JPH03252129A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03252129A
JPH03252129A JP4983290A JP4983290A JPH03252129A JP H03252129 A JPH03252129 A JP H03252129A JP 4983290 A JP4983290 A JP 4983290A JP 4983290 A JP4983290 A JP 4983290A JP H03252129 A JPH03252129 A JP H03252129A
Authority
JP
Japan
Prior art keywords
film
thin film
region
etching
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4983290A
Other languages
Japanese (ja)
Inventor
Kiyomasa Kamei
清正 亀井
Takeshi Matsutani
松谷 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4983290A priority Critical patent/JPH03252129A/en
Publication of JPH03252129A publication Critical patent/JPH03252129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To detect the end point of etching easily and accurately in the etching of the whole surface at the time of the formation of a sidewall by contributing one part or the whole region of a region except a chip region, from which a specific first thin-film is removed, to the detection of the end point of etching at the time of the etching of the whole surface of a specific second thin-film. CONSTITUTION:In the manufacture of a semiconductor device having a process, in which a first thin-film 10 is formed onto a semiconductor substrate 1 and the first thin-film 10 is patterned and a first thin-film pattern 10P having a stepped section to the periphery is formed, and a process, in which a second thin-film 12 is formed onto the whole surface of the substrate 1 and a sidewall 12S is shaped onto the side face of the first thin-film pattern 10P through the etching of the whole surface of the second thin-film 12, a process, in which the first thin-film 10 on one part or the whole region of a chip outside region 7 is removed at the same time as or apart from a process, in which the first thin-film 10 on a chip region 6 is patterned, is provided, and one part or the whole region of the chip outside region 7, from which the first thin-film 10 is removed, is made to contribute to the detection of the end point of etching at the time of the etching of the whole surface of the second thin-film 12.

Description

【発明の詳細な説明】 [目 次] 概要 産業上の利用分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段 作用 実施例 一実施例の工程断面図(第1図) 実施例の半導体基板平面模式図(第2図)他の実施例の
工程断面図(第3図) 発明の効果 〔概 要] 半導体装置の製造方法、特に段差の側面にサイドウオー
ルを形成する方法の改良に関し、サイドウオール形成の
際の全面エツチングにおいてエツチング終点の検出が容
易に且つ正確になし得る半導体装置の製造方法の提供を
目的とし、半導体基板上(1)に第1の薄膜を形成し、
該第1の薄膜をバターニングして周囲に対して段差を有
する第1の薄膜パターン(10P)を形成する工程と、
次いで該基板(1)の全面上に第2の薄膜(12)を形
成し、該第2の薄膜(12)の全面エツチングを行って
該第1の薄膜パターン(10P)の側面に第2の薄膜か
らなるサイドウオール(12S)を形成する工程を有し
、且つ該第2の薄膜(12)の全面上・νチングの終点
が、終点検出手段によって求められる半導体装置の製造
方法において、該半導体基板(1)面におけるチップ領
域上の該第1の薄膜(10)をバターニングする工程と
、該第1の薄膜(10)をバターニングする工程と同時
若しくは別にチップ領域外の領域の一部または全域上の
該第1の薄膜(10)を除去する工程を有し、該第1の
薄膜(10)の除去されたチップ領域外の領域の一部ま
たは全域を、該第2の薄膜(12)の全面エツチングに
際してのエツチング終点の検出に寄与せしめる工程を含
んで構成される。
[Detailed Description of the Invention] [Table of Contents] Overview Industrial Field of Application Conventional Technology Problems to be Solved by the Invention Means for Solving the Problems Action Embodiment 1 Process sectional view of the embodiment (Fig. 1) Implementation Schematic plan view of a semiconductor substrate in an example (FIG. 2) Process cross-sectional view in another embodiment (FIG. 3) Effects of the invention [Summary] A method for manufacturing a semiconductor device, particularly a method for forming a sidewall on the side surface of a step. Regarding the improvement, the purpose is to provide a method for manufacturing a semiconductor device in which it is possible to easily and accurately detect the end point of etching in the entire surface etching during sidewall formation, by forming a first thin film on a semiconductor substrate (1),
a step of patterning the first thin film to form a first thin film pattern (10P) having a step with respect to the periphery;
Next, a second thin film (12) is formed on the entire surface of the substrate (1), and the entire surface of the second thin film (12) is etched to form a second thin film pattern (10P) on the side surface of the first thin film pattern (10P). A method for manufacturing a semiconductor device comprising the step of forming a side wall (12S) made of a thin film, and in which the end point of v-ching on the entire surface of the second thin film (12) is determined by an end point detection means. A step of buttering the first thin film (10) on the chip region on the surface of the substrate (1), and a part of the region outside the chip region, either simultaneously or separately from the step of buttering the first thin film (10). or the step of removing the first thin film (10) over the entire area, and removing part or the entire area of the area outside the chip area from which the first thin film (10) has been removed, and removing the second thin film (10) from the first thin film (10). 12) The method includes the step of contributing to the detection of the etching end point during the entire surface etching.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法、特に段差の側面にサイ
ドウオールを形成する方法の改良に関する。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to an improvement in a method for forming a sidewall on the side surface of a step.

近年、半導体装置の高集積化の要求に伴って、各種機能
部を高密度で形成することを可能にするセルファライン
技術、配線の段切れや配線間短絡を防止するために急峻
な段差を緩和する手段等に全面エツチングの手法を応用
したサイドウオール形成技術が提供されているが、この
サイドウオール形成時のオーバエツチングは半導体装置
の性能劣化に結びつくので、前記全面エツチングに際し
エツチング終点の検出が正確且つ容5になされる半導体
装置の製造方法が望まれている。
In recent years, with the demand for higher integration of semiconductor devices, self-line technology that enables the formation of various functional parts at high density, and the mitigation of steep steps to prevent wiring breaks and short circuits between wiring. A sidewall formation technology that applies a full-face etching method has been provided as a means for etching, but over-etching during sidewall formation leads to performance deterioration of the semiconductor device, so it is important to accurately detect the etching end point during the above-mentioned full-face etching. In addition, a method for manufacturing a semiconductor device is desired.

〔従来の技術〕[Conventional technology]

従来、例えばサイドウオール形成工程を含むU字型分離
溝は、次に第4図を参照して説明する方法により形成さ
れていた。
Conventionally, for example, a U-shaped separation groove including a sidewall forming process has been formed by a method described below with reference to FIG.

第4図(a)参照 即ち、半導体基板51上に下敷き酸化膜52を介して耐
酸化性を有する窒化シリコン(SiJn)膜パターン5
3A 、53B等を形成し、この5i3N4Illパタ
ーン53A 、53B等をマスクにし選択酸化を行って
フィールド酸化膜54を形成し、次いで通常のフォトリ
ソグラフィにより例えばフィールド酸化1i154を貫
通し半導体基板51内に達するU字型溝55を形成する
。なお図中、56はチップ領域、57はチップ領域の外
側領域(基板の周辺領域)即ちチップ外領域を示す。
Refer to FIG. 4(a). That is, a silicon nitride (SiJn) film pattern 5 having oxidation resistance is formed on a semiconductor substrate 51 via an underlying oxide film 52.
3A, 53B, etc. are formed, selective oxidation is performed using these 5i3N4Ill patterns 53A, 53B, etc. as a mask to form a field oxide film 54, and then, by ordinary photolithography, for example, the field oxide film 54 is penetrated to reach the inside of the semiconductor substrate 51. A U-shaped groove 55 is formed. In the figure, 56 indicates a chip area, and 57 indicates an area outside the chip area (peripheral area of the substrate), that is, an area outside the chip.

第5図は上記半導体基板51の上面を模式的に示した平
面図で、56はチップ領域、57はチップ外領域である
FIG. 5 is a plan view schematically showing the upper surface of the semiconductor substrate 51, in which 56 is a chip region and 57 is an off-chip region.

第4図(b)参照 次いでU字型溝55の内面に熱酸化によるSiO□膜5
8膜形8し、次いでU字型溝55内を含む基板の全面上
に、CVO法により、例えばU字型溝55内を完全に埋
める厚さの第1のポリシリコン(Si)層を形成し、エ
ッチバックを行って、U字型溝55内にポリSi埋込み
層59を形成し、次いでこの基板全面上に第2のポリS
i層60を形成する。
Refer to FIG. 4(b) Next, a SiO□ film 5 formed by thermal oxidation is formed on the inner surface of the U-shaped groove 55.
A first polysilicon (Si) layer is formed on the entire surface of the substrate, including the inside of the U-shaped groove 55, by a CVO method to a thickness that completely fills the inside of the U-shaped groove 55, for example. Then, etch back is performed to form a poly-Si buried layer 59 in the U-shaped groove 55, and then a second poly-Si buried layer 59 is formed on the entire surface of the substrate.
An i-layer 60 is formed.

第4図(C)参照 次いで上記第2のポリSi層60上にポジレジスト膜を
形成し、ステップアントリピー、ト法によりチップ領域
56の露光を行い、レジスト膜の現像を行ってチップ領
域56内に前記ポリSi埋込み層59の上部を選択的に
覆うレジストパターン61Pを形成する。なお従来の方
法においては、この際パターン形成に必要のないチップ
外領域57は、露光装置の制約及び露光手番の短縮のた
めに露光されないので、このチップ外領域57にはレジ
スト膜61が残留する。
Referring to FIG. 4(C), a positive resist film is then formed on the second poly-Si layer 60, the chip region 56 is exposed to light by step-and-repeat method, and the resist film is developed. A resist pattern 61P is formed therein to selectively cover the upper part of the poly-Si buried layer 59. Note that in the conventional method, the off-chip area 57 which is not necessary for pattern formation is not exposed due to restrictions on the exposure equipment and shortening the exposure time, so the resist film 61 remains in this off-chip area 57. do.

第4図(ハ)参照 次いで上記レジストパターン61P及びレジスト膜61
をマスクにして第2のポリSi層60をバタ一二ングし
た後、レジストパターン61P及びレジスト膜61を除
去する。ここで、チップ領域56のポリSi埋込み層5
9が満たされた0字型溝55の上部に第2のポリSi層
パターン60Pが形成され、且つチップ外領域57上に
は第2のポリSi層60がそのまま残留する。
Referring to FIG. 4(c), the resist pattern 61P and the resist film 61
After battering the second poly-Si layer 60 using as a mask, the resist pattern 61P and the resist film 61 are removed. Here, the poly-Si buried layer 5 in the chip region 56
A second poly-Si layer pattern 60P is formed above the 0-shaped groove 55 filled with 9, and the second poly-Si layer 60 remains as it is on the off-chip region 57.

第4図(e)参照 次いで上記基板の全面上に第3のポリSi層62を形成
し、全面エツチングを行って第2のポリSi層パターン
60Pの急峻な段差をなす側面に、第3のポリSi層6
2からなるサイドウオール62Sを形成する。なおこの
際この従来方法においては、前述したように、大面積を
占めエツチング終点検出に大きく機能するチップ外領域
57に第3のポリSi層62と同種の第2のポリSt層
60残留していて、この領域の見掛は上のポリSi層の
厚さが厚くなった構造を有するために、この領域を、反
応生成物、反応ガスのプラズマ光強度の変化、エレクト
ロルミネセンス光量の変化等通常の終点検出手段によっ
て検出される第3のポリSi層62の全面エツチングの
終点検出に寄与せしめることが出来ず、そのために終点
の検出が不正確になって極度のオーバエツチングを生じ
、前記第2のポリSi層パターン60Pが極度に薄くな
ると同時に第3のポリSi層62からなるサイドウオー
ル62Sも点線62SSのように消耗する。
Referring to FIG. 4(e), a third poly-Si layer 62 is then formed on the entire surface of the substrate, and the entire surface is etched to form a third poly-Si layer 62 on the steeply stepped side surface of the second poly-Si layer pattern 60P. Poly-Si layer 6
A side wall 62S consisting of 2 is formed. At this time, in this conventional method, as described above, the second polySt layer 60 of the same type as the third polySi layer 62 remains in the off-chip region 57 which occupies a large area and plays a major role in detecting the etching end point. Since the appearance of this region has a structure in which the thickness of the poly-Si layer above is increased, this region is affected by reaction products, changes in the plasma light intensity of the reaction gas, changes in the amount of electroluminescence light, etc. It is not possible to contribute to the end point detection of the entire surface etching of the third poly-Si layer 62, which is detected by a normal end point detection means, and as a result, the end point detection becomes inaccurate, resulting in extreme overetching, and At the same time as the second poly-Si layer pattern 60P becomes extremely thin, the sidewall 62S made of the third poly-Si layer 62 also wears out as indicated by the dotted line 62SS.

第4図(f)参照 そのため、後の工程で前記第2のポリSi層パターン6
0P及びポリSiサイドウオー/L<62SSを熱酸化
して形成されるSiO□絶縁膜63が薄くなって、0字
型溝55の上部に形成される配線(図示せず)とU字型
溝55内のポリSi埋込み層59との絶縁性が低下する
という問題を生じ、且つ上記サイドウオール62SSの
消耗によって上記絶縁膜63の側面に形成される段差が
急峻になる。従って、上記従来の方法においては、上部
に形成される配線(図示せず)の上記2.峻な段差によ
る段切れが生じ易くなり、また配線形成時に上記段差部
に配線材料の残渣が残留して配線間の短絡を生じ易くな
るという問題があった。
Refer to FIG. 4(f). Therefore, in a later step, the second poly-Si layer pattern 6
The SiO□ insulating film 63 formed by thermally oxidizing the 0P and poly-Si side walls/L<62SS becomes thinner, and the wiring (not shown) and the U-shaped groove formed on the upper part of the 0-shaped groove 55 become thinner. A problem arises in that the insulation with respect to the poly-Si buried layer 59 in the insulating film 62 is deteriorated, and the step formed on the side surface of the insulating film 63 becomes steep due to the wear of the side wall 62SS. Therefore, in the above conventional method, the above-mentioned 2. There have been problems in that step breaks due to steep steps are likely to occur, and residues of the wiring material remain in the step portions during wiring formation, making it easy to cause short circuits between the wires.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明は、サイドウオール形成の際の全面エツチ
ングにおいて、エツチング終点の検出が容易に且つ正確
になし得る半導体装置の製造方法の提供を目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device in which the end point of etching can be easily and accurately detected during full-surface etching during sidewall formation.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、半導体基板上(1)に第1の薄膜を形成し
、該第1の薄膜をバターニングして周囲に対して段差を
有する第1の薄膜パターン(10P)を形成する工程と
、次いで該基板(1)の全面上に第2の薄膜(12)を
形成し、該第2の薄膜(12)の全面エツチングを行っ
て該第1の薄膜パターン(10P)の側面に第2の薄膜
からなるサイドウオール(12S)を形成する工程を有
し、且つ該第2の薄膜(12)の全面エツチングの終点
が、終点検出手段によって求められる半導体装置の製造
方法において、該半導体基板(1)面におけるチップ領
域上の該第1の薄膜(10)をバターニングする工程と
、該第1の薄膜(10)をバターニングする工程と同時
若しくは別にチップ領域外の領域の一部または全域上の
該第1の薄膜(10)を除去する工程を有し、該第1の
薄膜(10)の除去されたチップ領域外の領域の一部ま
たは全域を、該第2の薄膜(12)の全面エツチングに
際してのエツチング終点の検出に寄与せしめる工程を含
む本発明による半導体装置の製造方法によって解決され
る。
The above problem includes a step of forming a first thin film on a semiconductor substrate (1) and patterning the first thin film to form a first thin film pattern (10P) having a step with respect to the surroundings; Next, a second thin film (12) is formed on the entire surface of the substrate (1), and the entire surface of the second thin film (12) is etched to form a second thin film pattern (10P) on the side surface of the first thin film pattern (10P). In a method for manufacturing a semiconductor device, which includes a step of forming a sidewall (12S) made of a thin film, and in which the end point of the entire surface etching of the second thin film (12) is determined by end point detection means, the semiconductor substrate (12S) ) A step of buttering the first thin film (10) on the chip region on the surface, and a step of buttering the first thin film (10) on a part or the entire region outside the chip region, either simultaneously or separately from the step of buttering the first thin film (10). of the first thin film (10), and a part or the entire area of the removed area of the first thin film (10) outside the chip area is removed from the second thin film (12). This problem is solved by the method of manufacturing a semiconductor device according to the present invention, which includes a step of contributing to the detection of the end point of etching during full-surface etching.

〔作 用〕[For production]

即ち本発明の方法においては、第1の薄膜パターンを有
する半導体基板の全面上に第2の薄膜を形成し、この第
2の薄膜を全面エツチングして第1の薄膜パターンの側
面に第2の薄膜からなるサイドウオールを形成する際の
上記全面エツチングにおける終点の検出を容易且つ正確
にするために、上記第1の薄膜のバターニングに際して
同時、に半導体基板の周辺部のチップが形成されないチ
ップ外領域の第1の薄膜を除去してお(ことによって、
この領域上の第2の薄膜の下部には異種物質の層を直に
且つ広い面積で接触せしめておく。
That is, in the method of the present invention, a second thin film is formed on the entire surface of a semiconductor substrate having a first thin film pattern, and the second thin film is etched over the entire surface to form a second thin film on the side surface of the first thin film pattern. In order to easily and accurately detect the end point of the above-mentioned entire surface etching when forming a sidewall consisting of a thin film, when patterning the first thin film, at the same time, an area outside the chip where no chip is formed in the peripheral area of the semiconductor substrate is to be etched. by removing the first thin film of the region (possibly by
A layer of a different material is brought into direct contact with the lower part of the second thin film on this region over a wide area.

これによって、第2の薄膜の全面エツチングにおける終
点は、上記広い面積の異種物質層表出による各種検出値
の変化によって検出されるので、終点の検出が容易且つ
正確になる。
As a result, the end point of the entire surface etching of the second thin film is detected by changes in various detected values due to the exposure of the foreign material layer over a wide area, so that the end point can be easily and accurately detected.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図(a)〜げ)はU字型溝分離領域形成の際の本発
明の方法の一実施例の工程断面図、第2図は同実施例に
おける半導体基板の模式平面図、第3図(a) 〜(e
)はLDD−MO3FET製造に際しテノ本発明の方法
の他の実施例の工程断面図である。
1(a) to 1) are process cross-sectional views of an embodiment of the method of the present invention for forming a U-shaped groove isolation region, FIG. 2 is a schematic plan view of a semiconductor substrate in the same embodiment, and FIG. Figures (a) to (e)
) is a process sectional view of another embodiment of the method of the present invention for manufacturing LDD-MO3FET.

第1図(a)参照 本発明の方法を用いてU字型溝分離領域を形成するに際
しては、先ず従来同様に、半導体基板1面の半導体チッ
プが形成されるチップ領域6内における素子形成領域A
Dと、基板周辺部のチップが形成されないチップ外領域
7とを、それぞれ下敷き酸化膜2を介して個々に覆うS
iJ、膜パターン3Aと3Bを形成し、これら5isN
a膜パターン3A、3Bをマスクにして選択酸化(10
GO3)によりチップ領域6上に選択的に厚さ0.6μ
m程度のフィールド酸化膜4を形成し、次いで通常のフ
ォトリソグラフィにより上記フィールド酸化膜4面に底
部が半導体基板1内に達する例えば深さ3μm程度のU
字型溝(トレンチ)5を形成し、例えば熱酸化によりU
字型溝5の内面に厚さ0.1μm程度の素子間分離用 
Sing膜8を形成し、次りで、上記トレンチ5の内部
を含む基板の全面上にCVD法により例えば厚さ1.5
μm程度の第1のポリSi層を形成し、例えばエツチン
グガスに(CF4+Oz)ガスを用いたドライエツチン
グ手段によるエッチバック処理を行って、上記U字型溝
5内に上記第1のポリSi層からなるポリSi埋込み層
9を残留形成せしめる。
Refer to FIG. 1(a) When forming a U-shaped groove isolation region using the method of the present invention, first, as in the conventional method, an element formation region in a chip region 6 on one surface of a semiconductor substrate where a semiconductor chip is formed. A
D and the off-chip area 7 on the periphery of the substrate where no chip is formed are individually covered with an underlying oxide film 2 interposed therebetween.
iJ, film patterns 3A and 3B are formed, and these 5isN
Selective oxidation (10
GO3) selectively deposits a thickness of 0.6μ on the chip area 6.
A field oxide film 4 having a thickness of approximately 3 μm is formed, and then a U film having a depth of approximately 3 μm, for example, whose bottom portion reaches inside the semiconductor substrate 1, is formed on the surface of the field oxide film 4 by ordinary photolithography.
A trench 5 is formed, for example, by thermal oxidation.
The inner surface of the groove 5 has a thickness of approximately 0.1 μm for isolation between elements.
A Sing film 8 is formed, and then a film with a thickness of, for example, 1.5 cm is formed by CVD on the entire surface of the substrate including the inside of the trench 5.
A first poly-Si layer with a thickness of approximately μm is formed, and an etch-back process is performed using, for example, a dry etching method using (CF4+Oz) gas as an etching gas to form the first poly-Si layer in the U-shaped groove 5. A poly-Si buried layer 9 consisting of the following is formed as a residual layer.

なおこの際、第1のポリSi層の厚みが薄<トレンチ内
に埋込まれた第1のポリSi層(ポリSi埋込み層9)
の中央部に溝が形成されるが特に支障はない。
In this case, if the thickness of the first poly-Si layer is thin<the first poly-Si layer buried in the trench (poly-Si buried layer 9)
Although a groove is formed in the center, this is not a particular problem.

第2図は上記半導体基板1の上面を模式的に示す平面図
で、6はチップ領域、7はチップ外領域を示している。
FIG. 2 is a plan view schematically showing the upper surface of the semiconductor substrate 1, in which 6 indicates a chip region and 7 indicates an off-chip region.

第1図(b)参照 次いで、上記基板の全面上にCVD法により厚さ0.2
μm程度の第2のポリSi層10を形成し、次いで上記
第2のポリSi層10上に例えばポジレジスト膜11を
塗布形成し、例えばステップアンドリピートによる露光
を行い、チップ領域6における前記トレンチ5の上部を
所定の広さで覆う領域以外の領域に第1の露光を行い(
lla Iは第1の露光領域)、引き続いて別のマスク
を用いチップ領域6を除くチップ外領域7の例えば全域
に第2の露光(llazは第2の露光領域)を行う、な
おこのチップ外領域7の露光は、ステップアンドリピー
ト法によって行ってもよい。
Refer to FIG. 1(b).Next, a film with a thickness of 0.2 cm was coated on the entire surface of the substrate by CVD method.
A second poly-Si layer 10 with a thickness of approximately μm is formed, and then, for example, a positive resist film 11 is coated on the second poly-Si layer 10, and exposure is performed, for example, by step-and-repeat, to form the trenches in the chip region 6. The first exposure is performed on an area other than the area covering the upper part of 5 in a predetermined area (
lla I is the first exposure area), and then, using another mask, a second exposure (llaz is the second exposure area) is performed on, for example, the entire off-chip area 7 excluding the chip area 6. The region 7 may be exposed by a step-and-repeat method.

第1図(C)参照 次いで現像を行う、この現像により露光されなかったチ
ップ領域6におけるトレンチ5の上部領域に所定の広さ
でトレンチ5上部領域を覆うレジストパターンIIPが
形成され、露光されたチップ領域6の他の部分及びチッ
プ外領域7上のレジスト膜11は総て溶解除去される。
Referring to FIG. 1(C), development is then performed. Through this development, a resist pattern IIP covering the upper region of the trench 5 with a predetermined width is formed in the upper region of the trench 5 in the unexposed chip region 6, and is exposed. Resist film 11 on other parts of chip region 6 and off-chip region 7 are all dissolved and removed.

第1図(d)参照 次いで、上記レジストパターンLIPをマスクにし例え
ば塩素(CI)系のエツチングガスを用いたりアクティ
ブイオンエツチング(RIE )処理により第2のポリ
Si層10のエツチングを行い、トレンチ5の上部に第
2のポリSi層パターン10P、を形成する。
Refer to FIG. 1(d). Next, using the resist pattern LIP as a mask, the second poly-Si layer 10 is etched using, for example, a chlorine (CI)-based etching gas or by active ion etching (RIE) processing, and the trench 5 is etched. A second poly-Si layer pattern 10P is formed on top of the poly-Si layer pattern 10P.

なおこの際チップ外領域7は第2のポリSi層10が除
去されて、その下部の5isN4膜パターン3Bが表出
する。
At this time, the second poly-Si layer 10 is removed from the off-chip region 7, and the 5isN4 film pattern 3B underneath it is exposed.

第1図(e)参照 レジストパターンLIPの剥離除去を行った後、この基
板上にCVD法により、鎖線で示すように厚さ1〜1.
5μm程度の第3のポリSi層(12)を形成する。そ
して次ぎに、例えばCI系のエツチングガスを用いたR
IE処理により、例えば発光スペクトル法等の終点検出
手段により終点が検出されるまで上記第3のポリSi層
の全面エツチングを行い、第2のポリ51層パターン1
0Pの側面に第3のポリSi層からなるポリSiサイド
ウオール125を残留形成させる。
After peeling and removing the resist pattern LIP, see FIG.
A third poly-Si layer (12) of about 5 μm is formed. Next, for example, R using CI-based etching gas.
By IE processing, the entire surface of the third poly-Si layer is etched until the end point is detected by an end point detection means such as an emission spectroscopy, and the second poly 51 layer pattern 1 is etched.
A poly-Si sidewall 125 made of a third poly-Si layer is left on the side surface of the 0P.

なお、上記発光スペクトル法は、終点に達した時の特定
の波長を有する発光スペクトルの強度の急変により終点
を検出する方法であるが、本実施例の方法においては、
広い面積を有するチップ外領域7上の第3のポリSi層
12の下部には、これに直に接してSiとは異なる物質
であるSi3N、膜(3B)が存在するので、第3のポ
リSi層12のエツチングが完了した時点におけるエツ
チングガスの特定の波長を有する発光スペクトル、或い
は反応生成物による特定の波長を有する発光スペクトル
の発光強度の変化は非常に大きくなり、エツチング終点
検出感度は従来に比べ大幅に向上する。従って、上記全
面エツチングに際して極端なオーバエツチングを生ずる
ことがなくなって、第2のポリ51層パターン10Pの
膜厚は確保され、且つポリSiサイドウオール125の
なだらかさも保持される。
Note that the above-mentioned emission spectrometry is a method of detecting the end point by a sudden change in the intensity of the emission spectrum having a specific wavelength when the end point is reached, but in the method of this example,
Under the third poly-Si layer 12 on the off-chip region 7, which has a large area, there is a film (3B) of Si3N, which is a material different from Si, in direct contact with the third poly-Si layer 12. At the time when the etching of the Si layer 12 is completed, the change in the emission intensity of the emission spectrum having a specific wavelength of the etching gas or the emission spectrum having a specific wavelength due to the reaction product becomes very large, and the etching end point detection sensitivity is lower than that of the conventional one. This is a significant improvement compared to . Therefore, extreme overetching does not occur during the etching of the entire surface, the thickness of the second poly 51 layer pattern 10P is ensured, and the smoothness of the poly Si side wall 125 is also maintained.

第1図(f) 以後、従来同様に上記第2のポリSt層パターン10P
及びその側面のポリSiサイドウオール125を熱酸化
してポリSi埋込み層被覆用SiO2膜13を形成し、
本発明の方法によるU字型溝分離領域が完成する。
FIG. 1(f) Thereafter, the second polySt layer pattern 10P is applied in the same manner as before.
and thermally oxidize the poly-Si sidewall 125 on the side thereof to form a poly-Si buried layer covering SiO2 film 13,
A U-shaped groove isolation region according to the method of the present invention is completed.

なお、前記のように本発明の方法によれば第2のポリ5
1層パターン10Pの膜厚、及びその側面のポリSiサ
イドウオール12Sのなだらかさが確保されるので、こ
れらを酸化して形成した上記埋込み層被覆用Sing膜
13は、所定の厚さを有し且つなだらかな側面を有する
ので、その上に形成される配線層(図示せず)とポリS
i埋込み層9との高絶縁性は確保されると共に、配線の
段切れ、配線層残渣による配線間の短絡等は防止される
Note that, as described above, according to the method of the present invention, the second poly 5
Since the film thickness of the one-layer pattern 10P and the smoothness of the poly-Si sidewall 12S on the side surface thereof are ensured, the buried layer covering Sing film 13 formed by oxidizing these has a predetermined thickness. In addition, since it has a gentle side surface, the wiring layer (not shown) formed thereon and the polyS
High insulation with the i-buried layer 9 is ensured, and breaks in the wiring, short circuits between the wirings due to wiring layer residue, etc. are prevented.

本発明の方法は、電極の側面に絶縁膜からなるサイドウ
オールを形成する際、例えばLDD構造のMOSFET
を製造する際にも適用される。
In the method of the present invention, when forming a side wall made of an insulating film on the side surface of an electrode, for example, a MOSFET with an LDD structure
It also applies when manufacturing.

以下にその方法を実施例について、第3図(a)〜(e
)を参照して説明する。
The method will be described below with reference to examples in Figs. 3(a) to (e).
).

第3図(a)参照 本発明の方法を用いてLDD構造のMOSFETを製造
するに際しては、従来同様に、例えばp型Si基板21
のチップ領域6上に選択酸化法により、図示しないチャ
ネルストッパを下部に有して素子形成領域22を画定す
る厚さ0.6μm程度のフィールド酸化膜23を形成す
る。この際、チップ外領域7上にはフィールド酸化膜2
3を形成しない。
Refer to FIG. 3(a) When manufacturing an LDD structure MOSFET using the method of the present invention, for example, a p-type Si substrate 21
A field oxide film 23 having a thickness of about 0.6 μm and having a channel stopper (not shown) below and defining an element formation region 22 is formed on the chip region 6 by a selective oxidation method. At this time, a field oxide film 2 is formed on the off-chip area 7.
Does not form 3.

(チップ領域6及びチップ外領域の配置については第2
図に示した模式平面図参照) 第3図(b)参照 次いで、素子形成領域22及び基板の表出するチップ外
領域7上に熱酸化により厚さ0.02μm程度のゲート
酸化膜24を形成し、この基板上にCVD法により厚さ
0.4μm程度のポリSi層25を形成し、このポリS
t層25上に、CVD法により厚さ0.2μm程度ノC
VD−5t(h膜26を形成し、次いでこのCVD−5
tO2膜26上のゲート電極バターニングマスク用のポ
ジレジストパターン27Pを形成する。この際チップ外
領域7の例えば全域上には、レジスト層を残留せしめな
い。なおここで、チップ外領域7のレジストの露光には
、前記実施例と同様の方法が用いられる。
(For the arrangement of the chip area 6 and the off-chip area, please refer to the second section.
Refer to the schematic plan view shown in the figure) Refer to FIG. 3(b) Next, a gate oxide film 24 with a thickness of about 0.02 μm is formed by thermal oxidation on the element formation region 22 and the exposed off-chip region 7 of the substrate. Then, a poly-Si layer 25 with a thickness of about 0.4 μm is formed on this substrate by the CVD method, and this poly-Si layer 25 is
On the t-layer 25, a carbon layer with a thickness of about 0.2 μm is deposited using the CVD method.
VD-5t (h film 26 is formed, then this CVD-5
A positive resist pattern 27P for a gate electrode patterning mask is formed on the tO2 film 26. At this time, the resist layer is not left on, for example, the entire area of the off-chip region 7. Here, the same method as in the previous embodiment is used to expose the resist in the off-chip area 7.

第3図(C)参照 次いで、上記レジストパターン27PマスクにしCHF
 、等をエツチングガスに用いるRIB処理によりCC
VD−5in膜26をバターニングし、引き続いてCI
系のエツチングガスを用いるRIE処理によりポリSi
層25のバターニングを行って、CVD−5,jot膜
26を上部に有するポリSiゲート電極25Gを形成す
る。この際、レジストに覆われないチップ外領域7上の
CVD−5iO□膜26及びポリSi層25はエツチン
グ除去されて、この領域には薄いゲート酸化膜24を上
面に有するSt基板21面が表出する。
Refer to FIG. 3(C) Next, apply CHF to the above resist pattern 27P mask.
, etc. by RIB processing using etching gas.
The VD-5in film 26 is buttered and then CI
Poly-Si is etched by RIE treatment using etching gas.
The layer 25 is patterned to form a poly-Si gate electrode 25G having a CVD-5, jot film 26 thereon. At this time, the CVD-5iO□ film 26 and poly-Si layer 25 on the off-chip area 7 that is not covered with the resist are etched away, and the St substrate 21 surface with the thin gate oxide film 24 on the upper surface is exposed in this area. put out

次いでレジストパターン27Pを除去した後、上記ゲー
ト電極25Gをマスクにし、素子形成領域22内に選択
的にn型不純物を低濃度にイオン注入する。(127は
n型不純物低濃度注入領域)第3図(ロ)参照 次いで、CVD法により上記基板の全面上に厚さ0.2
5μm程度の第2のCCVD−5in膜を形成し、次い
でこの第2のCVD−5ift膜及びゲート酸化膜24
を、例えばCHF、を用いたRIE処理による全面エツ
チングにより、例えば前記発光スペクトル強度による終
点検出手段によりエツチング終点が検出されるまでエツ
チングを行う。この実施例において、大面積を有し、エ
ツチング終点の検出に大きく寄与するチップ外領域7に
おける上記エツチングされるSiO□膜、即ち第2のC
VD−5i(h膜とその下部のゲート酸化膜24の下部
にはSingと異種物質であるSi基板21が直に接し
て存在するので、上記終点の検出は高感度で精度良く行
われ、極度のオーバエツチングを生ずることがないので
、ゲート電極25Gの側面には、所定の厚さを有する第
2のCVD−5iO2膜からなり、なだらかな側面を有
するSiO,サイドウオール28が形成される。またゲ
ート電極25G上のCVD−5i01膜26の厚さも確
保される。
Next, after removing the resist pattern 27P, using the gate electrode 25G as a mask, n-type impurity ions are selectively implanted into the element forming region 22 at a low concentration. (127 is a low concentration n-type impurity implantation region) Refer to FIG.
A second CCVD-5in film with a thickness of about 5 μm is formed, and then this second CVD-5ift film and gate oxide film 24 are formed.
The entire surface is etched by RIE processing using, for example, CHF until the etching end point is detected by, for example, the end point detection means based on the emission spectrum intensity. In this embodiment, the etched SiO
Since the VD-5i (h film and the Si substrate 21, which is a different material) exist in direct contact with Sing under the gate oxide film 24, the detection of the end point is performed with high sensitivity and accuracy, and is extremely To prevent overetching of the gate electrode 25G, a SiO sidewall 28 is formed on the side surface of the gate electrode 25G, which is made of a second CVD-5iO2 film having a predetermined thickness and has a smooth side surface. The thickness of the CVD-5i01 film 26 on the gate electrode 25G is also ensured.

第3図(e)参照 以後、従来通りの方法により、上記5iO1サイドウオ
ール28を有するゲート電極25Gをマスクにして素子
形成領域22内に高濃度にn型不純物をイオン注入し、
熱処理を行って上記高濃度の不純物注入領域と前に形成
された低濃度n型不純物注入領域127とを活性化して
、n−型ソース領域27S、n−型ドレイン領域27D
、n”型ソース領域29S、n゛型トドレイン領域29
D形成し、以後図示しないが、この基板上に層間絶縁膜
を形成し、この眉間絶縁膜にn゛゛ソース領域29S及
びn゛型トドレイン領域29D表出するコンタクト、窓
を形成し、これらコンタクト窓上から層間絶縁膜上に延
在するソース配線及びドレイン配線等が形成され、本発
明の方法を用いたLDD構造のMOSFETが完成する
After referring to FIG. 3(e), using the gate electrode 25G having the 5iO1 sidewall 28 as a mask, n-type impurity ions are implanted at a high concentration into the element formation region 22 by a conventional method.
Heat treatment is performed to activate the high concentration impurity implantation region and the previously formed low concentration n-type impurity implantation region 127, thereby forming an n-type source region 27S and an n-type drain region 27D.
, n'' type source region 29S, n'' type drain region 29
Although not shown in the drawings, an interlayer insulating film is formed on this substrate, and contacts and windows that expose the n-type source region 29S and n-type drain region 29D are formed in this glabellar insulating film, and these contact windows A source wiring, a drain wiring, etc. extending from above onto the interlayer insulating film are formed, and an LDD structure MOSFET using the method of the present invention is completed.

この実施例によれば、前述したようにサイドウオール形
成の際の全面エツチングにおいて、Sin、サイドウオ
ール28の厚さの目減りはないので、ソース及びドレイ
ンのオフセット領域即ちn−型ソース領域27S及びn
−型ドレイン領域27Dの長さにばらつきを生ぜずに所
定の値に形成されるので、LDD−MOSFETの特性
が安定する。
According to this embodiment, as described above, there is no reduction in the thickness of the sidewall 28 during the entire surface etching when forming the sidewall, so that the source and drain offset regions, that is, the n-type source region 27S and
Since the - type drain region 27D is formed to a predetermined length without variation, the characteristics of the LDD-MOSFET are stabilized.

また本実施例においてCCVD−5in膜26は必ずし
も必要ではない。
Further, in this embodiment, the CCVD-5in film 26 is not necessarily required.

なお、本発明の方法において、チップ外領域に設けられ
る終点検出用の層は、上記実施例に示した、SiJ、及
びSi基板に限られるものではなく、全面エツチングさ
れる膜と異なる元素を含んだ物質の層であれば、種類を
問わない。
In addition, in the method of the present invention, the end point detection layer provided in the off-chip area is not limited to the SiJ and Si substrates shown in the above embodiments, but may contain a different element from the film to be etched over the entire surface. As long as it is a layer of matter, the type does not matter.

また終点検出手段には、前記発光スペクトル強度による
方法に限らず、光学測定法、質量分析法、レーザによる
検出法、フォトルミネセンスによる法等を用いることも
できる。
In addition, the end point detection means is not limited to the method using the emission spectrum intensity, but may also be an optical measurement method, a mass spectrometry method, a detection method using a laser, a method using photoluminescence, or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、サイドウオール形成
の際の全面エツチングにおいて、エツチング終点の検出
精度が向上し、オーバエツチングが防止されて、所定の
厚さと緩斜面形状を有するサイドウオールが形成される
ので、本発明は配線の段切れ防止、オフセット長の安定
化等による半導体装置の歩留りや信軌性の向上に有効で
ある。
As explained above, according to the present invention, the detection accuracy of the end point of etching is improved in the entire surface etching during sidewall formation, over-etching is prevented, and a sidewall having a predetermined thickness and a gentle slope shape is formed. Therefore, the present invention is effective in improving the yield and reliability of semiconductor devices by preventing wiring breakage, stabilizing offset length, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明に係る一実施例の工程断
面図、 第2図は本発明の実施例における半導体基板の模式平面
図、 第3図(a)〜(e)は本発明に係る他の実施例の工程
断面図、 第4図(a)〜(f)は従来方法の工程断面図、第5図
は従来方法における半導体基板の模式平面図である。 図において、 1は半導体基板、    2は下敷き酸化膜、3A、 
3BはSiJ、膜パターン、 4はフィールド酸化膜、 5は0字型溝(トレンチ)、 6はチップ領域、     7はチップ外領域、8は素
子間分離用5i02膜、9はポリSi埋込み層、10は
第2ポリSi層、   11はポジレジスト層。 11a、は第1の露光領域、 11a2は第2の露光領域、 11Pはポジレジストパターン、 125はポリSiサイドウオール、 13はポリSi埋込み層被覆用SiO□膜、を示す。 、5,1;       、57
FIGS. 1(a) to (f) are process cross-sectional views of an embodiment of the present invention; FIG. 2 is a schematic plan view of a semiconductor substrate in an embodiment of the present invention; FIGS. 3(a) to (e) 4(a) to (f) are process sectional views of a conventional method, and FIG. 5 is a schematic plan view of a semiconductor substrate in the conventional method. In the figure, 1 is a semiconductor substrate, 2 is an underlying oxide film, 3A is
3B is SiJ, film pattern, 4 is field oxide film, 5 is 0-shaped trench, 6 is chip area, 7 is off-chip area, 8 is 5i02 film for isolation between elements, 9 is poly-Si buried layer, 10 is a second poly-Si layer, and 11 is a positive resist layer. 11a is a first exposure area, 11a2 is a second exposure area, 11P is a positive resist pattern, 125 is a poly-Si sidewall, and 13 is an SiO□ film for covering a poly-Si buried layer. ,5,1; ,57

Claims (1)

【特許請求の範囲】 半導体基板上(1)に第1の薄膜を形成し、該第1の薄
膜をパターニングして周囲に対して段差を有する第1の
薄膜パターン(10P)を形成する工程と、次いで該基
板(1)の全面上に第2の薄膜(12)を形成し、該第
2の薄膜(12)の全面エッチングを行って該第1の薄
膜パターン(10P)の側面に第2の薄膜からなるサイ
ドウォール(12S)を形成する工程を有し、且つ該第
2の薄膜(12)の全面エッチングの終点が、終点検出
手段によって求められる半導体装置の製造方法において
、 該半導体基板(1)面におけるチップ領域上の該第1の
薄膜(10)をパターニングする工程と、該第1の薄膜
(10)をパターニングする工程と同時若しくは別にチ
ップ領域外の領域の一部または全域上の該第1の薄膜(
10)を除去する工程を有し、該第1の薄膜(10)の
除去されたチップ領域外の領域の一部または全域を、該
第2の薄膜(12)の全面エッチングに際してのエッチ
ング終点の検出に寄与せしめる工程を含むことを特徴と
する半導体装置の製造方法。
[Claims] A step of forming a first thin film on a semiconductor substrate (1) and patterning the first thin film to form a first thin film pattern (10P) having a step with respect to the periphery. Next, a second thin film (12) is formed on the entire surface of the substrate (1), and the entire surface of the second thin film (12) is etched to form a second thin film pattern (10P) on the side surface of the first thin film pattern (10P). A method for manufacturing a semiconductor device comprising the step of forming a sidewall (12S) made of a thin film of the second thin film (12), and in which the end point of the entire surface etching of the second thin film (12) is determined by end point detection means, 1) patterning the first thin film (10) on the chip region in the plane, and patterning the first thin film (10) on a part or the entire region outside the chip region, either simultaneously or separately from the step of patterning the first thin film (10). The first thin film (
10), and a part or the entire region of the first thin film (10) outside the removed chip area is removed at the etching end point when etching the entire surface of the second thin film (12). A method for manufacturing a semiconductor device, comprising a step contributing to detection.
JP4983290A 1990-03-01 1990-03-01 Manufacture of semiconductor device Pending JPH03252129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4983290A JPH03252129A (en) 1990-03-01 1990-03-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4983290A JPH03252129A (en) 1990-03-01 1990-03-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03252129A true JPH03252129A (en) 1991-11-11

Family

ID=12842059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4983290A Pending JPH03252129A (en) 1990-03-01 1990-03-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03252129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215838B2 (en) 2017-04-20 2022-01-04 Elbit Systems Ltd. Helicopter head-mounted see-through displays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215838B2 (en) 2017-04-20 2022-01-04 Elbit Systems Ltd. Helicopter head-mounted see-through displays

Similar Documents

Publication Publication Date Title
JPH0680651B2 (en) Method for manufacturing semiconductor device
JPH07122748A (en) Manufacture of semiconductor device
JP2006054486A (en) Method of forming contact opening adjacent to isolation groove in semiconductor substrate
JPH10303291A (en) Semiconductor device and its manufacture
US6309960B1 (en) Method of fabricating a semiconductor device
US8722512B2 (en) Method of manufacturing semiconductor device with a dummy layer
JPH06163578A (en) Method for forming contact hole
US6255218B1 (en) Semiconductor device and fabrication method thereof
US7208400B2 (en) Method of manufacturing a semiconductor device including a dielectric film formed between first and second electrode layers
JPH03252129A (en) Manufacture of semiconductor device
KR100670395B1 (en) Method of manufacturging semiconductor device
JP3295393B2 (en) Method for manufacturing semiconductor device
US6696743B1 (en) Semiconductor transistor having gate electrode and/or gate wiring
JPH0982800A (en) Semiconductor integrated circuit device and manufacture thereof
JP2850888B2 (en) Method for manufacturing semiconductor device
JPH08306797A (en) Fabrication of semiconductor device
JP2907248B2 (en) Semiconductor device and manufacturing method thereof
KR100298463B1 (en) Method for manufacturing semiconductor device the same
JPS63257244A (en) Semiconductor device and manufacture thereof
JP2005353674A (en) Semiconductor device and manufacturing method thereof
JPH0448644A (en) Manufacture of semiconductor device
JP2004087599A (en) Semiconductor device and its manufacturing method
JPH0794734A (en) Method of manufacturing transistor with high withstanding voltage
KR20050106879A (en) Method for manufacturing gate spacer in semiconductor device
JPH08316475A (en) Semiconductor device and manufacture thereof