JP3184367B2 - Method for producing high toughness Al-Si alloy - Google Patents

Method for producing high toughness Al-Si alloy

Info

Publication number
JP3184367B2
JP3184367B2 JP14430993A JP14430993A JP3184367B2 JP 3184367 B2 JP3184367 B2 JP 3184367B2 JP 14430993 A JP14430993 A JP 14430993A JP 14430993 A JP14430993 A JP 14430993A JP 3184367 B2 JP3184367 B2 JP 3184367B2
Authority
JP
Japan
Prior art keywords
alloy
toughness
producing
average
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14430993A
Other languages
Japanese (ja)
Other versions
JPH06330263A (en
Inventor
和久 渋江
秀男 佐野
喜正 大久保
直樹 時実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP14430993A priority Critical patent/JP3184367B2/en
Publication of JPH06330263A publication Critical patent/JPH06330263A/en
Application granted granted Critical
Publication of JP3184367B2 publication Critical patent/JP3184367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高靭性Al−Si系合
金の製造方法、詳しくは、Al−Si系合金溶湯を非酸
化性ガスで噴霧して急冷凝固させながら堆積させること
によって得たビレットを使用して、自動車工業、家電お
よび産業機械用材料として好適な押出材を製造する高靭
性Al−Si系合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-toughness Al-Si alloy, and more particularly, to a method of spraying a molten Al-Si alloy with a non-oxidizing gas and depositing it while rapidly solidifying it. The present invention relates to a method for producing a high-toughness Al-Si alloy using a billet to produce an extruded material suitable as a material for the automobile industry, home appliances and industrial machines.

【0002】[0002]

【従来の技術】アルミニウム材料は、軽量な工業材料と
して広範囲に利用されているが、近年、自動車工業分
野、家電分野および産業機械分野において、各種機器の
高性能化、高速化が進んでおり、これら機器の部品とし
て使用されるアルミニウム材料にはさらに優れた特性が
要求されている。
2. Description of the Related Art Aluminum materials are widely used as lightweight industrial materials. In recent years, in the fields of the automobile industry, home appliances and industrial machinery, various devices have been improved in performance and speed. Aluminum materials used as components of these devices are required to have better properties.

【0003】アルミニウム材料に優れた特性を与える方
法として急冷凝固法を利用した粉末冶金法がある。粉末
冶金法は、アルミニウム合金材料を微粉末にして圧縮成
形し、押出、鍛造等の加工を行って成形体を得る方法で
あり、従来の溶解ー鋳造あるいは展伸加工により製造さ
れたアルミニウム材料と比べて高温特性、耐摩耗性に優
れているため、自動車部品や家電部品の一部に実用化さ
れている。しかし、高SiのAl−Si系合金の場合に
は、とくに急冷凝固−予備成形の過程において酸化され
易く、SiあるいはSiを含む金属間化合物が粗大に晶
出あるいは析出し易いため、材料の靭性を低下させるこ
とが少なくない。
A powder metallurgy method utilizing a rapid solidification method is a method for imparting excellent properties to an aluminum material. The powder metallurgy method is a method in which an aluminum alloy material is finely powdered, compression-molded, and extruded, forged, or the like is processed to obtain a molded body. Compared to high temperature characteristics and abrasion resistance, they have been put to practical use in parts of automobiles and home electric appliances. However, in the case of a high-Si Al-Si alloy, it is easily oxidized, particularly in the process of rapid solidification and preforming, and Si or an intermetallic compound containing Si is easily crystallized or precipitated in a coarse manner. Is often reduced.

【0004】上記の欠点を解消する技術として、非酸化
性雰囲気中において金属溶湯を非酸化性ガスで噴霧して
急冷凝固させながらコレクタ上に堆積させることにより
予備成形体を得る方法(以下、スプレイデポジション)
が英国のOSPREYMETALS社により開発されている( 特開昭
62-1849 号公報) 。スプレイデポジションによれば、非
酸化性ガスにより微粒化された金属は直ちにコレクタ上
で融着し合い急冷凝固されるから、酸化され難く、Si
あるいはSiを含む金属間化合物の粗大化も生じ難いか
ら、材料の靭性向上が期待される。
As a technique for solving the above-mentioned drawbacks, a method of obtaining a preformed body by spraying a molten metal with a non-oxidizing gas in a non-oxidizing atmosphere and depositing it on a collector while rapidly solidifying it (hereinafter referred to as spraying). Deposition)
Is being developed by OSPREYMETALS in the UK.
No. 62-1849). According to the spray deposition, the metal atomized by the non-oxidizing gas is immediately fused on the collector and rapidly cooled and solidified.
Alternatively, since the intermetallic compound containing Si is unlikely to become coarse, improvement in toughness of the material is expected.

【0005】[0005]

【発明が解決しようとする課題】本発明は、スプレイデ
ポジションの利点を生かしながら、さらにAl−Si系
合金材料の特性を向上させるための材料成分および組織
の組み合わせについて鋭意研究した結果としてなされた
ものであり、その目的は、スプレイデポジションを適用
して優れた靭性および高温強度を有するAl−Si系合
金を得る高靭性Al−Si系合金の製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made as a result of intensive studies on combinations of material components and structures for further improving the characteristics of Al-Si alloy materials while taking advantage of spray deposition. It is an object of the present invention to provide a method for producing a high toughness Al-Si-based alloy which obtains an Al-Si-based alloy having excellent toughness and high-temperature strength by applying spray deposition.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による高靱性Al−Si系合金の
製造方法は、Si10〜30%と、TiおよびBのうちの1
種以上を合計0.005 〜0.5 %含み、残部Alと不可避的
不純物からなるAl−Si系合金の溶湯を、窒素雰囲気
において窒素ガスで噴霧して急冷凝固させながら堆積さ
せるスプレーデポジションを実施することによってビレ
ットとし、該ビレットを押出比3以上で押出加工して、
平均結晶粒径が0.1 〜5 μm 、Siの平均粒径が1 〜10
μm で、窒素を0.03〜0.2 %含有する押出材とすること
を特徴とし、請求項2による高靱性Al−Si系合金の
製造方法は、上記のAl−Si系合金が、Cu0.5 〜6
%、Mg0.2 〜3 %を含有することを特徴とし、請求項
3による高靱性Al−Si系合金の製造方法は、上記の
Al−Si系合金が、Fe、MnおよびNiのうちの1
種以上を合計1 〜10%含み、押出材中におけるこれらの
合金元素とAl、Siとの金属間化合物の平均粒径が10
μm 以下であることを特徴とする。また、請求項4によ
る高靱性Al−Si系合金の製造方法は、上記のAl−
Si系合金が、Zr0.2 〜2.0 %を含み、押出材中にお
けるAl−Zr系金属間化合物の平均粒径が10μm 以下
であることを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing a high-toughness Al-Si alloy, comprising 10 to 30% of Si and one of Ti and B.
Spray deposition is performed by spraying a molten metal of an Al-Si based alloy containing at least 0.005 to 0.5% of a total of at least one species and the balance of Al and inevitable impurities with a nitrogen gas in a nitrogen atmosphere to rapidly cool and solidify. By performing the billet, the billet is extruded at an extrusion ratio of 3 or more,
Average grain size is 0.1-5 μm, average Si grain size is 1-10
An extruded material containing 0.03 to 0.2% of nitrogen and having a particle size of 0.03 to 0.2% is characterized in that the Al-Si alloy is made of Cu 0.5 to 6
%, And 0.2 to 3% of Mg. The method for producing a high-toughness Al-Si alloy according to claim 3, wherein the Al-Si alloy is one of Fe, Mn and Ni.
Or more, and the average particle size of the intermetallic compound of these alloying elements and Al and Si in the extruded material is 10 to 10%.
μm or less. Further, the method for producing a high-toughness Al-Si alloy according to claim 4 includes the above-described Al-Si alloy.
The Si-based alloy contains 0.2 to 2.0% of Zr, and the average particle size of the Al-Zr-based intermetallic compound in the extruded material is 10 µm or less.

【0007】必須成分として含まれるSiは、合金の耐
摩耗性を向上させる。好ましい含有量は10〜30%の範囲
であり、10%未満ではその効果が小さく、30%を越える
とスプレイデポジションによってもSi粒子の平均径が
20μm 以上となり、その後押出加工を行っても平均粒径
が10μm を越えてしまうため、破壊靭性が劣る。
[0007] Si contained as an essential component improves the wear resistance of the alloy. The preferred content is in the range of 10 to 30%. When the content is less than 10%, the effect is small, and when it exceeds 30%, the average diameter of the Si particles is increased even by spray deposition.
The average grain size exceeds 10 μm even after extrusion, and the fracture toughness is poor.

【0008】Ti,Bは、凝固過程において、TiB2
などのホウ化物あるいはAl3 Tiを形成し、これらが
結晶粒核となるため、結晶粒を微細化することが可能と
なる。好ましくはTiあるいはBを単独、またはTiお
よびBの両者を合計0.005 〜0.5 %の範囲で含有させ
る。含有量が0.005 %では効果が小さく、0.5 %を越え
ると合金の靭性が低下する。
In the solidification process, Ti and B form TiB 2
Borides or Al 3 Ti to form such, because they become the grain nuclei, it is possible to refine the crystal grains. Preferably, Ti or B is contained alone, or both Ti and B are contained in a total amount of 0.005 to 0.5%. If the content is 0.005%, the effect is small, and if it exceeds 0.5%, the toughness of the alloy decreases.

【0009】Cuは、合金中に固体あるいは時効析出し
て、合金の強度を高める。好ましい含有範囲は0.5 〜6
%であり、0.5 %未満ではその効果が小さく、6 %を越
えると合金の耐食性を劣化させる。Mgは、Cuと同様
合金中に固溶あるいは時効析出して、合金の強度を高め
る。好ましい含有量は0.2 〜3 %の範囲であり、0.2%
未満ではその効果が小さく、3 %を越えると合金の靭性
を低下させる。
[0009] Cu solidifies or age-precipitates in the alloy to increase the strength of the alloy. The preferred content range is 0.5 to 6.
%, The effect is small when it is less than 0.5%, and the corrosion resistance of the alloy is deteriorated when it exceeds 6%. Mg, like Cu, forms a solid solution or age-precipitated in the alloy to increase the strength of the alloy. The preferred content is in the range of 0.2-3%, 0.2%
If it is less than 3%, the effect is small, and if it exceeds 3%, the toughness of the alloy decreases.

【0010】Fe、Mn、NiおよびZrは、Al−S
i−Fe、Al−Fe、Al−Mn、Al−Ni、Al
−Zr系等の金属間化合物を形成し、合金の高温強度を
向上させる。好ましい含有範囲は合計1 〜10%であり、
1 %未満ではその効果が十分でなく、10%を越えて添加
されると、これらの金属間化合物の平均粒径が20μmを
越え合金の靭性を低下させる。
[0010] Fe, Mn, Ni and Zr are Al-S
i-Fe, Al-Fe, Al-Mn, Al-Ni, Al
-Form an intermetallic compound such as a Zr-based compound to improve the high-temperature strength of the alloy. The preferred content range is 1-10% in total,
If the content is less than 1%, the effect is not sufficient. If the content exceeds 10%, the average grain size of these intermetallic compounds exceeds 20 μm, and the toughness of the alloy is reduced.

【0011】スプレイデポジションを実施する場合の雰
囲気は非酸化性ガス雰囲気とし、溶湯を噴霧するガスも
非酸化性ガスとして合金の酸化を防止する。酸素は、合
金中において酸化物として存在し、靭性の低下をもたら
すが、含有量が0.1 %以下の場合には実質上ほとんど問
題とならない。。非酸化性ガスとしては、ヘリウムガス
(He) 、アルゴンガス(Ar)あるいは窒素ガス(N2)を単独
または混合して使用するのが好ましい。とくに窒素ガス
を使用してAl−Si系合金溶湯を噴霧すると、合金中
に窒化物が形成され、押出材中に微細な窒化物が分散し
て材料の高温強度を向上させることができる。この場
合、押出材中における好ましい窒素含有量は0.03〜0.2
%である。0.03%未満では窒化物の形成が不十分で高温
強度の向上効果が得られないことがあり、0.2 %を越え
ると合金の靭性が低下する傾向がある。
The atmosphere for performing spray deposition is a non-oxidizing gas atmosphere, and the gas for spraying the molten metal is also a non-oxidizing gas to prevent oxidation of the alloy. Oxygen is present as an oxide in the alloy and causes a decrease in toughness. However, when the content is less than 0.1%, substantially no problem occurs. . As the non-oxidizing gas, it is preferable to use helium gas (He), argon gas (Ar), or nitrogen gas (N 2 ) alone or as a mixture. In particular, when the molten Al-Si alloy is sprayed using nitrogen gas, nitrides are formed in the alloy, and fine nitrides are dispersed in the extruded material, so that the high-temperature strength of the material can be improved. In this case, the preferred nitrogen content in the extruded material is 0.03-0.2
%. If it is less than 0.03%, the formation of nitrides is insufficient, and the effect of improving the high-temperature strength may not be obtained. If it exceeds 0.2%, the toughness of the alloy tends to decrease.

【0012】スプレイデポジションによれば、前記のよ
うに非酸化性ガスにより微粒化された合金は直ちにコレ
クタ上で融着し合い、平均102 〜104 ℃/秒の冷却
速度で急冷凝固され、Si粒子およびAl−Si−Fe
系その他の金属間化合物を微細化するとともに結晶粒を
微細化する。Si粒子および金属間化合物は、ビレット
の押出加工によりさらに分断され、合金の強度特性を向
上させる。最終的に得られる押出材中のSi粒子の平均
径は1 〜10μm 、金属間化合物の平均粒径は10μm 以
下、結晶粒の平均径は0.1 〜5 μm の範囲にするのが好
ましい。これらの値が下限値より小さいと合金の強度が
十分でなく、上限値を越えると合金の靭性が低下する。
スプレイデポジションとの組合わせで上記の合金組織を
形成するためには、押出比3以上で押出加工を行うのが
好ましく、押出比が3未満では、Si粒子および金属間
化合物の分断が不十分となり易く、これらの粒径が20μ
m を越えることもあり、合金の破壊靭性を劣化させる傾
向がある。
According to the spray deposition, the alloys atomized by the non-oxidizing gas as described above immediately fuse together on the collector and are rapidly solidified at an average cooling rate of 10 2 to 10 4 ° C./sec. , Si particles and Al-Si-Fe
The system and other intermetallic compounds are refined and the crystal grains are refined. The Si particles and the intermetallic compound are further divided by the extrusion of the billet to improve the strength properties of the alloy. The average diameter of the Si particles in the finally obtained extruded material is preferably 1 to 10 μm, the average particle diameter of the intermetallic compound is 10 μm or less, and the average diameter of the crystal grains is preferably 0.1 to 5 μm. When these values are smaller than the lower limit, the strength of the alloy is not sufficient, and when it exceeds the upper limit, the toughness of the alloy is reduced.
In order to form the above alloy structure in combination with spray deposition, it is preferable to perform extrusion at an extrusion ratio of 3 or more, and if the extrusion ratio is less than 3, insufficient separation of Si particles and intermetallic compounds. These particles have a particle size of 20μ
m, which tends to degrade the fracture toughness of the alloy.

【0013】[0013]

【作用】本発明の高靭性Al−Si系合金の製造方法
は、上記の構成を具え、特定の合金組成とスプレイデポ
ジション−押出比3以上の押出加工からなる工程の組合
わせにより、特定範囲のSi粒子径、金属間化合物粒子
径および結晶粒径を有する金属組織を形成するものであ
り、得られた合金材料は靭性の優れたものとなる。
The method for producing a high-toughness Al-Si alloy according to the present invention has the above-described structure, and has a specific range by a combination of a specific alloy composition and a process consisting of spray deposition-extrusion at an extrusion ratio of 3 or more. To form a metal structure having a Si particle diameter, an intermetallic compound particle diameter, and a crystal particle diameter, and the obtained alloy material has excellent toughness.

【0014】[0014]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示すAl−Si系合金を溶解し、アルゴンガス雰
囲気または窒素ガス雰囲気中において溶湯流をアルゴン
ガスまたは窒素ガスで噴霧して、円柱状のコレクタ上に
急冷凝固させながら堆積させるスプレイデポジションを
行い、外径が約260mm 、長さが900mm の円柱状ビレット
を作製した。このビレットを、押出温度400 ℃、押出比
3 〜12で押出加工し、CuおよびMgを含む合金につい
ては、押出加工後、溶体化処理( 処理温度485 ℃) −水
冷−人工時効(175℃×6hrs) の条件で熱処理を施した。
このようにして得られた押出材および熱処理材につい
て、ガス分析を行って酸素含有量および窒素含有量を測
定し、結晶粒径の測定、Si粒子および金属間化合物粒
子の粒径の測定、および破壊靭性の測定を行った。これ
らの測定結果を表2に示す。なお、破壊靭性はASTM E39
9 に基づいて評価した。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 An Al—Si alloy shown in Table 1 was melted, and a molten metal stream was sprayed with an argon gas or a nitrogen gas in an argon gas atmosphere or a nitrogen gas atmosphere, and deposited while being rapidly cooled and solidified on a columnar collector. Spray deposition was performed to produce a cylindrical billet having an outer diameter of about 260 mm and a length of 900 mm. This billet was extruded at an extrusion temperature of 400 ° C and an extrusion ratio of
Extrusion was performed at 3 to 12, and after the extrusion, the alloy containing Cu and Mg was subjected to heat treatment under the conditions of solution treatment (treatment temperature of 485 ° C.), water cooling, and artificial aging (175 ° C. × 6 hrs).
The extruded material and heat-treated material thus obtained are subjected to gas analysis to measure oxygen content and nitrogen content, measurement of crystal grain size, measurement of Si particles and particle size of intermetallic compound particles, and Fracture toughness was measured. Table 2 shows the measurement results. The fracture toughness was determined by ASTM E39
9 based on the rating.

【0015】表2にみられるように、実施例1に従って
作製された合金材は、いずれもSi粒子およびAl−S
i−Fe系、Al−Fe系、Al−Mn系、Al−Ni
系、Al−Zr系などの金属間化合物の平均粒径が10μ
m 以下の微細な分布組織を有し、結晶粒も微細で、例え
ば内燃機関用ピストンとして使用するに十分な常温破壊
靭値を示した。
As can be seen from Table 2, the alloy materials manufactured according to Example 1 were all Si particles and Al-S
i-Fe system, Al-Fe system, Al-Mn system, Al-Ni
Particle size of intermetallic compounds such as Al-Zr system
m and a fine crystal grain, and exhibited a room temperature fracture toughness sufficient for use as, for example, a piston for an internal combustion engine.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】比較例1 表3に示すAl−Si系合金を溶解し、実施例1と同様
のスプレイデポジションを行って外径が約260mm 、長さ
が900mm の円柱状ビレットを作製した。このビレット
を、押出温度400 ℃、押出比2 〜12で押出加工し、つい
で実施例1と同一の条件で熱処理を施した。得られた熱
処理材について、実施例1と同様、酸素含有量、窒素含
有量、結晶粒径、Si粒子および金属間化合物粒子の平
均粒径、および常温破壊靭性を測定した。測定結果を表
4に示す。
Comparative Example 1 Al-Si alloys shown in Table 3 were melted and spray-deposited in the same manner as in Example 1 to produce a cylindrical billet having an outer diameter of about 260 mm and a length of 900 mm. This billet was extruded at an extrusion temperature of 400 ° C. and an extrusion ratio of 2 to 12, and then heat-treated under the same conditions as in Example 1. About the obtained heat-treated material, the oxygen content, the nitrogen content, the crystal grain size, the average particle size of the Si particles and the intermetallic compound particles, and the room temperature fracture toughness were measured in the same manner as in Example 1. Table 4 shows the measurement results.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】表3および表4において、本発明の条件を
外れているものには下線を付した。表4にみられるよう
に、試料No.1は、Tiが0.003 %と少ないため、常温破
壊靭性が低く、例えば内燃機関用ピストンとしての使用
が困難である。No.2は、Tiの含有量が多いためAl−
Ti系金属間化合物が粗大に晶出し、常温破壊靭性を劣
化させる。No.3は、Bの含有量が多いため、Al−B系
金属間化合物が粗大に晶出して、常温破壊靭性を低下さ
せる。No.4は、スプレイデポジションの雰囲気ガスとし
て空気を使用したために酸性雰囲気となり、得られた合
金材料中の酸素量が0.3 %と多く、常温破壊靭性が低下
した。No.5は、押出加工における押出比が低く熱間加工
をほとんど受けていないため、Si粒子等が分断されず
に粗大のまま残留し、破壊靭性を劣化させている。No.6
は、Si含有量が多いためSi粒径が粗大となり、常温
破壊靭性が劣る。No.7は、Fe,Mn,Niの合計含有
量が10%を越えるため、これら元素とAl,Siとの金
属間化合物の粒径が大きく、破壊靭性を低下させてい
る。
In Tables 3 and 4, those outside the conditions of the present invention are underlined. As can be seen from Table 4, Sample No. 1 has a low room temperature fracture toughness due to a small Ti content of 0.003%, and is difficult to use as a piston for an internal combustion engine, for example. No. 2 has Al-
The Ti-based intermetallic compound is coarsely crystallized and deteriorates the room temperature fracture toughness. In No. 3, since the content of B is large, the Al-B-based intermetallic compound is coarsely crystallized, and the room-temperature fracture toughness is reduced. No. 4 had an acidic atmosphere due to the use of air as the atmosphere gas for spray deposition, and the oxygen content in the obtained alloy material was as large as 0.3%, and the room-temperature fracture toughness was reduced. In No. 5, since the extrusion ratio in the extrusion process was low and hardly subjected to hot working, Si particles and the like remained coarse without being divided, degrading the fracture toughness. No.6
Since Si has a large Si content, the Si particle size becomes coarse, and the room-temperature fracture toughness is poor. In No. 7, since the total content of Fe, Mn, and Ni exceeds 10%, the grain size of the intermetallic compound of these elements and Al and Si is large, and the fracture toughness is reduced.

【0022】実施例2 Si20%、Cu2 %、Mg1 %、Fe5 %、Ti0.03%
およびB0.01%を含み、残部Alと不可避不純物からな
るAl−Si系合金を溶解温度を変えて溶製し、得られ
た溶湯を、窒素ガス雰囲気中で流下させ、窒素ガスで噴
霧するスプレイデポジションを行い、外径約260mm,長さ
800mm の円柱状ビレットを作製した。このビレットを、
押出比7 、押出温度400 ℃で押出加工した後、溶体化処
理( 処理温度485 ℃−水冷−人工時効(175℃×6hrs) の
条件で熱処理した。得られた熱処理材について、ガス分
析を行って酸素および窒素含有量を測定するとともに、
結晶粒径、Siおよび金属間化合物の粒径を測定し、破
壊靭性試験および200 ℃での引張試験を行った。測定結
果および試験結果を表5に示す。
Example 2 Si 20%, Cu 2%, Mg 1%, Fe 5%, Ti 0.03%
Spraying in which an Al-Si alloy containing 0.01% and B and containing the balance of Al and unavoidable impurities is produced by changing the melting temperature, and the resulting molten metal is allowed to flow down in a nitrogen gas atmosphere and sprayed with nitrogen gas. Deposition, 260mm outside diameter, length
An 800 mm cylindrical billet was prepared. This billet
After extrusion at an extrusion ratio of 7 and an extrusion temperature of 400 ° C., heat treatment was performed under the conditions of solution treatment (treatment temperature: 485 ° C.-water cooling—artificial aging (175 ° C. × 6 hrs). The obtained heat-treated material was subjected to gas analysis. Measure oxygen and nitrogen content
The crystal grain size, the grain size of Si and the intermetallic compound were measured, and a fracture toughness test and a tensile test at 200 ° C. were performed. Table 5 shows the measurement results and test results.

【0023】比較例2 実施例2と同じ組成のAl−Si系合金を850 ℃で溶解
し、得られた溶湯をアルゴンガス雰囲気中でアルゴンガ
スによりスプレイデポジションを行い外径が約260mm,長
さが800mm の円柱状ビレットを作製した。さらに、実施
例2と同じ組成のAl−Si系合金を1250℃で溶解し、
得られた溶湯を窒素ガス雰囲気中で窒素ガスによりスプ
レイデポジションを行い上記寸法のビレットを作製し
た。これらのビレットを、実施例2と同一条件で熱間押
出−熱処理した。得られた熱処理材について、ガス分析
を行って酸素および窒素含有量を測定するとともに、結
晶粒径、Siおよび金属間化合物の粒径を測定し、破壊
靭性試験および200 ℃での引張試験を行った。結果を表
5に示す。
Comparative Example 2 An Al—Si alloy having the same composition as in Example 2 was melted at 850 ° C., and the obtained molten metal was spray-deposited with an argon gas in an argon gas atmosphere to obtain an outer diameter of about 260 mm and a length of about 260 mm. A cylindrical billet having a length of 800 mm was produced. Further, an Al-Si alloy having the same composition as in Example 2 was melted at 1250 ° C,
The obtained molten metal was spray-deposited with a nitrogen gas in a nitrogen gas atmosphere to produce a billet having the above dimensions. These billets were subjected to hot extrusion-heat treatment under the same conditions as in Example 2. The obtained heat-treated material is subjected to gas analysis to measure oxygen and nitrogen contents, to measure crystal grain size, Si and intermetallic compound grain sizes, and to conduct a fracture toughness test and a tensile test at 200 ° C. Was. Table 5 shows the results.

【0024】[0024]

【表5】 [Table 5]

【0025】表5にみられるように、実施例2に従って
作製された試料No.16 〜No.18 および比較例2に従って
作製された試料No.8,No.9 を比較すると、例えば雰囲気
ガスおよび溶湯噴霧ガスとして窒素を使用した試料No.1
6 の高温引張強度は320MPaであるのに対し、アルゴンを
使用した試料No.8の高温引張強度は280MPaであり、窒素
ガスで溶湯を噴霧した場合、高温強度の向上がみられ
る。また、溶解温度を高くして窒化物を多く含有させた
試料No.9では、窒化物が粗大となり常温破壊靭性の低下
が認められる。
As shown in Table 5, when comparing Sample Nos. 16 to 18 prepared according to Example 2 and Samples No. 8 and No. 9 prepared according to Comparative Example 2, for example, Sample No.1 using nitrogen as molten gas spray gas
The high-temperature tensile strength of Sample No. 8 using argon was 280 MPa while the high-temperature tensile strength of Sample No. 6 using argon was 320 MPa, and the high-temperature strength was improved when the molten metal was sprayed with nitrogen gas. Further, in Sample No. 9 in which the melting temperature was increased and a large amount of nitride was contained, the nitride became coarse and a decrease in room-temperature fracture toughness was observed.

【0026】[0026]

【発明の効果】以上のとおり、本発明によれば、破壊靭
性に優れたAl−Si系合金が提供され、自動車部品、
家電および産業機械用部品としての適用が期待できる。
As described above, according to the present invention, there is provided an Al-Si alloy having excellent fracture toughness,
It can be expected to be applied as parts for home appliances and industrial machines.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C22C 21/02 C22C 21/02 (72)発明者 時実 直樹 東京都港区新橋5丁目11番3号 住友軽 金属工業株式会社内 (56)参考文献 特開 平4−182057(JP,A) 特開 昭64−57965(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/04 - 1/05 C22C 1/10 C22C 21/00 - 21/18 B22D 23/00 B22F 3/115 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI // C22C 21/02 C22C 21/02 (72) Inventor Naoki Tokishi 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal (56) References JP-A-4-182057 (JP, A) JP-A-64-57965 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 1 / 04-1/05 C22C 1/10 C22C 21/00-21/18 B22D 23/00 B22F 3/115

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si10〜30%(重量%、以下同じ)と、
TiおよびBのうちの1種以上を合計0.005 〜0.5 %含
み、残部Alと不可避的不純物からなるAl−Si系合
金の溶湯を、窒素雰囲気において窒素ガスで噴霧して急
冷凝固させながら堆積させることによってビレットと
し、該ビレットを押出比3以上で押出加工して、平均結
晶粒径が0.1 〜5 μm 、Siの平均粒径が1 〜10μm
で、窒素を0.03〜0.2 %含有する押出材とすることを特
徴とする高靱性Al−Si系合金の製造方法。
(1) Si 10 to 30% (% by weight, the same applies hereinafter);
Depositing a molten Al-Si alloy containing at least one of Ti and B in a total content of 0.005 to 0.5%, the balance being Al and unavoidable impurities, by spraying with a nitrogen gas in a nitrogen atmosphere to rapidly solidify; The billet is extruded at an extrusion ratio of 3 or more to have an average crystal grain size of 0.1 to 5 μm and an average grain size of Si of 1 to 10 μm.
A method for producing a high-toughness Al-Si alloy, wherein the extruded material contains 0.03 to 0.2% of nitrogen .
【請求項2】 Al−Si系合金が、Cu0.5 〜6 %、
Mg0.2 〜3 %を含有することを特徴とする請求項1記
載の高靱性Al−Si系合金の製造方法。
2. The method according to claim 1, wherein the Al—Si alloy is Cu 0.5 to 6%,
The method for producing a high toughness Al-Si alloy according to claim 1, wherein the alloy contains 0.2 to 3% of Mg.
【請求項3】 Al−Si系合金が、Fe、Mnおよび
Niのうちの1種以上を合計1 〜10%含み、押出材中に
おけるこれらの合金元素とAl、Siとの金属間化合物
の平均粒径が10μm 以下であることを特徴とする請求項
1または2記載の高靱性Al−Si系合金の製造方法。
3. An Al—Si alloy containing at least one of Fe, Mn and Ni in a total of 1 to 10%, and an average of intermetallic compounds of these alloy elements and Al and Si in an extruded material. Wherein the particle size is 10 μm or less.
3. The method for producing a high toughness Al-Si alloy according to 1 or 2 .
【請求項4】 Al−Si系合金が、Zr0.2 〜2.0 %
を含み、押出材中におけるAl−Zr系金属間化合物の
平均粒径が10μm 以下であることを特徴とする請求項1
〜3のいずれかに記載の高靱性Al−Si系合金の製造
方法。
4. The method according to claim 1, wherein the Al—Si alloy is Zr 0.2 to 2.0%.
The average particle size of the Al-Zr-based intermetallic compound in the extruded material is 10 µm or less.
4. The method for producing a high-toughness Al-Si-based alloy according to any one of items 1 to 3.
JP14430993A 1993-05-24 1993-05-24 Method for producing high toughness Al-Si alloy Expired - Fee Related JP3184367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14430993A JP3184367B2 (en) 1993-05-24 1993-05-24 Method for producing high toughness Al-Si alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14430993A JP3184367B2 (en) 1993-05-24 1993-05-24 Method for producing high toughness Al-Si alloy

Publications (2)

Publication Number Publication Date
JPH06330263A JPH06330263A (en) 1994-11-29
JP3184367B2 true JP3184367B2 (en) 2001-07-09

Family

ID=15359092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14430993A Expired - Fee Related JP3184367B2 (en) 1993-05-24 1993-05-24 Method for producing high toughness Al-Si alloy

Country Status (1)

Country Link
JP (1) JP3184367B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532253C2 (en) * 1995-09-01 1998-07-02 Peak Werkstoff Gmbh Process for the production of thin-walled pipes (II)
DE19532252C2 (en) * 1995-09-01 1999-12-02 Erbsloeh Ag Method of manufacturing bushings
JP6367567B2 (en) * 2014-01-31 2018-08-01 吉川工業株式会社 Corrosion-resistant thermal spray coating, method for forming the same, and thermal spraying apparatus for forming the same
EP3237647B1 (en) * 2014-12-23 2018-09-26 Hydro Aluminium Rolled Products GmbH Aluminium solder alloy free from primary si particles and method for production thereof
JP6633359B2 (en) * 2015-11-18 2020-01-22 株式会社栗本鐵工所 Pseudo-alloy-coated member, aluminum alloy for pseudo-alloy coating, and aluminum alloy wire for pseudo-alloy coating
JP6924990B2 (en) * 2016-06-17 2021-08-25 吉川工業株式会社 Thermal spray coating and thermal spray coating member
JP6899759B2 (en) * 2017-12-12 2021-07-07 日本軽金属株式会社 Pellicle frame for FPD (flat panel display) and its manufacturing method
JP6500136B2 (en) * 2018-02-09 2019-04-10 吉川工業株式会社 Corrosion-resistant thermal spray coating, method for forming the same, and thermal spraying apparatus for forming the same
DE102019003187A1 (en) * 2019-05-06 2020-11-12 Daimler Ag Component, in particular for a vehicle, and a method for producing such a component

Also Published As

Publication number Publication date
JPH06330263A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
US4818308A (en) Aluminum alloy and method for producing the same
JP3184367B2 (en) Method for producing high toughness Al-Si alloy
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
EP0171798B1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JP7033481B2 (en) Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JP2951262B2 (en) Aluminum alloy with excellent high-temperature strength
JP2019065358A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extruded material, and manufacturing method therefor
JP2781131B2 (en) Low linear expansion rapidly solidified aluminum alloy and method for producing the same
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
WO2019193985A1 (en) Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
EP0137180B1 (en) Heat-resisting aluminium alloy
Hunt Jr New directions in aluminum-based P/M materials for automotive applications
JP2000282161A (en) Heat resisting aluminum alloy excellent in toughness, and its manufacture
JP3193208B2 (en) High strength magnesium alloy and method for producing the same
JP2602893B2 (en) Aluminum alloy member with high strength and excellent forgeability
JPH108162A (en) Production of aluminum alloy material excellent in high temperature strength
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JPH1143729A (en) Manufacture of aluminum composite excellent in high temperature strength
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPH10265918A (en) Aluminum alloy
JPH0657863B2 (en) Heat resistant aluminum alloy with improved fatigue strength
JP2672834B2 (en) Aluminum alloy member with high strength and excellent forgeability
JPH0657864B2 (en) Heat resistant aluminum alloy with improved fatigue strength

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees