en) High strength and heat resistant aluminum alloy, its integrated and solidified material and production thereof
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JP3184367B2 (en) Method for producing high toughness Al-Si alloy
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JPH03253536A (en) Rapidly solidified aluminum powder alloy excellent in room temperature and high temperature strength
JP2951262B2 (en) Aluminum alloy with excellent high-temperature strength
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JP2711296B2 (en) Heat resistant aluminum alloy
JP3743019B2 (en) Titanium aluminide for precision casting containing Fe and V
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JPH108162A (en) Production of aluminum alloy material excellent in high temperature strength
JPH11302807A (en) Manufacture of aluminum alloy for compressor vane
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
JPH0379738A (en) High strength al alloy material