JPH0657864B2 - Heat resistant aluminum alloy with improved fatigue strength - Google Patents

Heat resistant aluminum alloy with improved fatigue strength

Info

Publication number
JPH0657864B2
JPH0657864B2 JP9433486A JP9433486A JPH0657864B2 JP H0657864 B2 JPH0657864 B2 JP H0657864B2 JP 9433486 A JP9433486 A JP 9433486A JP 9433486 A JP9433486 A JP 9433486A JP H0657864 B2 JPH0657864 B2 JP H0657864B2
Authority
JP
Japan
Prior art keywords
fatigue strength
aluminum alloy
alloy
resistant aluminum
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9433486A
Other languages
Japanese (ja)
Other versions
JPS62250148A (en
Inventor
秀敏 井上
睦 安倍
正二郎 大家
克之 吉川
司 塩見
Original Assignee
アルミニウム粉末冶金技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルミニウム粉末冶金技術研究組合 filed Critical アルミニウム粉末冶金技術研究組合
Priority to JP9433486A priority Critical patent/JPH0657864B2/en
Publication of JPS62250148A publication Critical patent/JPS62250148A/en
Publication of JPH0657864B2 publication Critical patent/JPH0657864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、急冷凝固法によって製造される耐熱性アルミ
ニウム合金の、殊に疲労強度を改善することに成功した
耐熱性アルミニウム合金に関するものである。
TECHNICAL FIELD The present invention relates to a heat-resistant aluminum alloy produced by a rapid solidification method, and particularly to a heat-resistant aluminum alloy that has been successfully improved in fatigue strength. .

[従来の技術] 自動車産業や航空機産業においては、軽量性に富み且つ
高温条件下でも高強度(疲労強度)を発揮することので
きる耐熱性材料への要望が強い。現在、この様な要望を
満たすべく多くの研究が行われているが、そうした研究
材料の1つにアルミニウム合金、殊に急冷凝固法を応用
して製造されるアルミニウム合金を挙げることができ
る。
[Prior Art] In the automobile industry and the aircraft industry, there is a strong demand for a heat-resistant material that is highly lightweight and can exhibit high strength (fatigue strength) even under high temperature conditions. At present, many studies have been conducted to meet such demands, and one of such research materials is an aluminum alloy, particularly an aluminum alloy produced by applying a rapid solidification method.

該急冷凝固アルミニウム合金は、通常高溶質濃度の溶融
微粉化アルミニウム合金を例えば回転冷却ロール等に吹
き付け、即座に急冷凝固(103℃/秒以上の高速冷却)
することによって製造される。
The rapidly solidified aluminum alloy is usually sprayed with a molten finely divided aluminum alloy having a high solute concentration onto, for example, a rotating cooling roll, and immediately rapidly solidified (high-speed cooling at 10 3 ° C / sec or more).
Is manufactured by

この様にして得られた急冷凝固アルミニウム合金は、粉
末状,薄帯状或は薄片状等を呈しているが、これらは、
上記溶質元素を過飽和状態から急冷凝固させたものであ
る為固溶性が良好であり、一般に耐熱性,強度,耐摩耗
性等が優れている。例えば上記溶質元素がCrであるA
l−Cr系合金は耐熱性に優れ(USP4033793−A、
100〜350℃域での強度に優れている)、又溶質元
素がSiであるAl−Si系合金は耐摩耗性に優れてい
る(特開昭59−13040号公報)。
The rapidly solidified aluminum alloy thus obtained is in the form of powder, ribbon or flakes.
Since the above-mentioned solute elements are rapidly solidified from a supersaturated state, they have good solid solubility and generally have excellent heat resistance, strength, wear resistance and the like. For example, A in which the solute element is Cr
1-Cr alloys have excellent heat resistance (USP4033793-A,
The strength in the 100 to 350 ° C. range is excellent), and the Al-Si alloy having Si as a solute element is excellent in wear resistance (JP-A-59-13040).

[発明が解決しようとする問題点] 本発明者等は、かねてより上記急冷凝固アルミニウム合
金のうち特にAl−Cr系耐熱性合金に着目し該合金の
疲労強度を改善すべく検討を続けてきた。上記Al−C
r系耐熱性合金は、耐熱性については要求レベルを略満
たすが、疲労強度については必ずしも満足できるとは言
い難く、例えば繰り返し応力のかかるコンロッドの様な
部品等に使用することが困難であった。
[Problems to be Solved by the Invention] The inventors of the present invention have long been focusing on an Al--Cr heat resistant alloy among the rapidly solidified aluminum alloys and have been conducting studies to improve the fatigue strength of the alloy. . Al-C above
Although the r-type heat-resistant alloy substantially satisfies the required level of heat resistance, it is difficult to say that the fatigue strength of the r-type heat-resistant alloy is necessarily satisfied, and it was difficult to use it for parts such as connecting rods to which repeated stress is applied. .

従って疲労強度を改善することは、上記Al−Cr系耐
熱性合金の材料的信頼性を確保する上で極めて意義深い
ことであり、この点が今後の解決課題としてクローズア
ップされる。
Therefore, improving the fatigue strength is extremely significant in ensuring the material reliability of the Al-Cr heat resistant alloy, and this point will be highlighted as a future problem to be solved.

本発明は、こうした事情を考慮してなされたものであっ
て、耐熱性を保証することは勿論のこと、疲労強度を優
れたものとすることのできる耐熱性アルミニウム合金を
提供しようとするものである。
The present invention has been made in consideration of such circumstances, and aims to provide a heat-resistant aluminum alloy capable of ensuring not only heat resistance but also excellent fatigue strength. is there.

[問題点を解決する為の手段] 本発明に係る耐熱性アルミニウム合金とは、Cr:5〜
15重量%(以下単に%という)及びSi:5〜15%
を含み、且つ希土類金属:0.5〜5%,Fe:0.5〜5
%,Ti:0.1〜5%,Zr:0.1〜5%,V:0.1〜5
%,Mn:1〜5%,Ni:1〜5%よりなる群から選
択される1種以上を総計で5%以下含み、残部がAl及
び不可避不純物よりなるところにその要旨が存在するも
のである。
[Means for Solving Problems] The heat-resistant aluminum alloy according to the present invention means Cr: 5
15% by weight (hereinafter simply referred to as%) and Si: 5 to 15%
And rare earth metal: 0.5 to 5%, Fe: 0.5 to 5
%, Ti: 0.1 to 5%, Zr: 0.1 to 5%, V: 0.1 to 5
%, Mn: 1 to 5%, Ni: 1 to 5%, one or more kinds selected from the group consisting of 5% or less in total, the balance being Al and inevitable impurities. is there.

[作用] 本発明合金は、上述の説明から明らかな様に急冷凝固法
の利用を骨子とするものであるが、これは急冷凝固法に
おける以下の様な利点を活用しようとしているからであ
る。
[Operation] As apparent from the above description, the alloy of the present invention is based on the use of the rapid solidification method, because it is intended to utilize the following advantages of the rapid solidification method.

(A)各合金元素の固溶限を拡大することができる。(A) The solid solubility limit of each alloy element can be expanded.

(B)金属粒子や各種金属間化合物を微細に均一分散する
ことができる。
(B) Metal particles and various intermetallic compounds can be finely and uniformly dispersed.

(C)上記(A)及び(B)の結果として、強度,耐熱性,熱間
加工性,切削加工性等の諸特性を改善することができる
との期待がもてる。
(C) As a result of the above (A) and (B), it can be expected that various properties such as strength, heat resistance, hot workability, and machinability can be improved.

ここに急冷凝固法の冷却速度とは、102℃/秒以上好ま
しくは104℃/秒以上であり、また合金粉末としてはア
トマイズ粉末に限らず急冷薄片や急冷薄帯を粉砕して得
られるものも適用することができる。
Here, the cooling rate of the rapid solidification method is 10 2 ° C / sec or more, preferably 10 4 ° C / sec or more, and the alloy powder is not limited to atomized powder, and can be obtained by crushing a quenched thin piece or a quenched ribbon. Things can also be applied.

本発明者等は、上記課題の解決手段を見出すに当たって
こうした急冷凝固法の利点に着目すると共に状Al−C
r系耐熱性合金の疲労強度が低いことの原因を究明する
ことから研究を開始した。その結果本発明者等は、(1)
高速度で冷却したことによってCr,Fe,Zr,V,
REM等の合金元素がAl中に固溶状態で微細分散する
から、疲労亀裂の伝幡に対する防禦物となる比較的粗大
な分散層が存在しなくなったこと、(2)急冷凝固アルミ
ニウム合金粉末の表面には一般に酸化物が形成されてい
るが、該酸化物付着アルミニウム合金粉末を粉末冶金法
によって固化した場合、旧粉末粒界(以下PPBという
場合もある)に沿って上記酸化物が配列される為、応力
印加時に該酸化物を通して疲労亀裂が生じると共に該亀
裂の伝幡が起こり易いこと等が疲労強度低さの原因であ
ることを知った。
The inventors of the present invention have focused on the advantages of such a rapid solidification method in finding a solution to the above-mentioned problems, and have a tendency to obtain Al-C
The research was started by investigating the cause of the low fatigue strength of the r-based heat-resistant alloy. As a result, the present inventors have (1)
By cooling at high speed, Cr, Fe, Zr, V,
Since alloying elements such as REM are finely dispersed in Al in a solid solution state, there is no longer a relatively coarse dispersion layer which is a protective material against the propagation of fatigue cracks. (2) The rapidly solidified aluminum alloy powder Oxides are generally formed on the surface, but when the oxide-deposited aluminum alloy powder is solidified by powder metallurgy, the oxides are arranged along old powder grain boundaries (hereinafter sometimes referred to as PPB). Therefore, it is known that fatigue cracks are generated through the oxide when stress is applied and the propagation of the cracks is likely to occur, which causes the low fatigue strength.

そこで本発明者等は、第1番に上記(1)の知見に注目
し、この方向から上記課題を解決すべく種々検討した。
その結果疲労強度の向上を期待し得る基本的合金元素と
してSiを選定し、上記Al−Cr耐熱性合金にこれを
配合すると共に、他の合金元素についても厳密に規定し
て本発明を完成するに至った。
Therefore, the present inventors focused their attention on the knowledge of the above (1) firstly, and conducted various studies from this direction to solve the above problems.
As a result, Si is selected as a basic alloying element that can be expected to improve fatigue strength, and this is blended with the Al-Cr heat resistant alloy described above, and other alloying elements are strictly specified to complete the present invention. Came to.

以下本発明における合金元素の種類及び配合量について
それらの規定理由を明らかにしつつ説明する。
The types and blending amounts of alloying elements in the present invention will be described below while clarifying the reasons for defining them.

Cr:5〜15% Crは、Alマトリックス及び他の合金元素と化合して
分散相又は固溶相を形成することによって耐熱性を向上
させる元素であるが、配合率が5%未満の場合は急冷凝
固による分散相の体積比が小さくなって所望の耐熱性を
得ることが困難となる。一方15%を超える場合には、
冷却速度を如何に速くしても粗大化分散相が生じてしま
い、この為該分散相の体積比が極端に大きくなって靱性
低下や熱間加工性低下等材質上の問題を招く結果とな
る。
Cr: 5 to 15% Cr is an element that improves the heat resistance by combining with an Al matrix and other alloy elements to form a dispersed phase or a solid solution phase, but when the compounding ratio is less than 5% The volume ratio of the dispersed phase due to rapid solidification becomes small, and it becomes difficult to obtain desired heat resistance. On the other hand, if it exceeds 15%,
No matter how fast the cooling rate is increased, a coarse disperse phase is generated, and therefore the volume ratio of the disperse phase becomes extremely large, resulting in problems such as deterioration of toughness and deterioration of hot workability. .

Si:5〜15% Siは、単体でAlマトリックス中に分散し疲労クラッ
ク伝幡を妨げる作用を有している為、疲労強度の向上に
効果がある。しかし5%未満の配合率では、Alマトリ
ックス中のSi粒子が極端に微細化し所望の効果が得ら
れない。一方15%を超えると、Alマトリックス中の
Si粒子が粗大化すると共に靱性が低下するといった問
題点が生じる。
Si: 5 to 15% Si is a simple substance and is dispersed in the Al matrix to prevent fatigue crack propagation, so that it is effective in improving fatigue strength. However, if the blending ratio is less than 5%, the Si particles in the Al matrix become extremely fine and the desired effect cannot be obtained. On the other hand, if it exceeds 15%, there arises a problem that the Si particles in the Al matrix become coarse and the toughness decreases.

希土類元素(REM):0.5〜5%,Fe:0.5〜5
%,Ti:0.1〜5%,Zr:0.1〜5%,V:0.1〜5
%,Mn:1〜5%,Ni:1〜5%よりなる群から選
択される1種以上を総計で5%以下 これらの元素は、いずれもCrとの相互作用によってア
ルミニウム合金の耐熱性をより一層向上させるという効
果を有しているが、この様な効果を有効に発揮せしめる
には、例えばREM単独の場合0.5%以上必要であっ
た。しかし5%を超えると、分散相の粗大化及び靱性の
低下を誘起する等、材質上の問題が生じる。こうした上
限・下限設定根拠はREM以外の元素についても同様で
ある。
Rare earth element (REM): 0.5-5%, Fe: 0.5-5
%, Ti: 0.1 to 5%, Zr: 0.1 to 5%, V: 0.1 to 5
%, Mn: 1 to 5%, Ni: 1 to 5%, and a total of 5% or less of one or more selected from the group consisting of 5% or less. Although it has the effect of further improving it, 0.5% or more was necessary in the case of REM alone, for example, in order to effectively exhibit such an effect. However, if it exceeds 5%, problems with the material such as coarsening of the dispersed phase and reduction of toughness occur. The basis for setting the upper and lower limits is the same for elements other than REM.

ところで上記元素の総計が5%を超えた場合には、上記
分散相粗大化等の弊害が生じた。
By the way, when the total amount of the above elements exceeds 5%, problems such as coarsening of the dispersed phase occur.

本発明は大略以上の様に構成されているが、本発明者等
は、前記(2)の知見、即ち固化後においては酸化物が亀
裂発生の原因になるという知見についても配慮しようと
考え、上記酸化物を規制するという方向から検討を行な
った。その結果酸化物:1%以下という結果を得るに至
ったが、以下この点について説明する。
Although the present invention is configured as described above, the present inventors also consider the knowledge of the above (2), that is, the knowledge that the oxide causes crack generation after solidification, The study was conducted from the direction of controlling the above oxides. As a result, an oxide of 1% or less was obtained. This point will be described below.

酸化物:1.5%以下 Al合金溶湯を粉末状とする方法としては空気噴霧法が
一般的であるが、この方法を用いて製造されたAl合金
粉末はその表面に1.5%以上もの酸化物(主としてAl
)が不可避的に含まれている。
Oxide: 1.5% or less The air atomization method is generally used as a method for making the molten Al alloy powder into a powder form, but the Al alloy powder manufactured by this method has an oxide (mainly 1.5% or more) Al
2 O 3 ) is inevitably included.

従来よりこれらの酸化物は、粉末固化時にAlマトリッ
クス中に分散すると共にこれによって耐熱性を向上させ
ると考えられてきた。しかし本発明者等が詳細に研究し
たところによると、1.5%を超えた場合においては耐熱
性の向上効果は小さく、むしろ前記(2)で述べた如く疲
労強度を低下させるという結果が得られた。尚更に好ま
しくは1.0%以下に抑制することが推奨される。従って
本願発明者等はこの要件を上記〜に加えることに
よって、より一層の疲労強度向上効果を発揮し得ること
を知った。尚こうしたアルミニウム合金を製造するに当
たっては、噴霧の雰囲気ガスとして酸素濃度が10%以
下のものを用いると良い。
It has been conventionally considered that these oxides disperse in the Al matrix at the time of solidification of the powder and improve the heat resistance. However, according to a detailed study by the present inventors, when it exceeds 1.5%, the effect of improving the heat resistance is small, and rather, the result that the fatigue strength is lowered as described in (2) above was obtained. . Even more preferably, it is recommended to suppress it to 1.0% or less. Therefore, the inventors of the present application have found that the effect of further improving fatigue strength can be exhibited by adding this requirement to the above items. In producing such an aluminum alloy, it is preferable to use an atmosphere gas for spraying having an oxygen concentration of 10% or less.

[実施例] 下記第1表より組成の各種Al合金溶湯を作製し、気体
噴霧法を用いて急冷凝固することにより合金粉末を得
た。
[Examples] Various Al alloy melts having the compositions shown in Table 1 below were prepared, and alloy powders were obtained by rapid solidification using a gas atomization method.

尚噴霧気体としては、資料No.11及び12については
5%の酸素を混合した窒素を用い、また他の試料につい
ては空気を用いた。この様にして得られた粉末の冷却速
度は103℃/scc以上であった。
As the atomizing gas, nitrogen mixed with 5% oxygen was used for Material Nos. 11 and 12, and air was used for other samples. The cooling rate of the powder thus obtained was 10 3 ° C / scc or more.

上記の粉末を冷間で予備成形後、缶中で脱気処理し42
0℃で直接押出しを行なうことにより健全な固化材を得
た。
The above powder was cold preformed and then degassed in a can.
A sound solidified material was obtained by directly extruding at 0 ° C.

次に放射化分析法により各固化材の酸化物量を測定する
と共に酸化物量と各種材料特性との相関を調査しその結
果を第1表に併記した。
Next, the amount of oxide of each solidified material was measured by activation analysis method, and the correlation between the amount of oxide and various material properties was investigated, and the results are also shown in Table 1.

尚疲労強度試験や耐熱性試験については下記の通りであ
る。
The fatigue strength test and heat resistance test are as follows.

疲労試験 平行部長さ15mm、直径8mmφの試験片を用い、室温で
小野式回乾曲げ疲労試験を実施し、S−N曲線を作成
し、これにより107サイクルにおける疲労強度を求め、
第1表に併記する結果を得た。
Fatigue Test parallel portion length 15 mm, a test piece having a diameter of 8 mm phi used to implement Ono Shikikai dry bending fatigue test at room temperature, to create the S-N curve, thereby seeking fatigue strength at 10 7 cycles,
The results also shown in Table 1 were obtained.

室温および高温における引張試験 平行部の径6mmφ、標点間距離30mmのテストピースを
用い、室温,100℃,200℃,300℃の各温度に
おける引張試験を実施し第1表に併記する結果を得た。
また靱性値については室温における切欠試験片の引張強
度(σNTS)と0.2%耐力(σ0.2)の比(σNTS/σ0.
2)から評価した。
Tensile test at room temperature and high temperature Tensile test was conducted at room temperature, 100 ° C, 200 ° C and 300 ° C using a test piece with a parallel part diameter of 6 mmφ and gauge length of 30 mm. Got
Regarding the toughness value, the ratio of the tensile strength (σNTS) of the notched test piece to the 0.2% proof stress (σ0.2) at room temperature (σNTS / σ0.
It was evaluated from 2).

Siの効果については、No.1,2,3,4,5,6
(本発明材)とNo.13,14,15,16,17,1
8との比較から明らかである。即ちSiの添加によって
耐熱性を損なわずに疲労強度を大幅に向上することがで
きる。しかしながらNo.7及び8とNo.19及び20の比
較から明らかな様に、上限値を越えたSiの添加は靱性
を低下させる結果を招き、又下限値に満たない添加では
疲労強度の改善の向上がほとんど認められなかった。ま
たNo.9及び10並びにNo.21及び22に示す様に、S
iの添加量が適正な場合であっても、Crの添加量が上
限値を越える場合には靱性の低下を招き、また下限値に
満たない場合には十分な耐熱性を付与することができな
かった。
Regarding the effect of Si, No. 1, 2, 3, 4, 5, 6
(Inventive material) and No. 13, 14, 15, 16, 17, 1
It is clear from the comparison with 8. That is, the fatigue strength can be significantly improved by adding Si without impairing the heat resistance. However, as is clear from the comparison between Nos. 7 and 8 and Nos. 19 and 20, addition of Si in excess of the upper limit results in lower toughness, and addition of less than the lower limit leads to improvement in fatigue strength. Little improvement was observed. As shown in Nos. 9 and 10 and Nos. 21 and 22, S
Even when the addition amount of i is appropriate, when the addition amount of Cr exceeds the upper limit value, toughness is deteriorated, and when it is less than the lower limit value, sufficient heat resistance can be imparted. There wasn't.

REM(Y,Ce),Fe,Mo,Zr,V,Mn,N
iについては、No.1〜6とNo.26との比較によって明
らかな様に耐熱性の向上に顕著な効果があるが、No.2
3及び24に示すように上限値を越える量を添加した場
合、分散相の粗大化を招き靱性が大幅に低下した。また
No.25に示すように総計が5%を越える量を添加した
場合靱性の低下が認められた。
REM (Y, Ce), Fe, Mo, Zr, V, Mn, N
With regard to i, as is clear from the comparison between No. 1 to 6 and No. 26, there is a remarkable effect in improving heat resistance, but No. 2
As shown in 3 and 24, when an amount exceeding the upper limit was added, coarsening of the dispersed phase was caused and toughness was significantly reduced. Also
As shown in No. 25, when the total amount exceeds 5%, the toughness was decreased.

[発明の効果] 本発明は上述の様に構成されているので、耐熱性に優れ
しかも疲労強度の著しく改善されたアルミニウム合金を
提供することができた。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to provide an aluminum alloy having excellent heat resistance and significantly improved fatigue strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Cr:5〜15重量%(以下単に%とい
う)及びSi:5〜15%を含み、且つ希土類金属:0.
5〜5%,Fe:0.5〜5%,Ti:0.1〜5%,Zr:
0.1〜5%,V:0.1〜5%,Mn:1〜5%,Ni:1
〜10%よりなる群から選択される1種以上を総計で5
%以下含み、残部がAl及び不可避不純物よりなること
を特徴とする疲労強度の改善された耐熱性アルミニウム
合金。
1. Cr: 5 to 15% by weight (hereinafter simply referred to as "%") and Si: 5 to 15%, and rare earth metal: 0.1.
5-5%, Fe: 0.5-5%, Ti: 0.1-5%, Zr:
0.1-5%, V: 0.1-5%, Mn: 1-5%, Ni: 1
10 or more selected from the group consisting of 10% in total 5
% Or less, with the balance being Al and inevitable impurities, a heat-resistant aluminum alloy with improved fatigue strength.
JP9433486A 1986-04-23 1986-04-23 Heat resistant aluminum alloy with improved fatigue strength Expired - Lifetime JPH0657864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9433486A JPH0657864B2 (en) 1986-04-23 1986-04-23 Heat resistant aluminum alloy with improved fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9433486A JPH0657864B2 (en) 1986-04-23 1986-04-23 Heat resistant aluminum alloy with improved fatigue strength

Publications (2)

Publication Number Publication Date
JPS62250148A JPS62250148A (en) 1987-10-31
JPH0657864B2 true JPH0657864B2 (en) 1994-08-03

Family

ID=14107379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9433486A Expired - Lifetime JPH0657864B2 (en) 1986-04-23 1986-04-23 Heat resistant aluminum alloy with improved fatigue strength

Country Status (1)

Country Link
JP (1) JPH0657864B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621326B2 (en) * 1988-04-28 1994-03-23 健 増本 High strength, heat resistant aluminum base alloy
US5240517A (en) * 1988-04-28 1993-08-31 Yoshida Kogyo K.K. High strength, heat resistant aluminum-based alloys
JPH02217666A (en) * 1989-02-17 1990-08-30 Honda Motor Co Ltd Piston ring for internal combustion engine

Also Published As

Publication number Publication date
JPS62250148A (en) 1987-10-31

Similar Documents

Publication Publication Date Title
US5595616A (en) Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
JPS63157831A (en) Heat-resisting aluminum alloy
DE3781394T2 (en) TITAN ALUMINUM ALLOY.
JPH0742536B2 (en) Aluminum-based alloy product having high strength and high toughness and its manufacturing method
CA1280626C (en) Powder metallurgy process and product
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JP3909543B2 (en) Aluminum alloy extruded material with excellent axial crushing properties
JPH06235040A (en) High strength and heat resistant aluminum alloy, its integrated and solidified material and production thereof
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPH02500289A (en) Chromium-containing aluminum alloy produced by rapid solidification route
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JP3184367B2 (en) Method for producing high toughness Al-Si alloy
JP2569712B2 (en) Ti-A ▲ -based metal compound cast alloy with excellent high temperature oxidation resistance
JP2868185B2 (en) Al lower 3 Ti type low density heat resistant intermetallic alloy
JPH0657864B2 (en) Heat resistant aluminum alloy with improved fatigue strength
JPH0657863B2 (en) Heat resistant aluminum alloy with improved fatigue strength
JPH08144003A (en) High strength aluminum alloy excellent in heat resistance
JP7190286B2 (en) Al-Fe-Er series aluminum alloy
JP3504917B2 (en) Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members
JP2711296B2 (en) Heat resistant aluminum alloy
JP2693175B2 (en) Aluminum alloy with excellent heat resistance
JP2542603B2 (en) Abrasion resistance Al-Si-Mn sintered alloy
JPH02194142A (en) Al-base alloy powder for sintering
JPS6043453A (en) Heat-resistant aluminum alloy
JP3005354B2 (en) Heat treatment method of Al powder alloy